
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/278656058

A Binary Cuckoo Search and Its Application for Feature Selection

Chapter · January 2014

DOI: 10.1007/978-3-319-02141-6_7

CITATIONS

18
READS

1,019

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Computer Aided Endoscopic Image Analysis of Barrett´s Esophagus View project

Control system, Biomedical engineering, Signal processing View project

Luís Pereira

University of Campinas

22 PUBLICATIONS 517 CITATIONS

SEE PROFILE

Douglas Rodrigues

Universidade Federal de São Carlos

22 PUBLICATIONS 550 CITATIONS

SEE PROFILE

Caio Ramos

São Paulo State University

31 PUBLICATIONS 422 CITATIONS

SEE PROFILE

André N. DE Souza

São Paulo State University

99 PUBLICATIONS 698 CITATIONS

SEE PROFILE

All content following this page was uploaded by João Paulo Papa on 31 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/278656058_A_Binary_Cuckoo_Search_and_Its_Application_for_Feature_Selection?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/278656058_A_Binary_Cuckoo_Search_and_Its_Application_for_Feature_Selection?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Computer-Aided-Endoscopic-Image-Analysis-of-Barrett-s-Esophagus?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Control-system-Biomedical-engineering-Signal-processing?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Pereira40?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Pereira40?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Campinas?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Pereira40?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Rodrigues3?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Rodrigues3?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_de_Sao_Carlos?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Rodrigues3?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caio_Ramos?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caio_Ramos?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sao_Paulo_State_University?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caio_Ramos?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Souza22?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Souza22?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sao_Paulo_State_University?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andre_Souza22?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Papa?enrichId=rgreq-259b58f2fc3ee2ee4e0634391134805e-XXX&enrichSource=Y292ZXJQYWdlOzI3ODY1NjA1ODtBUzozNjc3NjYyMzk0OTgyNDdAMTQ2NDY5MzcxMjY1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Binary Cuckoo Search and its Application for
Feature Selection

L. A. M. Pereira, D. Rodrigues, T. N. S. Almeida, C. C. O. Ramos, A. N. Souza,
X.-S. Yang, J. P. Papa

Abstract In classification problems, it is common to find datasets with a large
amount of features, some of theses features may be considered as noisy. In this
context, one of the most used strategies to deal with this problem is to perform a
feature selection process in order to build a subset of features that can better repre-
sents the dataset. As feature selection can be modeled as an optimization problem,
several studies have to attempted to use nature-inspired optimization techniques due
to their large generalization capabilities. In this chapter, we use the Cuckoo Search
(CS) algorithm in the context of feature selection tasks. For this purpose, we present
a binary version of the Cuckoo Search, namely BCS, as well as we evaluate it with

Luı́s A. M. Pereira
Department of Computing, UNESP - Univ Estadual Paulista, Bauru, São Paulo, Brazil, e-mail:
luis.pereira@fc.unesp.br

Douglas Rodrigues
Department of Computing, UNESP - Univ Estadual Paulista, Bauru, São Paulo, Brazil, e-mail:
douglasrodrigues.dr@gmail.com

Tiago. N. S. Almeida
Department of Computing, UNESP - Univ Estadual Paulista, Bauru, São Paulo, Brazil, e-mail:
almeida.tns@gmail.com

Caio C. O. Ramos
Department of Electrical Engineering, University of São Paulo, São Paulo, São Paulo, Brazil, e-
mail: caioramos@gmail.com

André N. Souza
Department of Electrical Engineering, UNESP - Univ Estadual Paulista, Bauru, São Paulo, Brazil,
e-mail: andrejau@feb.unesp.br

Xin-She Yang
School of Science and Technology, Middlesex University, Hendon, London, United Kingdom, e-
mail: xy227@cam.ac.uk

João Paulo Papa
Department of Computing, UNESP - Univ Estadual Paulista, Bauru, São Paulo, Brazil, e-mail:
papa@fc.unesp.br

1

2 Authors Suppressed Due to Excessive Length

different transfer functions that map continuous solutions to binary ones. Addition-
ally, the Optimum-Path Forest classifier accuracy is used as the fitness function. We
conducted simulations comparing BCS with binary versions of the Bat Algorithm,
Firefly Algorithm and Particle Swarm Optimization. BCS has obtained reasonable
results when we consider the compared techniques for feature selection purposes.

