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A new transmission line model is proposed based on the well-established Bergeron method. The conven-
tional Bergeron model is characterized by the line representation by concentrated longitudinal and
transversal parameters, i.e., electrical parameters of the line are represented by means of electric circuit ele-
ments. The original approach of this research is the inclusion the frequency effect in the longitudinal param-
eters of the Bergeron line representation. In order to increase the frequency range covered by the proposed
model, the line is represented by a cascade of line segments which are modeled following the proposed
frequency-dependent Bergeron circuit. The differential equations resulted from the proposed development
are represented by state matrices. The line representation by cascade of frequency-dependent Bergeron
circuits enables to extend the application of the new modeling technique for simulations considering a wide
range of frequencies, from a switching up to an atmospheric impulse. The proposed line model is validated
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based on results obtained from the well-established line model using numerical Laplace transform.
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Introduction

There are several transmission line models available in the
technical literature to study electromagnetic transients in power
transmission systems. Basically, these models may be classified
into two general groups: by lumped parameters or by distributed
parameters.

In the first group, transmission lines are modeled from the rep-
resentation by lumped elements, i.e., line is modeled by an equiv-
alent representation by means of electric circuits composed of
resistive, inductive and capacitive elements. These models are
developed directly in the time domain, which means that can be
applied for transient simulations including time-variable and
non-linear elements, as: metal-oxide surge arresters, relays, non-
linear loads and many other power components. This characteristic
is the principal advantage in the transmission line modeling (TLM)
by lumped elements [1]. The line representation by lumped param-
eters is well established in the technical literature for simulation of
electromagnetic transients as well as other applications for power
flow studies, fault location through long transmission lines and
steady state phenomena [2-4].
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The line modeling by distributed parameters is developed
directly from the frequency-dependent parameters of the line rep-
resentation by two-port circuit in the frequency domain. From this
approach, the line modeling and simulations are carried out in the
frequency domain and time-domain results are obtained using
numeric transforms [5]. The frequency-dependent parameters of
the line are accurately represented using frequency-domain mod-
els; however, these models have restrictions for inclusion of
time-variable elements in the simulation process, since most
power components are well established and modeled in the time
domain [6].

Despite line models by lumped elements are developed in the
time domain, the frequency effect on the longitudinal parameters
can be included in the model using fitting methods. New
frequency-dependent models based on the electric circuit
approach have been described in the technical literature on TLM.
These models are developed directly in the time domain from
the line representation by cascade of 7w circuits, where the fre-
quency effect on the electrical parameters is fitted by rational func-
tions Rg(w) and Ly (w) (resistance and inductance) based on the
longitudinal impedance of the line Z(w), which is calculated taken
into account the earth-return impedance (soil effect) and the skin
effect on the cables. For example, the frequency-dependent line
model described in Refs. [7,8] shows to be robust and accurate
for most of transient conditions on power transmission systems.
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However, depending of the transmission system characteristics
(source, line and load) and transient conditions, the frequency-
dependent model based on cascade of lumped elements shows to
be costly in computational terms, depending of the quantity of line
equivalent circuits in the cascade, total simulation time and inte-
gration step. Furthermore, hard unbalanced conditions could lead
to some inaccuracies because the multi-phase modeling using a
constant and real transformation matrix for the line decoupling
into the respective propagation modes. Thus, the line representa-
tion by frequency-dependent cascade of 7 circuits shows to be effi-
cient for several situations; however, some restrictions in the
modeling procedure and inaccuracies are observed for specific
cases. From this last statement, the same fitting procedure in Refs.
[7,8] is also applied for the proposed line model based on the Berg-
eron method for simulation of fast and impulsive transients.

The Bergeron method, also known as method of the character-
istics, was firstly proposed to solve hydraulic systems and after
applied to electrical problems, more specifically, electromagnetic
wave propagation along a lossless line [9]. In this case, the line
modeling is carried out considering only the longitudinal induc-
tance L and the shunt capacitance C, which means that the line
resistance R and transversal conductance G are neglected. There-
after, HW. Dommel proposed a nodal solution combining the
method of the characteristics for transmission lines with losses
and the integration method of the trapezoidal rule for lumped
parameters. The losses in the Bergeron’s line model were repre-
sented by constant lumped resistances located at the sending
and receiving ends of the equivalent circuit. The Bergeron’s method
with losses was included in the well-known Electromagnetic Tran-
sient Program (EMTP) [10].

