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Abstract 
 

The development of smartphones, specifically their cameras, and imaging technologies has enabled their use as 
sensors/measurement tools. Here we aimed to evaluate the applicability of a fast and noninvasive method for the estimation 
of total chlorophyll (Chl), Chl a, Chl b, and carotenoids (Car) content of soybean plants using a smartphone camera. Single 
leaf disc images were obtained using a smartphone camera. Subsequently, for the same leaf discs, a Chl meter was used 
to obtain the relative index of Chl and the photosynthetic pigments were then determined using a classic method. The 
RGB, HSB and CIELab color models were extracted from the smartphone images and correlated to Chl values obtained 
using a Chl meter and by a standard laboratory protocol. The smartphone camera was sensitive enough to capture 
successfully a broad range of Chl and Car contents seen in soybean leaves. Although there was a variation between color 
models, some of the proposed regressions (e.g., the S and b index from HSB and Lab color models and NRI [RGB model]) 
were very close to the Chl meter values. Based on our findings, smartphones can be used for rapid and accurate estimation 
of soybean and Car contents in soybean leaves. 
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Introduction 
 

The amount of solar radiation absorbed by a leaf is a 
function of the photosynthetic pigment content (Steele et 
al. 2008). Thus, the contents of chlorophyll (Chl) a and 
Chl b are linked directly to a photosynthetic potential and 
primary production (Curran et al. 1990). Carotenoids (Car) 
are also very important as a mechanism for attenuating the 
stress caused by excess irradiation (Sikuku et al. 2010). 
Thus, monitoring  changes in the Chl content enables 
assertions about the plant interaction and the influence of 
stress factors (Vesali et al. 2015).  

Nondestructive techniques have been investigated for 
estimating the Chl content of plants (Rigon et al. 2012a). 
However, with the development of remote-sensing tech-
nology in recent years, image technologies have been used 
for potential real-time estimation of Chl content and 
subsequent analysis of photosynthetic properties 
(Williams et al. 2010). Among the techniques, digital 
cameras are widely used together with the segmentation of 
images and color models (Li et al. 2010) and are becoming 
a new quantitative tool in agriculture (Riccardi et al. 2014). 
Smart phones and their cameras have provided an 

opportunity for using their sensors as measurement tools, 
and computation and analysis can be done without any 
additional attachments. Digital image processing is 
increasingly used to estimate variables of interest for 
agronomic activities (Confalonieri et al. 2013). 

Smartphone images have already been used to estimate 
crop water requirements and photosynthetic primary 
production (Confalonieri et al. 2013). They have also been 
used to estimate a citrus yield (Gong et al. 2013), and a 
colorimetric analyzer based on a smart phone can 
determine the available phosphorus content in soil 
(Moonrungsee et al. 2015). A recent study created an 
android application to estimate the Chl content of a corn 
leaf (Vesali et al. 2015). The image acquisition is reliable 
for real-time estimation of Chl content. The objectives of 
the present study were (1) to evaluate the applicability of a 
fast and nondestructive method to estimate the contents of 
Chl a and b, total Chl, and Car content and (2) to determine 
several color models for analysis of digital images 
acquired with a smart phone camera and validate their 
applicability for quick estimation. 
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Materials and methods 
 
Field data acquisition: An experiment was conducted at 
São Paulo State University, UNESP, Botucatu, SP, Brazil. 
Were collected 80 disc-shaped samples of soybean leaves 
in the middle third of the plant with 113-mm diameter and 
different physiological stages (flowering, R1, and pod 
formation, R3, respectively). The Chl relative rates were 
individually determined by a portable Chl meter 
ClorofiLOG-1030 (Falker Agricultural Automation, 
Brazil). 
 
Digital images: Single images were obtained through a 
smartphone camera (8.0 MP) from the leaf discs. For the 
acquisition of images, the phone was mounted on a support 
in the nadir position relative to the leaf discs under 
identical illumination conditions, as proposed by Riccardi 
et al. (2014). Munsell images were used (2.5 G 5/5 
yellowish green; 5.0 G 5/5 green; 7.5 GY 5/5 green 
greenish-yellow) for further calibration with known RGB 
values. 
 