Keywords

Feature Selection, Pattern Classification, Meta-heuristic Algorithms, Optimum-Path
Forest, Cuckoo Search Algorithm;

1 Introduction

In pattern recognition tasks, many problems are characterized for instances com-
posed of hundreds, thousands or millions of features, as face recognition for in-
stance. As such, working with high dimensional space may demand much compu-
tational power and requires long processing time. Therefore, it is often desirable to
find a subset that can represent the whole set without losing of information. How-
ever, finding this subset is known to be NP-hard and the computational load may
become intractable [8].

Support by this previous scenario, several works attempt to model the feature
selection as a combinatorial optimization problem, in which the set of features that
leads to the best feature space separability is then employed to map the original
dataset to a new one. The objective function can be the accuracy of a given clas-
sifier or some other criterion that may consider the best trade-off between feature
extraction computational burden and effectiveness.

In this fashion, natural inspired optimization techniques have been used to model
the feature selection as an optimization problem. The idea is to lead with the search
space as a n-cube, where n stands for the number of features. In such case, the opti-
mal (near-optimal) solution is chosen among the 2n possibilities, and it corresponds
to one hypercube’s corner. For this purpose, we can employ binary versions of opti-
mization heuristic techniques.

Kennedy and Eberhart [11] proposed a binary version of the well-known Particle
Swarm Optimization (PSO) [10] called BPSO, in which the standard PSO algorithm
was modified in order to handle binary optimization problems. Further, Firpi and
Goodman [5] extended BPSO to the context of feature selection. Rashedi et al. [19]
proposed a binary version of the Gravitational Search Algorithm (GSA) [18] called
BGSA, which was applied for feature selection by Papa et al. [14]. Ramos et al. [17]
presented their version of the Harmony Search (HS) [7] for purpose in the context
of theft detection in power distribution system. In addition, Nakamura et al. [13]

A Binary Cuckoo Search and its Application for Feature Selection 3

proposed a binary version of Bat algorithm (BBA) and Banati and Monika [1] in-
troduced Firefly algorithm for feature selection.

Recently, Yang and Deb [24] proposed a new meta-heuristic method for contin-
uous optimization namely Cuckoo Search (CS), which is based on the fascinating
reproduction strategy of cuckoo birds. Several species engage the brood parasitism
laying their eggs in the nests of others host birds. Such approach has demonstrated to
outperform some well-known nature-inspired optimization techniques, such as PSO
and Genetic Algorithms. Furthermore, CS has been applied with success in several
distinct engineer applications [6,9,25], and several studies have proposed variants of
standard CS to handle particular problems, such as discrete optimizations [12, 22].

In artificial intelligence, CS has also aroused interests specially for machine
learning applications. Vazquez [23], for instance, employed CS to train spiking neu-
ral models. In addition, Valian [3] proposed a improved Cuckoo Search for feed-
forward neural network training. For this purpose, the authors investigated the CS
behavior by setting its parameters dynamically. Bansal et al. [21] use CS to optimize
the local minimal convergence of k-means method for clustering tasks.

In this chapter, we present a binary version of the Cuckoo Search (BCS) for fea-
ture selection purposes. The main idea is to associate a set of binary coordinates for
each solution that denote whether a feature will belong to the final set of features or
not. The function to be maximized is the one given by a supervised classifier’s ac-
curacy. As the quality of the solution is related with the number of nests, we need to
evaluate each one of them by training a classifier with the selected features encoded
by the eggs’ quality and also to classify an evaluating set. Thus, we need a fast and
robust classifier, since we have one instance of it for each nest. As such, we opted to
use the Optimum-Path Forest (OPF) classifier [15,16], which has been demonstrated
to be so effective as Support Vector Machines, but faster for training. The experi-
ments have been performed in five public datasets against Bat Algorithm, Firefly
Algorithm and Particle Swarm Optimization in order to evaluate the robustness of
CS.

The remainder of the chapter is organized as follows. In Section 2 we revisit
the Optimum-Path Forest theory. Section 3 presents the Cuckoo Search algorithm
and its binary version. Section 4 discuss a framework to evaluate feature selection
algorithms based on nature-inspired. Some simulations and its results are shown in
Section 5. Finally, conclusions are stated in Section 6.