A first approach for inclusion of the frequency effect in trans-
mission line models, direct in the time domain, was described in
[11]. An extension of the Bergeron’s method of characteristics
was developed for transmission lines with frequency-dependent
parameters. However, the frequency-dependent parameters were
included in the line model using inverse transforms and convolu-
tions, which also results in several restrictions in simulations of
time-variable power components and non-linear phenomena.

The proposed model is represented by a cascade of Bergeron’s
circuits, which results in an accurate line model capable of simulat-
ing electromagnetic transients composed of a wide range of fre-
quencies, differently of most models developed by lumped
parameters and the classical Bergeron model itself. Thus, the inclu-
sion of the frequency effect in the Bergeron model and the line rep-
resentation by cascade of lumped elements are the main
contribution of this research.

This paper is structured into three parts. The first part is an
introduction of the classical Bergeron model for transmission lines
without losses and for lossy lines using constant parameters. The
second part describes the inclusion of the frequency effect in the
Bergeron model using vector fitting and the line representation
by cascade of frequency-dependent Bergeron circuits. The third
part validates the proposed time-domain model comparing results
with a well-established model using numerical Laplace transform
(NLT line model) [5]. Two signals are evaluated for the two line
models: switching impulse (composed of low frequencies) and an
atmospheric impulse (composed of low up to very high
frequencies).

The Bergeron line model

The Bergeron’s method was firstly applied for lossless transmis-
sion lines. This means that only the line inductance per unit of
length (p.u.l.) L and the p.u.l. capacitance C' were included in the
model, whereas the longitudinal p.u.l. resistance R’ and the p.u.l.

conductance G’ were neglected. In fact, the method of the character-
istics could be applied for lossy transmission lines, but the resulting
ordinary differential equations could not be directly integrated.
Thus, considering a single-phase line with length [, the current
and voltage at a point x along the line are expressed as follows:

oe oi

-5=la (M
oi , 0e
“%-Car 2)

The first hand of (2) and (3) represents the voltage and the cur-
rent as a function of the distance x along the line, i.e., voltage and
current wave propagation along the line as a function of the time t.

The general solutions of (1) and (2) are expressed [9]:

i(x,t) =f1(x— vt) +f,(x + vt) (3)

e(x,t) = Zof 1(x — vt) + Zof , (x + vt) 4)

Terms f; and f, are arbitrary functions of (x + »t). Function f;
represents the forward wave propagation along the line with
velocity v (also known as propagation or phase velocity) whereas
f, represents the wave propagation in a back forward direction.
The line characteristic impedance Z, and the propagation velocity
v are expressed in the technical literature as [10]:

L 1
Z = — V=— 5
e rc ®)

Multiplying (3) by the characteristic impedance Z, and adding
in (4), the following formulation is obtained [9]:

e(x, t) + Zoi(x, ) = 2Zof (X — vt) (6)

e(x,t) — Zoi(x,t) = —2Zof 5, (x + vt) (7)

Analyzing (6), (e+ Zoi) is constant for (x — vt). The same
instance is valid for the voltage (e —Zi) in association with
(x + vt). These constants are intrinsic related to the propagation
characteristics and differential equations of a lossless transmission
line.

Since (x + »t) is constant, the traveling time of an electromag-
netic wave from the sending end to the receiving end of the line
is also constant and is expressed as:

fzézm/_c’ (8)

The equivalent circuit for a lossless line is described in Fig. 1.

The forward wave is constant from the node k to the node m at
instant t — 7. Analogously for a back forward wave from the node m
to k. This means that the forward wave, which takes t seconds to
travel from the sending end k to the receiving end m, has the same
magnitude than the back forward wave from terminal m to k,
because no losses are considered in the line modeling which leads
to an undefined number of wave reflections between the line ter-
minals [9].