Chl extraction: After obtaining the images, the circular 
samples were placed in test tubes and wrapped in 
aluminum foil to protect against degradation by light. We 
used 5 ml of the reagent extractor dimethylsulfoxide, and 
the tubes were incubated at 70oC for 30 min in accordance 
with the methods described by Arnon (1949) and Hiscox 
and Israelstam (1979). A 3-ml portion was transferred to a 
quartz cuvette, and then the absorbance was measured 
using a UV-VIS spectrophotometer (UV mini-1240, 
Shimadzu, Japan) at wavelengths of 480, 646, and 663 nm, 
simultaneously. The equations described by Wellburn 
(1994) were used for the quantification of the Chl a, Chl b, 
and Car contents: 

Chl	 12.47	 – 3.62	                                     (1) 
Chl	 25.06	 – 6.5	                                       (2) 

Car
	 . .

                                    (3) 

 
Image segmentation and calculation of color indices: 
The images were transferred to a computer and analyzed 
in Corel Photopaint software (version X4, Corel 
Corporation, 2008). Using the software histogram 
function, the center of the circular image was selected, and 
the size was automatically adjusted to 25 square pixels. 
Values were obtained for the RGB color model of each 
image, which is the most commonly used for the 
representation of digital images. R, G, and B are the mean 
values of red, green, and blue, while r, g, and b are the RGB 
values normalized by the following equations: 

r                                                             (4) 

g                                                             (5) 

b                                                             (6) 

 
The green vegetation index (VIgreen) was obtained as 

follows (Gitelson et al. 2002): 

VI                                                                  (7) 

RGB values were converted to the HSB model through 
algorithms reported by Karcher and Richardson (2003). 
This color model is represented by cylindrical coordinates 
in which the angle around the central vertical axis 
corresponds to the hue (H). The HSB calculation was 
performed as follows: 

H =	

60 ∗
, , , ,

, max R, G, B R	

60 ∗
, , , ,

max R, G, B G

60 ∗
, , , ,

max R, G, B B

  (8) 

S =	
, , , ,

, ,
                                          (9) 

B = max R, G, B                                                      (10) 
 
The values were then converted to model X, Y, Z and 

subjected to color model CIE L* a* b* (Robertson 1977) 
by means of Eq. (11–13): 

L ∗	 – 16                                                      (11) 

a ∗	 500
/
–	

/
                                 (12) 

b ∗	 200
/
–	

/
                                 (13) 

This model describes all visible colors using L* as the 
lightness of the color, while a* represents green (a* 
negative) and red (a* positive), and b* represents the blue 
(b* negative) and yellow (b* positive). 

Based on the HSB values, the dark green color index 
(DGCI) was obtained by Eq. (14) proposed by Karcher and 
Richardson (2003): 

DGCI                                     (14) 

Data were subjected to Pearson′s correlation analysis. 
The significant data was subjected to linear regression and 
the Student′s t-test at 95% confidence. Data analysis was 
performed using Origin 8.6 software and the graphics were 
obtained using SigmaPlot. 
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Results and discussion 
 
Chl pigments by Chl meter: The analytical laboratory 
extraction of the leaves resulted in a broad range of photo-
synthetic pigments, ranging from 75 to 600 µmol m–2 for 
Chl a, from 8 to 120 µmol m–2 for Chl b, and from 50 to 
350 µmol m–2 for Car (Fig. 1). These ranges were 
necessary for prediction of several conditions of leaf 
status. 

Using the classical method, a close relationship was 
found between the measurement using the portable Chl 
meter and the pigment contents (Fig. 1). The leaf discs 
indicated that there was a similar relationship between the 
degree of leaf greenness, as determined by the portable Chl 
meter, and the Chl a content, which was extracted by the 
classical method. The relationship between the methods 
was best expressed by a quadratic model with a high range 
of Chl contents and nearly linear relationships. Most 
scientists agree that nonlinear equations are more 
appropriate for indicating the relationship between 
portable meter measurements of Chl and the actual Chl 
content (Marenco et al. 2009, Mielke et al. 2010, Rigon et 
al. 2013).  