2 Supervised Classification Through Optimum-Path Forest

The OPF classifier works by modeling the problem of pattern recognition as a graph
partition in a given feature space. The nodes are represented by the feature vec-
tors and the edges connect all pairs of them, defining a full connectedness graph.
This kind of representation is straightforward, given that the graph does not need
to be explicitly represented, allowing us to save memory. The partition of the graph
is carried out by a competition process between some key samples (prototypes),

4 Authors Suppressed Due to Excessive Length

which offer optimum paths to the remaining nodes of the graph. Each prototype
sample defines its optimum-path tree (OPT), and the collection of all OPTs defines
an optimum-path forest, which gives the name to the classifier [15, 16].

The OPF can be seen as a generalization of the well known Dijkstra’s algorithm
to compute optimum paths from a source node to the remaining ones [2]. The main
difference relies on the fact that OPF uses a set of source nodes (prototypes) with
any smooth path-cost function [4]. In case of Dijkstra’s algorithm, a function that
summed the arc-weights along a path was applied. In regard to the supervised OPF
version addressed here, we have used a function that gives the maximum arc-weight
along a path, as explained below.

Let Z = Z1∪Z2∪Z3 be a dataset labeled, in which Z1, Z2 and Z3 are, respectively,
a training, evaluating and test sets. Let S⊆ Z1 a set of prototype samples. Essentially,
the OPF classifier creates a discrete optimal partition of the feature space such that
any sample s ∈ Z2∪Z3 can be classified according to this partition. This partition is
an optimum path forest (OPF) computed in ℜn by the Image Foresting Transform
(IFT) algorithm [4].

The OPF algorithm may be used with any smooth path-cost function which can
group samples with similar properties [4]. Particularly, we used the path-cost func-
tion fmax, which is computed as follows:

fmax(〈s〉) =
{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{ fmax(π),d(s, t)}, (1)

in which d(s, t) means the distance between samples s and t, and a path π is defined
as a sequence of adjacent samples. In such a way, we have that fmax(π) computes
the maximum distance between adjacent samples in π , when π is not a trivial path.

The OPF algorithm works with a training and a testing phase. In the former step,
the competition process begins with the prototypes computation. We are interested
into finding the elements that fall on the boundary of the classes with different labels.
For that purpose, we can compute a Minimum Spanning Tree (MST) over the origi-
nal graph and then mark as prototypes the connected elements with different labels.
Figure 1b displays the MST with the prototypes at the boundary. After that, we can
begin the competition process between prototypes in order to build the optimum-
path forest, as displayed in Figure 1c. The classification phase is conducted by tak-
ing a sample from the test set (black triangle in Figure 1d) and connecting it to
all training samples. The distance to all training nodes are computed and used to
weight the edges. Finally, each training node offers to the test sample a cost given
by a path-cost function [maximum arc-weight along a path - Equation (1)], and the
training node that has offered the minimum path-cost will conquer the test sample.
This procedure is shown in Figure 1e.

A Binary Cuckoo Search and its Application for Feature Selection 5

(a) (b)

(c) (d)

(e)

Fig. 1 OPF pipeline: (a) complete graph, (b) MST and prototypes bounded, (c) optimum-path
forest generated at the final of training step, (d) classification process and (e) the triangle sample
is associated to the white circle class. The values above the nodes are their costs after training, and
the values above the edges stand for the distance between their corresponding nodes.

3 Cuckoo Search

3.1 Standard Cuckoo Search

The parasite behavior of some cuckoo species is extremely intriguing. These birds
can lay down their eggs in a host nests, and mimic external characteristics of host
eggs such as color and spots. In case of this strategy is unsuccessful, the host can
throw the cuckoo’s egg away, or simply abandon its nest, making a new one in
another place. Based on this context, Yang and Deb [24] have developed a novel
evolutionary optimization algorithm named as Cuckoo Search (CS), and they have
summarized CS using three rules, as follows:

1. Each cuckoo choose a nest randomly to lays eggs.
2. The number of available host nests is fixed, and nests with high quality of eggs

will carry over to the next generations.
3. In case of a host bird discovered the cuckoo egg, it can throw the egg away or

abandon the nest, and build a completely new nest. There is a fixed number of

6 Authors Suppressed Due to Excessive Length

host nests, and the probability that an egg laid by a cuckoo is discovered by the
host bird is pa ∈ [0,1].