The historical currents for the Bergeron’s line model without
losses, defined in Fig. 1, are expressed as [10]:

em(t) = Zloekm CL(t—7) 9)
i (£) = Zloemm It 1) (10)

Terms I, and I, are equivalent current sources at the sending
and the receiving ends of the line, respectively. Sources I, and I,
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Fig. 1. Equivalent impedance circuit of the Bergeron line model.

are known at state time t from the past history at time t — 7, as
expressed in (11) and (12), respectively.

L(t—1)= —lem(t —1T) —imk(t=17)

7 (11)

In(t—7) = —Zlek(t —T) —igm(t—17)
0
Eqgs. (9)-(12) are the time-domain formulation for a lossless line
represented by the equivalent impedance circuit in Fig. 1. How-
ever, the losses can be represented by concentrated lumped resis-
tances at the sending and receiving ends of the line, as shown in
Fig. 2.
The total series impedance is concentrated at both terminals of
the line represented by the equivalent impedance circuit in Fig. 2.
Thus, (11) and (12) can be reformulated [11]:

(12)

Ik(t*'f)Z*(ZO“':liR/z)em(tfr)fim,k(tff) (13)
Im(t—f):_(Z(inR/z)elc(t_T)_ik-m(t_T) (14)

The term R/2 is added to the characteristic impedance Z,. Term
R is the total resistance of the line, where part is concentrated at
the node k and the other half at the node m, as described in
Fig. 2. Although this approach has been used in most EMTP ver-
sions, entitled as Bergeron model, the concentrated resistance R
is constant, which means that the Bergeron model for lossy lines
has not properly taken into account the frequency effect on the
longitudinal parameters. Most transient phenomena in power sys-

ikm(t) R/2

Vk(t) Zo

tems are composed of a wide range of frequencies which means
that the conventional Bergeron model has restrictions in simula-
tions of fast and impulsive transients.

Including the frequency effect in the Bergeron model

As well-established in the technical literature on TLM, the
impedance of transmission lines is highly dependent of the fre-
quency due to the earth-return current (soil effect) and the skin
effect in the conductor. This means that the transmission lines
are characterized by a longitudinal impedance Z(w), resulted from
the soil and skin effects [5,7,8]. Thus, the inclusion of the frequency
effect in transmission line models is an important issue for simula-
tion of electromagnetic transients.

The proposed frequency-dependent Bergeron model is
described in details in this section. Initially, a brief review on vec-
tor fitting is presented in order to show how the frequency-
dependent parameters are synthesized for direct representation
in the time domain by means of a single rational function and
lumped elements. In sequence, the new Bergeron line model is
described step by using the proposed fitting method.

Fitting the longitudinal impedance

The fitting procedure consists in the approximation of a rational
function Zg () to the longitudinal impedance of the line Z(w). The
poles, zeros and residues of the fitted impedance Zg () are associ-
ated with a RL circuit, which is the main step to represent the fre-
quency effect in TLM in the time domain.

The referred equivalent circuit is described in Fig. 3.

The rational function that represents the equivalent RL circuit in
Fig. 3 is expressed as [7,8,12]:

Fig. 2. Equivalent impedance circuit considering the line losses.
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Fig. 3. Equivalent circuit for fitting the frequency-dependent line impedance.
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Fig. 4. Line p.u.l. resistance R(w) (curve 1) and fitted p.u.l. resistance Rg(w) (curve 2).
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Term o is the angular velocity. Terms R, and L; are the p.u.l
resistance and inductance for w = 0, respectively. The frequency
range is fitted as a function of the quantity of RL blocks in the
electric circuit in Fig. 3.

A single propagation mode is characterized by a Grosbeak con-
ductor at 28 m above the ground with soil conductivity of
1000 Q m. Thus, the propagation mode can be considered as a
single-phase line. The calculated resistance R(w), taken into account
the ground and skin effects, and the fitted resistance Rg(w) are
obtained for frequencies up to 1 MHz, as demonstrated in Fig. 4.

