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a b s t r a c t 

In computer-aided diagnosis one of the crucial steps to classify suspicious lesions is the extraction of fea- 

tures. Texture analysis methods have been used in the analysis and interpretation of medical images. In 

this work we present a method based on the association among curvelet transform, local binary patterns, 

feature selection by statistical analysis and distinct classification methods, in order to support the devel- 

opment of computer aided diagnosis system. The similar features were removed by the statistical analysis 

of variance (ANOVA). The understanding of the features was evaluated by applying the decision tree, ran- 

dom forest, support vector machine and polynomial (PL) classifiers, considering the metrics accuracy (AC) 

and area under the ROC curve (AUC): the rates were calculated on images of breast tissues with different 

physical properties (commonly observed in clinical practice). The datasets were the Digital Database for 

Screening Mammography, Breast Cancer Digital Repository and UCSB biosegmentation benchmark. The 

investigated groups were normal-abnormal and benign-malignant. The association of curvelet transform, 

local binary pattern and ANOVA with the PL classifier achieved higher AUC and AC values for all cases: 

the obtained rates were among 91% and 100%. These results are relevant, specially when we consider the 

difficulties of clinical practice in distinguishing the studied groups. The proposed association is useful as 

an automated protocol for the diagnosis of breast tissues and may contribute to the diagnosis of breast 

tissues (mammographic and histopathological images). 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Routine physical breast examination should always be comple-

ented with further analyses through clinical equipment tech-

iques. These are screen-film mammography, ultrasonography,

agnetic resonance and tomosynthesis. Regarding accessibility

ombined with cost-benefit for early detection of lesions, the
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creen-film mammography still prevails as the best one ( Hussain,

013; Nascimento et al., 2013 ). As a complementary protocol, his-

ological images of breast cancers are also evaluated to confirm a

reliminary diagnosis. This procedure is commonly applied in clin-

cal practice ( Cire ̧s an, Giusti, Gambardella, & Schmidhuber, 2013;

alhotra, Zhao, Band, & Band, 2010; Tashk, Helfroush, Danyali, &

kbarzadeh-jahromi, 2015; Veta et al., 2015; Veta, Pluim, van Di-

st, Viergever et al., 2014 ). 

Precision and correctness are two requirements always ex-

ected on a diagnosis, specially because studies show that cancer

ases have been increasing over the years. The 2012 report of the

orld Health Organization’s International Agency for Research on

ancer indicates that 8.2 million obits were caused by cancer in

hat year. This means a rise of 8% compared to the previous 2008

eport. Specifically in respect to breast cancer there has been a rise

f 14%, with an amount of 522,0 0 0 women in 2012 ( Ferlay et al.,

012 ). 
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As we have mentioned, clinical equipment techniques help hin-

der these rates. The cutting-edge one is tomosynthesis but very

few women can afford it in developing countries. As an example, in

Brazil the women population is approximately 100 million, where

the cases of breast cancer for 2014 were predicted to be 57,120

with a fatal rate of 23.4% ( INCA, 2014 ). 

In spite of being the most accessible technique, mammographic

images are difficult to analyse. This occurs because the breast can

have some adjacent tissues similar to lesions. Such false positive

lesions must be ruled out by the analysis of radiologists ( Thurfjell,

Lernevall, & Taube, 1994; Warren & Duffy, 1995 ). However, nowa-

days there is a high demand for diagnoses, which increases both

the operational costs and the workload of these professionals. This

leads to more frequent human error resulting in incorrect diag-

noses. 

Since early 1990, computer aided diagnosis (CAD) has been an

alternative tool to supplementary analysis that helps radiologists

achieve more precise diagnoses. The CAD system can be divided

into two parts: computer-aided detection (CADe) and computer-

aided diagnosis (CADx). CADe schemes are systems that locate

suspicious lesions in mammograms automatically. In Oliver et al.

(2010) there is a good survey on the state of the art of CADe sys-

tems. 