CS performs a balanced combination of a local random walk and the global ex-
plorative random walk, controlled by a switching parameter pa ∈ [0,1]. The local
random walk can be written as

x j
i (t) = x j

i (t−1)+α · s⊕H(pa− ε)⊕ (x j
k′(t−1)− x j

k′′(t−1)), (2)

where x j
k′ and x j

k′′ are two different solutions selected by random permutation, and
and x j

i stands for the jth egg at nest i , i = 1,2, . . . ,m and j = 1,2, . . . ,d. H(·) is a
Heaviside function, ε is a random number drawn from a uniform distribution, and s
is the step size.

The global random walk is carried out using Lévy flights as follows:

x j
i (t) = x j

i (t−1)+α ·L(s,λ), (3)

where

L(s,λ) =
λ ·Γ (λ) · sin(λ)

π
· 1

s1+λ
, s� s0 > 0 (4)

The Lévy flights employ a random step length which is drawn from a Lévy distri-
bution. Therefore, the CS algorithm is more efficient in exploring the search space
as its step length is much longer in the long run. The parameter α > 0 is the step size
scaling factor, which should be related to the scales of the problem of interest. Yang
and Deb [26] claim that α = O(S/10) can be used in most cases, where S denotes
the scale of the problem of interest, while α = O(S/100) can be more effective and
avoid flying too far.

3.2 Binary Cuckoo Search for Feature Selection

In standard CS, the solutions are updated in the search space towards continuous-
valued positions. Unlike, in the BCS for feature selection [20], the search space
is modelled as a n-dimensional boolean lattice, in which the solutions are updated
across the corners of a hypercube. In addition, as the problem is to select or not a
given feature, a solution binary vector is employed, where 1 corresponds whether a
feature will be selected to compose the new dataset and 0 otherwise. In order to build
this binary vector, we have employ the Equation 6, which can provide only binary
values in the boolean lattice restricting the new solutions to only binary values:

S(x j
i (t)) =

1

1+ e−x j
i (t)

(5)

x j
i (t +1) =

{
1 if S(x j

i (t))> σ ,
0 otherwise

(6)

A Binary Cuckoo Search and its Application for Feature Selection 7

Algorithm 1: BCS-Feature Selection Algorithm

input : Labeled training set Z1 and evaluating set Z2, loss parameter p, α value, number
of nests n, dimension d, number of iterations T , c1 and c2 values.

output : Global best position ĝ.
auxiliaries: Fitness vector f with size m and variables acc, max f it, global f it and maxindex.

1 for each nest ni (∀i = 1, . . . ,m) do
2 for each dimension j (∀ j = 1, . . . ,d) do
3 x j

i (0)← Random{0,1};
4 end
5 fi←−∞;
6 end
7 global f it←−∞;
8 for each iteration t (t = 1, . . . ,T) do
9 for each nest ni (∀i = 1, . . . ,m) do

10 Create Z′1 and Z′2 from Z1 and Z2, respectively, such that both contains only
features in ni in which x j

i (t) 6= 0, ∀ j = 1, . . . ,d;
11 Train OPF over Z′1, evaluate its over Z′2 and stores the accuracy in acc;
12 if (acc > fi) then
13 fi← acc;
14 for each dimension j (∀ j = 1, . . . ,d) do
15 x̂ j

i ← x j
i (t);

16 end
17 end
18 end
19 [max f it,maxindex]← max(f);
20 if (max f it > global f it) then
21 global f it← max f it;
22 for each dimension j (∀ j = 1, . . . ,d) do
23 ĝ j ← x j

maxindex(t);
24 end
25 end
26 for each nest ni (∀i = 1, . . . ,m) do
27 for each dimension j (∀ j = 1, . . . ,d) do
28 Select the worst nests with pa ∈ [0,1] and replace them for new solutions;
29 end
30 end
31 for each nest ni (∀i = 1, . . . ,m) do
32 for each dimension j (∀ j = 1, . . . ,d) do
33 x j

i (t)← x j
i (t−1)+α⊕Lévy(λ);

34 if (σ < 1

1+ex j
i (t)

) then

35 x j
i (t)← 1;

36 else
37 x j

i (t)← 0;
38 end
39 end
40 end
41 end
42 end

8 Authors Suppressed Due to Excessive Length

in which σ ∼U(0,1) and x j
i (t) denotes the new egg’s value at time step t. Algo-

rithm 1 presents the proposed BCS algorithm for feature selection using the OPF
classifier as the objective function.