The calculated and fitted inductances L(w) and Lg (), respec-
tively, are in Fig. 5.

The resistance and inductance fitting show to be accurate com-
pared with the same values calculated using the conventional
approach for calculation of transmission line parameters [4]. The
algorithm applied for calculation of the residues and poles of the
rational function Zg (w) is the well-established Vector Fitting [12].
This algorithm has shown to be accurate and robust for smooth
and resonant responses with high order and wide frequency bands.
Furthermore, the same method has been efficient in the develop-
ment of time-domain line models for simulation of electromag-
netic transients in power systems [1,7,12].

Frequency-dependent Bergeron line model

The proposed development consists basically to replace the
constant resistance, referred to the line losses in Fig. 2, by the
equivalent circuit described in Fig. 3. This procedure requires a
new formulation for the Bergeron model which results in a system
of differential equations with dimension as long as the number of
RL blocks in the equivalent circuit in Fig. 3.

Substituting the resistance R (Fig. 2) by the equivalent circuit
expressed by Zs(w), the frequency-dependent Bergeron circuit is
restructured in Fig. 6.

The frequency-dependent impedance is concentrated at the
nodes k and m of the equivalent circuit, from the same way
described for the Bergeron model with losses. However, the con-
stant resistance R is replaced by the impedance Zg(w), in (15),
directly in the time domain.

The number of RL blocks is defined based on the type of electro-
magnetic transient to be analyzed. For an input signal composed of
low frequencies, e.g. a switching operation, no more than three or
four RL circuits are necessary. Otherwise, for fast and impulsive
transients, as an atmospheric impulse for example, several RL
blocks are required to cover the entire frequency range which a
steep-front wave is composed.

Considering the frequency-dependent Bergeron circuit in Fig. 6,
the relationship of voltage on the resistors and the inductors in the
node k is expressed in (16)—(18).

Ri .. . L; di
%(zkoflkl):% d’; (16)
Ry . . L, diy
72(1,(071,(2):72 d’tz (17)
Re.. . L, di
%(lko - lkn) = 7 d_l;:n (18)

In (16)-(18), terms iy, ix; to iy, are the currents through the
resistor Ry and inductors L; to L,, respectively. Following the
Kirchoff's current law, the current through the resistors R; and R,
are (ixo — ir1) and (ixo — ixn), respectively. Thus, the general expres-
sion is developed associating the past-history current source
I (t — 7) to the state current iy, which is equivalent to the current
irm(t) in Fig. 6.
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Fig. 6. Frequency-dependent Bergeron circuit.

Vs — Roiro — Ri(ixo — ix1) — - - - — Ru(ixo — ikn) + Zoli(t — T) = Zoiro

(19)
The voltage source Vs in (19) represents the input voltage V;,(t)
in the frequency-dependent Bergeron'’s circuit in Fig. 6. The first-

order system, based on (16)-(19), can be presented as state equa-
tions from the following form:

(] = (AL + [Bul[S] (20)

Vector [Iy] is composed of the currents in inductors L; to L, its
transposed form is expressed as:

" = [k dia - kn] (1)

The current derivatives from (21) are expressed by the follow-

ing transposed vector:
[ik]T _ |:% dikZ dl'kn:|
dt dt "~ dt

(22)

The state matrix [Ay] is constant and expressed as a function of
R and L values of the circuit in Fig. 3 and also from the character-
istic impedance Z,, calculated based on the line parameters for
direct current. Matrix [A] is expressed as:

LY By v B

Ly Zo+y o R Li\zo+) [ Ri Li\zo+>" ki
Ry Ry - Ry -1 +R72n . Ry Rinn
Lz ZO*Z::lRi L2 ZO+Z::1R" L ZOAZ::IR’

N s Y (N P
L Lo ZO+ZHR‘ n ZD+21—1R’ Ln ZO+Z:—1Ri J

Matrix [By] is also developed as a function of Z, and from the R
and L tabulated values of the circuit in Figs. 3 and 6. Matrix [B] has
dimension n per 2, as in (24).