The adjusted coefficients of determination of the model 
were 0.96, 0.92, 0.96, and 0.94 for Chl a and b, total Chl, 
and Car, respectively. These results were nearly identical 
to those observed in a recent study for Chl (Novichonok et 
al. 2016). Another study with soybean plants found similar 

results with a close relationship between portable Chl 
meter measurements and Chl measured by the classical 
method (Markwell et al. 1995). The Chl meter is one of the 
most used hand-held instruments for a rapid and 
nondestructive assessment of Chl contents in many crops 
species, such as quinoa (Riccardi et al. 2014), castor oil, 
sesame (Rigon et al. 2012a, 2012b), and Surinam cherry 
(Mielke et al. 2010). However, the reflectance depends on 
leaf anatomical features, such as surface relief, and/or 
external architecture, such as trichome density and waxy 
cuticle (Levizou et al. 2005). Consequently, this relation 
changes in accordance with the intrinsic characteristics of 
each species (Marenco et al. 2009). Furthermore, it was 
observed that in some cases, the determination of Chl b 
was inaccurate (Rigon et al. 2013). This resulted from the 
fact that the absorption peak of Chl a was similar to the 
wavelength emitted by the device, making it more difficult 
to separate (Neves et al. 2005). 

Torres-Netto et al. (2005) demonstrated SPAD to be the 

method with the best performance in terms of precision and 

the best metrics for both repeatability and reproducibility. 
Thus, the generated regression models in Fig. 1 may be 
used to estimate the content of Chl pigments in the leaves 
of soybean plants with great precision in a fast and 
efficient way and without any added cost for reagents. 

 
 

 

Fig 1. Relationship between the readings of the portable chlorophyll meter and the contents of chlorophyll a (A), b (B), total chlorophyll 
(C), and carotenoids (D) measured analytically in the laboratory for soybean leaves. 
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RGB color model: A color in the RGB model is described 
by indicating how much of each of the red (R), green (G), 
and blue (B) is included, and each color had 256 
graduations. The index B was positively correlated with 
Chl and Car, whereas R and G were negatively correlated 
(Fig. 2). This was similar to the findings of Yadav et al. 
(2010), Gupta et al. (2013), and Riccardi et al. (2014). G 
values were bigger than R and B values in all the images 
measured, and the R index was almost double of the B 
index. Thus, the best fit regression models for the single 
color component index G were about 0.82, 0.79, 0.82, and 
0.82 for Chl a, b, total Chl, and Car. Studies have reported 
that the G index had a better relationship with the Chl 
content (Vesali et al. 2015). This better correlation can be 
explained by higher rates.  

The correlation coefficients for Chl a were similar to 
those observed by Yadav et al. (2010) for each index in the 
model RGB content in a study with potato. The possibility 
of using all the three indices RGB to estimate the Chl 
content has been demonstrated (Su et al. 2008). Vollmann 
et al. (2011) analyzed the state of nodulation and 

soybean Chl content with the use of SPAD and digital 
image analysis. These investigations of nondestructive 
methods using RGB image analysis are a relatively new 
area of research (Gupta et al. 2013).  
 
The CIE L*a*b color model: Although it is not common 
to use the CIE L*a*b color system, a significant linear 
relationship was observed in all photosynthetic pigments 
with indices and L*, with ratios for each pigment of about 
0.80 and 0.62, respectively. For the correlation with the 
index b*, the coefficient of determination was about 0.90 
for each pigment (Fig. 3). These results were also observed 
by Wang et al. (2014) in rice, where the b* index had the 
highest correlation coefficients. In a study of soybean 
crops, the Chl content in seeds was also observed, and the 
CIE L*a*b model had excellent correlation with the Chl 
content, especially the a* index (Sinnecker et al. 2002). In 
the CIE L*a*b color model, the L* coordinates represent 
the brightness, while the dimensions a* and b* are close to 
red–green and yellow–blue, respectively (Fairchild 2005). 
Interestingly, the best results were with the index b*, 
 

 

Fig. 2. Relationships between chlorophyll and carotenoids contents measured analytically in the laboratory and from an image based on 
the RGB color model with color indices R (A,D), G (B,E), and B (C,F) for soybean leaves. 
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Fig. 3. Relationships between chlorophyll and Car content measured analytically in the lab and from an image based on the CIE L*a*b 
color model with indices L (A,D), a (B,E), and b (C,F) in soybean leaves. 
 
which represents the yellow–blue color, whereas the Chls 
are determined by the leaf greening. 
 