The algorithm starts with the first loop in Lines 1−4, which initialize each nest
with a vector of binary values (Line 3), and Lines 8−42 stand to the main algorithm
loop. To evaluate each solution, is necessary to build new training Z′1 and and eval-
uating Z′2 sets. To fulfill this purpose, each sample si ∈ Z1 and ti ∈ Z2 is multiplied
by a binary solution vector, i.e., si×ni→ Z′1 and ti×ni→ Z′2. Then, Z′1 can be used
to generate an OPF training model, which is evaluated using Z′2. The the classifica-
tion rate fi is associated with the nest ni, and then each nest is evaluated in order to
update its fitness value (Lines 12−13).

Lines 14− 15 find out and store in ĝ j the best nest with the best so far vector
solutions. The loop in the Lines 26−30 is responsible to replace the nests with the
worst solutions using the probability p, generating new nests randomly as described
in [25]. Finally, Lines 31− 41 update the binary vector for each nest restricting
the generated solutions via Lévy flights [See Eqs. (2) to (4)] and the sigmoid func-
tion (Equation 6).

4 Methodology

We now describe the proposed methodology to evaluate the performance of feature
selection techniques discussed in previous sections (Figure 2 depicts a pipeline to
clarify this procedure). Firstly, we randomly partitioned the dataset into N folds,
i.e., Z = F1 ∪F2 ∪ . . .∪FN . Note that each fold should be large enough to contain
representative samples of the problem. Further, for each fold, we train a given in-
stance of the OPF classifier over a subset of this fold, Z1

i ∈ Fi, and an evaluation set
Z2

i ← Fi\Z1
i is then classified in order to compute a fitness function which will guide

a stochastic optimization algorithm to select the most representative set of features.
Each member of the population in the meta-heuristic algorithm is associated with a
string of bits denoting the presence or absence of a feature. Thus, for each member,
we construct a classifier from the training set with only the selected features and
compute a fitness function by means of classifying Z2

i . As long as the procedure
converges, i.e, all generations of a population were computed, the agent (bat, firefly,
mass, harmony, particle) with the highest fitness value encodes a solution with the
best compacted set of features.

Furthermore, we build a classification model using the training set and the se-
lected features, and we also evaluate the quality of the solution computing an effec-
tiveness over the remaining folds, Fj ∈ Z\Fi. Algorithm 2 details the methodology
for comparing feature selection techniques.

Figure 2 displays the above procedure. As aforementioned, the feature selection
is carried on over the fold i, which is partitioned in a training Z1

i and an evaluating
set Z2

i . The idea is to represent a possible subset of features as a string of bits, which

A Binary Cuckoo Search and its Application for Feature Selection 9

Algorithm 2: Feature Selection Evaluation

input : A dataset Z, number of folds N, number of agents A, number of iterations I, and
a percentage for the training set Z1

i .
output : A predictive performance for each methods defined by a λ function.
auxiliaries: A bitmap vector V of selected features, and a final training and test sets, Ẑ1, Ẑ2.

1 for each fold F ∈ Z do
2 Z1← random set of |Z1|× |F | samples from F ;
3 Z2← F\Z1;
4 for each technique T do
5 V ← find a minimal subset of features using T,Z1,Z2, and the parameters A, I;
6 Ẑ1← Z1\V ;
7 Create a classifier instance from Ẑ1;
8 for each fold F ′ ∈ Z\F do
9 Ẑ2← F ′\V ;

10 Classify Ẑ2;
11 Compute the predictive performance on Ẑ2;
12 end
13 end
14 end

encodes each agent’s position in the search space. Thus, for each agent, we model
the dataset using its string of bits, and an OPF classifier is trained over the new Z1

i
and its effectiveness using this subset of features is assessed over Z2

i . This recog-
nition rate is then used as the fitness function to guide each agent to new positions
until we reach the convergence criterion. The agent with the best fitness function is
then employed to build Ẑ1

i , which is used for OPF training. The final accuracy using
the selected subset of features is computed over the remaining folds (red rectangle in
Figure 2). This procedure is repeated over all folds for mean accuracy computation.

Fig. 2 Flowchart of the proposed methodology.