_R1 " _
b Z°+211 L Z°+le

z (z) I (z ) (24)

Rn 1 . Rn
Lo Z°+Zi—1Ri n Z°+Z: 1

Eq. (25) describes the vector [S], which is composed of the volt-
age source Vs, that represents the time-variable input voltage
Vin(t), and the historical current source I;(t — 7).

5= [he-n) 2

From the state-space formulation in (20), current i,,(t) and
voltage V,(t) can be analytically expressed as follows:

_ "/ Ry 1
fim(t) = S ) + Vi
km (£) q; (Zo +3 LR Zo+ YR
Z
e L(t—1 26
Zo+ >R . : -
Vk(t) lkm ZR + lkl (27)

The formulation for the node m is similar to the development
obtained for the node k, since the parameters of the equivalent cir-
cuit Zg () are the same for both sides of the equivalent circuit in
Fig. 6. Considering the node m as the receiving end of the line, a
generic load, represented by an impedance Z;, is included in the
state matrix [An] as described in (28).
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Ry R Rn Ry S (S, R
L b \zotz2+> ) R In \zo+z1+) R Ln

The load Z; can be modeled as a constant or time-variable impe-
dance, since the proposed line model is developed in the time
domain.

The vector with the currents through inductors L; to L, could be
renamed as [I,,]; however:

)" = )" = [ k2 -+ k] (29)

and

dikl dikZ dikn:| (30)

i = 1" = [ G2

Thus, vector [I,] can be expressed only in terms of iy.
Terms [B] and [S], in (20), are also modified. Matrix [B] is refor-
mulated as a single vector composed of a single column:

_Rl _
L ZU+ZL+Z

[B) = i <ZM+27021R) (31)

R Z
Lim \Zo+2+> " (Ri ) |

Vector [S], in (20), is substituted by the past-history current
source In(t — 7) from the node m. Thus, the state equation in (20)
can be rewritten from the current source in node m of the equiva-
lent circuit in Fig. 6:

(1] = [An][l] + Bn]Im(t — 7) (32)

From the Bergeron model representation by state equations,
current i, (t) and voltage V,(t) are analytically expressed based
on the same development in (26) and (27):

. u Ryiy Zo
fem(t) = s )+ In(t—7) (33
nlt) ;<ZO +ZL+YLR)  Zo+Zu+ LR nt=o B33

Vm (t) = Vaut lm k ZR + lla (34)

Where the output voltage V,,(t) is expressed as:
Vour (t) = —imk(£)Z1 (35)

Since the state matrixes are obtained from the fitted parameters
(R and L elements of the equivalent circuit in Fig. 3), the first-order
system with the state equations can be solved using numerical or
analytical integration methods [7].

Cascade representation of the frequency-dependent Bergeron model

As mentioned before, the cascade approach of the line repre-
sents more accurately the distributed characteristic of the line
electrical parameters. Furthermore, the frequency response of the
model is proportional to the number of equivalent circuits used
in cascade [7]. Thus, the cascade representation shows to be a good
technique to model long transmission lines for simulation of fast

(elsrs) |

RYI
ZuﬂwZLRf) (28)

Rn
n
Zo+2+) 5 Ri)

and impulsive electromagnetic transients, which are composed of
a wide range of frequencies.

In Section ‘Frequency-dependent Bergeron line model’, the state
matrices were developed for a single frequency-dependent Berg-
eron circuit. This section shows the matrix formulation for the
interconnection of two consecutive elements in cascade with h
frequency-dependent Bergeron circuits. From the matrix equations
described in Section ‘Frequency-dependent Bergeron line model’
and based on the state matrices to be developed in this section,
the frequency-dependent Bergeron formulation can be extended
for a cascade with h equivalent circuits.

Firstly, a cascade with h sections is illustrated in Fig. 7.

Each block in Fig. 7 represents a frequency-dependent Bergeron
circuit. The left hand of the first Bergeron circuit represents the
sending end of the line whereas the right hand of the last Bergeron
circuit represents the receiving end.