HSB color model: Karcher and Richardson (2003) 
observed that the green of vegetation does not appear or 
represent the green value in the RGB color space exactly. 
They suggested converting the RGB values to a more 
intuitive hue, saturation, and brightness (HSB) color 
spectrum, which is based on the human perception of 
color. The H index (Hue) that means the pure color 
(Fairchild 2005), and was the only positively correlated 
with Chl and Car, while S and B were negatively correlated 
with photosynthetic pigments (Fig. 4). A higher 
relationship in the S index was observed with a coefficient 
of determination of about 0.87. Although the color is the 
same during the day, the saturation changes. That means 
the light was better than the pure color from the image 
captured, and the B index (brightness) was higher than the 
H index (correlation coefficients of 0.81 and 0.61, 
respectively). Another study using a smart phone found a 
relationship between Hue (H index) and SPAD (0.76), but 
the other indices (S and B) also fitted well (Vesali et al. 
2015), as observed by Wang et al. (2014). These variations 
can be explained by the different species studied and the 

influence of image accuracy, which is subject to climatic 
factors and illumination intensity apart from the influences 
of the sensors, photometric system, and processing system 
of the camera (Pagola et al. 2009, Wang et al. 2013). 
 
DGCI, VIgreen, and NRI indices: Figures were obtained 
using the described color models. There was a good linear 
relation (0.84) between DGCI and the Chl and Car 
contents (Fig. 5). Values near 1 represent a darker green. 
The advantage of this model is that the amount of red and 
blue can change the way of how often a green image 
appears in the RGB model (Karcher and Richardson 2003). 
DGCI has been among the most widely used indices to 
estimate the Chl content and SPAD index with high 
correlations (r > 0.85) in corn (Rorie et al. 2011) and grass 
(de Lima et al. 2012). The VIgreen index is often used for 
images above the vegetation covering various plants. 
Perhaps for this reason, there was no significant correlation 
to the Chl content in this study. However, in a study of rice, 
Wang et al. (2014) observed correlations between VIgreen 
index and both the SPAD and the content of nitrogen, but 
the coefficients observed were low (0.67) and not effective 
enough to be used. In this study, however, the NRI index 
satisfactorily correlated to the SPAD index (0.85), and the 
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results were higher than those obtained by Wang et al. 
(2014). 

Vesali et al. (2015) could not find good results for the 
relationship between SPAD and leaf N status in maize 
using this index with a smartphone camera. However, 
when using the hue index (HSB model), they had the 
strongest linear relationship with the SPAD value, 
although the SPAD value was analyzed rather than the Chl 
and Car content. 

These differences between species may be related to  

the nonuniform distribution of Chl in leaves as an effect of 
the clustered structural organization of Chl molecules in 
chloroplasts, chloroplasts in cells, and cells in leaves 
(Fukshansky et al. 1993). 

Overall, the results showed that the color index can be 
used to estimate the content of photosynthetic pigments, 
with the advantage of allowing rapid and repeated meas-
ures in the same leaves over time for ontogenetic studies. 
The results can be used to build applications to work with 
different color models efficiently using smart phones. 

 
 
 

 
 
Fig. 4. Relationships between chlorophyll and carotenoids content measured analytically in lab and the image based in HSB component 
model with index H (A,D), S (B,E), and B (C,F) in the leaves of the soybean. 
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Fig. 5. Relationships between chlorophyll and carotenoids contents measured analytically in laboratory and the image based on DGCI 
index (A,D), VIgreen (B,E), and NRI (C,F) in the leaves of the soybean. 
 
Conclusion: The chlorophyll meter showed a proper 
reliability and may be used to estimate Chl and Car 
contents accurately, thus saving time and chemical 
reagents typically used in conventional procedures. The 
smart phone was accurate and sensitive with good 
representativeness, which was not diminished even in a 
broad range of Chl or Car contents in soybean leaves. 

Although there was variation between color models, some 
of the proposed methods achieved very close values to the 
Chl meter values, like the S and B index from the HSB and 
LAB models and NRI (RGB model). Using these models 
gave sufficient accuracy and robustness towards use for 
rapid and accurate estimation. 
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