10 Authors Suppressed Due to Excessive Length

5 Simulation, Results and Discussion

In this section, we evaluate the robustness of BCS to accomplish the feature selec-
tion task, comparing it with the binary versions of Bat Algorithm (BA), Firefly Al-
gorithm (FA) and Particle Swarm Optimization (PSO). We applied the methodology
presented in Section 4 to obtain a better quality estimation of each solution. More
precisely, we defined k = 10 for a cross-validation scheme which implied in ten
rounds of feature selection for each method, being the quality of solution evaluated
from the remaining nine folds. The performance of those techniques were evaluate
over the four public datasets1, which the main characteristics are presented in Ta-
ble 1. In addition, regarding the fitness function and the final classification rates, we
used an accuracy measure proposed by Papa et al. [16], which considers the fact that
classes may have different concentrations in the dataset. This information can avoid
a strong estimation bias towards the majority class in high class imbalance datasets.

Table 1 Description of the datasets used for feature selection.

Dataset # samples # features # classes

Diabetes 768 8 2
DNA 2,000 180 3
Heart 270 13 2
Mushrooms 8,124 112 2

We also evaluate how the techniques work with continuous optimization for fea-
ture selection purposes, using a sigmoid (Equation 7) and hyperbolic tangent (Equa-
tion 7) function to map the continuous values to binary ones, respectively:

f (x) =
1

1+ exp(−x)
(7)

and
g(x) = |tanh(x)| . (8)

Table 2 presents the parameters used for each evolutionary-based techniques. It is
important to clarify that, for all techniques, we assumed a model with a population
size of 10 agents and 100 generations to reach a solution.

Figure 3 displays the accuracy performance of all techniques, as well as the num-
ber of selected feature over the four datasets. We can see the optimization techniques
presented quite similar performances in both case: binary and continuous optimiza-
tions. If we observe only the graph of accuracy rates (Figure 3a, c, e and g), we can
infer that feature selection did not improve the classification rates significantly, ex-
cepting for the Heart dataset. However, there were considerable feature reductions,

1 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

A Binary Cuckoo Search and its Application for Feature Selection 11

Table 2 Parameters setting of optimization techniques.

Technique Parameters

BA α = 0.9, γ = 0.9
CS α = 1, pa = 0.35, λ = 1.5
FA α = 0.8, β = 1, γ = 0.1
PSO c1 = 2.0, c2 = 2.0, w= 0.7

specially employing the binary and the continuous optimizations with the sigmoid
function.

For Diabetes and Heart datasets, BCS selected the best subset of feature that
maximized the OPF accuracy rates (selecting in average six out twelve and five out
eight features respectively). The binary PSO was the best on DNA in which it selects
the lowest number of feature, around 47%, and maximized the accuracy rate. For the
Mushrooms dataset, BA, FA and PSO performed similarly and two percent better
than BCS, even if it has the lowest number of selected features.

In regard to continuous optimization, we can observe the hyperbolic tangent did
not work well to transfer the continuous values to binary ones. With this function,
the techniques had some difficult to reduced the number of features. This behave
may due to the threshold value that those function provide. Unlike, the sigmoid
function worked well, providing good feature reductions. However, we can infer that
binary and continuous optimization with sigmoid function did not present difference
indeed.

6 Conclusions

In this chapter, we discuss the feature selection task as an optimization problem.
The main purpose is to evaluate the robustness of Cuckoo Search algorithm to ac-
complish this task. A binary version of Cuckoo Search was presented and compared
against with three other nature-inspired optimization techniques. We provided simu-
lations and analysis over four public datasets, employing a cross-validation strategy
to verify how the techniques work for feature selection purposes. The results demon-
strated that Cuckoo Search has good capabilities to lead with this kind of problem,
being the best one on two out of four datasets, and also similarly to other techniques
on the remaining datasets.

As the reader may observe, the binary cuckoo version keeps the parameters α and
pa fixed during all iterations. However, these parameters have an important whole
regarding to fine-tunning and convergence rates of the standard Cuckoo Search,
as stated by Valian [3]. For the future works, it might be interesting to investigate
how much the binary Cuckoo Search is sensitive to the aforementioned parame-
ters. Further, we should consider to set the parameters dynamically to improve the
performance of Binary Cuckoo Search.