Based on the generic frequency-dependent Bergeron circuit in
Fig. 6, the connection of circuits (h — 1) and h can be formulated.
As a first consideration, the Zg /2 circuit of the receiving end of
(h — 1) is exactly the same RL circuit of the sending end of the ele-
ment h. Thus, the equivalent RL circuit obtained from the connec-
tion of two consecutive blocks (Fig. 7) is Zg. Thus, the current I, of
the receiving end of the (h — 1)-th circuit and the current I, from
the sending end of the h-th circuit are in the same RL circuit. This
two current are expressed as I" "V and I", respectively.

The sum of the two RL circuits of the elements (h — 1) and h
results in a few variations in the state matrix [B] and vector [S],
such as expressed in (20) and (32). From the equivalent formation
rule based on the Kirchoff's current law in (19), the matrix [B]
and vector [Sp| are expressed in (36) and (37), respectively. On
the other hand, matrix [A] remains the same as [A;].

ﬁl < (Zﬁz, 1&)) ﬁ < (Zu+§, 1RI)> -

tetm) tlwstn)

B = | ° (Zo+2 k)] 2 \2(z0+30 k) (36)
t k) tldn)
I (Zo+2,1 k) ez R))
D¢ — 1)

[Smk} = |: m(h) (37)
1 (t - 1)

] Lst ] 2nd N (h-1)-th ] h-th IR

Bergeron Bergeron Bergeron Bergeron
] Circuit 1 Circuit - Circuit Circuit _

Fig. 7. Cascade of frequency-dependent Bergeron circuits.
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An important characteristic in (37) is the relationship of the
past-history current sources Iﬁ,’j’” and I,ﬂ’”. Vector [Sp| is the main
variable to the cascade configuration of the proposed Bergeron
model. Considering (36) and (37), the matrix equation of the link
between two consecutive Bergeron circuits is expressed in (38).

(1] = (A ] + Bre] [Sm] (38)

Analogously to (26), (27) and (33), (34), for a single frequency-
dependent Bergeron circuit, the current and voltage equations for
two connected Bergeron circuits can be analytically developed:

-(h-1) i _ < qikq ) + §
i = —1 = n 7 n R
mk k.m ; Zo + g i:lRi 2( 0 Zi:l i)

x (I Ve -0 - 13- 1) (39)

Since the past-history current sources ['"" and I} are in the
same RL circuit, the current [, from the receiving end of the cir-

cuit (h — 1), has the same magnitude of the current I at the

k,m
receiving end of the circuit h.
Voltages at the receiving end of the (h — 1)-th and the sending
end of the h-th circuit are expressed respectively as follows:

Vi (0 =2 i ~ I V(e = )] v

VEP(t) = ~Z[ivo + 1 (- 7)] (41)

Emphasizing that current iy is equivalent to iy, and iy, which
are similar for (h — 1)-th and h-th Bergeron circuits.

From the matrix formulation developed in Section ‘Frequency-
dependent Bergeron line model’ and from the formulation pre-
sented in this section for two Bergeron circuits interconnected,
the detailed voltage and current profile can be obtained along
the transmission line considering or not time-variable elements,
since the proposed model is totally developed in the time domain.

Validation of the frequency-dependent Bergeron model

This section aims to evaluate the accuracy of the frequency-
dependent model based on a 100-km transmission line. In order
to validate the proposed model, results are compared to a well-
established model by distributed parameters using numerical
Laplace transforms (NLT). The NLT line model is developed in the
frequency domain being accurate and useful to validate other mod-
els for simple cases without non-linear and time-variable ele-
ments. The NLT model is developed from the distributed
parameters of the line in the frequency domain, where time-
domain results are obtained applying inverse transforms [2].