12 Authors Suppressed Due to Excessive Length

References

1. Banati, H., Bajaj, M.: Fire Fly Based Feature Selection Approach. International Journal of
Computer Science Issues 8(4), 473–480 (2011)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik
1, 269–271 (1959)

3. E. Valian, S.M., Tavakoli, S.: On the mean accuracy of statistical pattern recognizers. IInter-
national Journal of Artificial Intelligence & Applications 2(3), 36–43 (11)

4. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform theory, algorithms, and ap-
plications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29
(2004)

5. Firpi, H.A., Goodman, E.: Swarmed feature selection. In: Proceedings of the 33rd Applied
Imagery Pattern Recognition Workshop, pp. 112–118. IEEE Computer Society, Washington,
DC, USA (2004)

6. Gandomi, A., Yang, X.S., Alavi, A.: Cuckoo search algorithm: a metaheuristic approach to
solve structural optimization problems. Engineering with Computers 29(1), 17–35 (2013)

7. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications, 1st edn.
Springer Publishing Company, Incorporated (2009)

8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn.
Res. 3, 1157–1182 (2003)

9. Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search algorithm
with lvy flights. The Structural Design of Tall and Special Buildings pp. n/a–n/a (2011)

10. Kennedy, J., Eberhart, R.: Swarm Intelligence. M. Kaufman (2001)
11. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:

IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108
(1997)

12. Layeb, A.: A novel quantum inspired cuckoo search for knapsack problems. Int. J. Bio-
Inspired Comput. 3(5), 297–305 (2011)

13. Nakamura, R.Y.M., Pereira, C.R., Papa, J.P., Falcão, A.: Optimum-path forest pruning param-
eter estimation through harmony search. In: Proceedings of the 24th SIBGRAPI Conference
on Graphics, Patterns and Images, pp. 181–188. IEEE Computer Society, Washington, DC,
USA (2011)

14. Papa, J., Pagnin, A., Schellini, S., Spadotto, A., Guido, R., Ponti, M., Chiachia, G., Falcão,
A.: Feature selection through gravitational search algorithm. In: Proceedings of the 36th IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 2052–2055 (2011)

15. Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised
optimum-path forest classification for large datasets. Pattern Recognition 45(1), 512–520
(2012)

16. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-
path forest. International Journal of Imaging Systems and Technology 19(2), 120–131 (2009)

17. Ramos, C., Souza, A., Chiachia, G., Falcão, A., Papa, J.: A novel algorithm for feature selec-
tion using harmony search and its application for non-technical losses detection. Computers
& Electrical Engineering 37(6), 886–894 (2011)

18. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. In-
formation Sciences 179(13), 2232–2248 (2009)

19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm.
Natural Computing 9, 727–745 (2010)

20. Rodrigues, D., Pereira, L.A.M., Almeida, T.N.S., Ramos, C.C.O., Souza, A.N., Yang, X.S.,
Papa, J.P.: BCS: A binary cuckoo search algorithm for feature selection. In: Proceedings of
the IEEE International Symposium on Circuits and Systems. Beijing, China (2013)

21. Senthilnath, J., Das, V., Omkar, S., Mani, V.: Clustering using levy flight cuckoo search. In:
J.C. Bansal, P. Singh, K. Deep, M. Pant, A. Nagar (eds.) Proceedings of Seventh International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Advances
in Intelligent Systems and Computing, vol. 202, pp. 65–75. Springer India (2013)

A Binary Cuckoo Search and its Application for Feature Selection 13

22. Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a potential path.
In: Proceedings of 6th IMT-GT conference on mathematics, statistics and its applications
(ICMSA 2010) (2010)

23. Vazquez, R.: Training spiking neural models using cuckoo search algorithm. In: Evolutionary
Computation (CEC), 2011 IEEE Congress on, pp. 679–686 (2011)

24. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: Nature Biologically Inspired Comput-
ing, 2009. NaBIC 2009. World Congress on, pp. 210–214 (2009)

25. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. International Journal of
Mathematical Modelling and Numerical Optimisation 1, 330–343 (2010)

26. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Computing and
Applications pp. 1–6 (2013)

14 Authors Suppressed Due to Excessive Length

(a) Diabetes dataset.

(b) DNA-4 dataset.

(c) Heart dataset.

Fig. 3 Experimental results using different transfer functions for each swarm-based optimization
technique.

View publication statsView publication stats

https://www.researchgate.net/publication/278656058