Initially, two standard cases are simulated to highlight possible
variations between the frequency-dependent Bergeron model
(proposed model) and the NLT line model (reference model). The
first case consists of a switching impulse applied at the sending
end of the transmission line with the receiving end open and in
short-circuit. The voltage and current transients are compared
based on results obtained from the two models. The second case
consists in a transmission line, also with the receiving end open
and in short-circuit, submitted to an atmospheric impulse modeled
by a voltage double exponential with front-wave time of 1.2 ps and
tail time of 50 ps. This input signal is a standard atmospheric
impulse proposed by the International Electrotechnical Commission
- IEC for high-voltage tests of power devices and systems [13].

Results simulated in this section are obtained using the NLT line
model and a cascade with 50 frequency-dependent Bergeron cir-
cuits taken into account an impedance Zg(w) fitted up to 1 MHz
(Figs. 4 and 5).

Validation of the proposed model for low frequencies

To validate the proposed model for transients composed of low
frequencies, a voltage switching impulse is simulated. The first
approach is an unitary step function applied at the sending end
of a transmission line with the receiving end open (open-circuit
test). It is a conventional test procedure for new line models widely
approached in the technical literature on TLM [1,6-8,10].

The physical and geometrical characteristics of the line were
previously described in Section ‘Fitting the longitudinal impe-
dance’ as well as the calculated and fitted resistances and induc-
tances of the line. The parameters were fitted up to 1 MHz using
eight RL blocks (Fig. 3), which were calculated using the vector fit-
ting algorithm [12]. Usually, each RL block covers a frequency dec-
ade, as described in Figs. 4 and 5.

The transient voltage profiles obtained from the proposed and
reference models are shown in Fig. 8.

In Fig. 84, the result obtained using the proposed model is the
dotted curve 1 and the same simulation resulted from the NLT line
model (reference model) is the curve 2. Fig. 8b shows the detailed
profile of both curves in the first wave reflection at the receiving end.

A second test is carried out considering the same input signal at
the sending end of the line and the receiving end in short (short-
circuit test). The current transients at the receiving end are
described in Fig. 9.

Curve 1 is the current transient simulated by the proposed
model and curve 2 is the same transient obtained using the refer-
ence model. The transient profile obtained from the proposed
model is close to the result simulated using the reference model,
since the scale of the vertical axe is in p.u. In the first two or three
milliseconds, it is possible to conclude that curves 1 and 2 are
almost overlapped.

Validation of the proposed model for high frequencies

The validation of the proposed model for a wide range of fre-
quencies is carried out by means of an atmospheric impulse
applied at the sending end of the line. This input signal is modeled
by a voltage source equivalent to a 1.2/50 ps double exponential
function. Analogously to tests with a switching impulse in Sectio
n ‘Validation of the proposed model for low frequencies’, open-
and short-circuit tests are carried out in this subsection.

First, an atmospheric impulse is applied at the sending end of
the line and the voltage transients obtained from both models
are presented in Fig. 10.

In Fig. 10, the dotted curve 1 is the voltage transient on the
receiving end of the proposed model and curve 2 is the result sim-
ulated using the reference model. In Fig. 103, curves 1 and 2 show
to be practically overlapped. In Fig. 10b, a discrete time window is
set from 0.4 up to 0.6 ms, highlighting the first wave reflection at
the receiving end of the line. A discrete variation in the voltage
peak is observed between curves 1 and 2. However, the difference
in the peak magnitude is no more than 2%, which means that the
error between proposed and reference models can be neglected.

Results obtained from the short-circuit test, considering an
atmospheric impulse at the sending end, are shown in Fig. 11.

The dotted curve 1 and the curve 2 in Fig. 11a are almost over-
lapped. From a more detailed view, Fig. 11b highlights a discrete
variation in the current peak of the curve 1 compared to curve 2.
However, the peak error is no more than 2%.

The validation of the proposed model could be carried out only
by an atmospheric impulse, because it covers the entire frequency
range considered for fitting Zs (w). However, to ensure that there
are not minor errors in low frequencies, the analysis with a switch-
ing impulse shows to be convenient.
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Fig. 8. Voltage transient at the open receiving end of the line (switching impulse): proposed model (1) and reference model (2).
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Fig. 9. Current transient at the receiving end of the line in short circuit (switching impulse): proposed model (1) and reference model (2).

Only discrete differences were observed in simulations using Simulation of time-variable elements using the frequency-
the Bergeron’s method and the reference model using NLT, which dependent Bergeron line model
means that the proposed model is valid for simulation of electro-
magnetic transients composed of low up to very high frequencies
(at less up to 1 MHz).

Since the proposed frequency-dependent model was validated,
the next step is an analysis considering time-variable elements in
the line modeling and simulations.
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Fig. 10. Voltage transient at the open receiving end of the line (atmospheric impulse): proposed model (1) and reference model (2).

The possibility of inclusion other power devices in transmission
line models is an important characteristic to simulate many oper-
ation conditions which power transmission systems are subject.
The main issue is that many of these power devices and electro-
magnetic phenomena are time variable and have a well-known
modeling in the time domain. On the other hand, the frequency-
domain modeling of these elements is usually a complex procedure
or even unknown.

To verify the performance of the proposed model consider-
ing time-variable elements, a sinusoidal voltage source at fun-
damental frequency of 60 Hz and peak magnitude of 1 p.u. is
connected at the sending end of a transmission line with the
receiving end connected to a time-variable load with power
factor 0.98. After approximately 16 ms, the load profile changes
to a low impedance circuit. Thus, two time-variable events are
simulated using the proposed model: a switching followed by
load variation.

Fig. 12 shows the voltage profile at the receiving end of the line
simulated using the proposed model.

The first transient is observed at the terminal connected to the
load, between zero and 5 ms, resulted from the switching impulse
applied at the sending end of the line. The second transient, from
15 up to 30 ms, is resulted because the load impedance variation.
A low value of the load resistance is set which changes the load
characteristics. Fig. 13 shows the current transient occurred due
to the switching and load variation.

A careful analysis of the current transient in Fig. 13 shows that
the current curve has an inverse signal compared to the voltage
transient. This behavior is verified because the current iy, has a
negative signal in the second part of the Bergeron circuit in
Fig. 6. The shape and magnitude of the current wave in Fig. 13 is
exactly the same, except for the signal.

Conclusions

The inclusion of the frequency effect in a cascade of Bergeron
circuits is the original contribution of this paper. The new Bergeron
model was validated based on results simulated using a frequency-
domain line model using numerical Laplace transform - NLT. The
line model using NLT is developed directly from the line parame-
ters in the frequency domain and the time-domain simulations
are carried out applying inverse transforms. The proposed model
is validated for frequencies up to 1 MHz considering switching
and atmospheric impulses. From the switching impulse was possi-
ble to evaluate the proposed model at low frequencies whereas the
atmospheric impulse provides a complete scan of frequencies. The
line parameters were fitted up to 1 MHz.

Voltage and current transients obtained using both line models
show to be similar in shape and magnitude, which prove the accu-
racy of the proposed time-domain model. The cascade of Bergeron



188 P. Torrez Caballero et al./Electrical Power and Energy Systems 80 (2016) 179-189

5X10
(2)

4
— 3
=S
a (1
€2
5 i
o, i

NN

0 e [ [ / e e T

-1

0 1 2 3 4 5 6

Time [ms]
(a)
x10*

B S
/

Current [p.u.]
N
\

\
) A

-

0
-1
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Time [ms]
(b)
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circuits presents several advantages compared to the reference e accurate results even for transients composed of a wide range of
model (NLT line model), some of them are listed as follows: frequencies;
o inverse transforms and convolutions are not necessary for time-
e simplified modeling in the time domain which enables the domain simulations.
inclusion of time-variable elements during simulations;
e the cascade representation provides a detailed voltage and cur- Besides the referred attributes, the proposed model shows to be

rent profile along the line as well as the inclusion of non-linear accurate and at the same time versatile for inclusion of other
elements at any point through the line length; power devices in the system modeling.
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As a further development, the proposed model can be extended
for multiconductor transmission lines by using modal decoupling
techniques. This way, a three-phase line is decoupled into three
independent propagation modes that can be modeled as three
single-phase lines, using the same frequency-dependent Bergeron
model proposed in this paper.
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