CADx systems are devoted to classify lesions. They complement

the CADe analysis with the characterisation of regions and the

computation of probabilities of lesion malignancy ( Elter & Horsch,

2009 ). In CADx schemes, one of the crucial steps to classify sus-

picious lesions is the feature extraction. Typically, two classes of

characteristics are extracted from mammograms, namely morpho-

logical and non-morphological features. 

Morphological features give information about size and shape

of the lesion. Non-morphological features work on grey level prop-

erties. For instance, a consistent variation of grey levels in the im-

age is detected as a pattern. Patterns are then grouped to form a

set called image texture . 

Texture is a general concept that also applies to colour images.

In this case patterns are identified by colour gradients along the

image ( Gonzalez & Richard, 2002 ). Texture involves basic grey lev-

els or colour texture primitives that form elements called textons

( Zhu, Guo, Wang, & Xu, 2005 ) or texels ( Haralick, 1979 ). Several

methods have been developed for texture analysis, being classified

as statistical, model-based and frequency-based ( Tang & He, 2013 ).

Statistical methods are based on the distribution of the grey

scale. Some of them use the grey scale histogram as a measure

of texture ( Gupta & Markey, 2005; Souza Jacomini, Nascimento,

Dantas, & Ramos, 2012 ). The grey scale distribution can be de-

scribed by either first or second order statistics and summarised

as a co-occurrence matrix ( Nanni, Brahnam, Ghidoni, & Menegatti,

2014; Nanni, Brahnam, Ghidoni, Menegatti, & Barrier, 2013 ). The

metric considers only pixels individually, but this causes measures

to be more sensitive to image pixel changes. Finally, in Schwartz,

Roberti de Siqueira, and Pedrini (2012) the authors use a statistical

method that works on transitions between grey levels of pixels. 

Model-based approaches aim at establishing stochastic proper-

ties that can define texture. Some techniques used for this purpose

are Markov random fields ( Suliga, Deklerck, & Nyssen, 2008; Yu &

Huang, 2010 ), fractal features ( Neves, do Nascimento, & de Godoy,

2014 ) and autoregressive model ( Mayerhoefer et al., 2010 ). They

can describe texture through some few parameters of microtex-

tures, which however give macrotexture information in the end.

Therefore, either little is known about the texture or there exist

more than one possible texture. 

Frequency-based models produce information derived from lo-

cal operators and statistical attributes of images in the frequency

domain. Some examples of these models are the wavelet trans-

form ( Dheeba & Tamil Selvi, 2012; Jacomini, Nascimento, Dantas,
 Ramos, 2013; Nascimento et al., 2013 ), the ridgelet transform

 Ramos, Nascimento, & Pereira, 2012 ) and the curvelet transform

 Eltoukhy, Faye, & Belhaouari Samir, 2010a ). They decompose the

riginal image into subbands that preserve high and low frequency

nformation. These are the most adequate techniques to extract

exture, for they enable the image to be represented by multiple

cales in a way that is quite close to what is done by the human

yes ( Tang & He, 2013 ). 

Several recent works have been developed for the diagnosis of

uspicious regions in mammograms, mainly focused on the un-

erstanding of feature extraction from images of breast lesions.

hus, a relevant problem in CAD is the study of normal, benign

nd malignant lesions in images with suspicion of breast cancer.

or instance, in Liu and Tang (2014) the authors extract texture

eatures based on a grey level co-occurrence matrix (GLCM). In

ouhi, Jafari, Kasaei, and Keshavarzian (2015) the authors present

pproaches based on artificial neural network, cellular neural net-

ork and genetic algorithm. In Liu and Zeng (2015) the authors de-

elop a method considering an adaptive region growing method to

ocate suspicious regions. Afterwards, they extract geometrical and

exture features (GLCM and completed local binary pattern (CLBP))

hat are then applied to classify regions of interest (ROIs). The ROIs

re classified by means of support vector machine (SVM), with

upervision provided by the diagnosis of a radiologist. In Abdel-

asser, Rashwan, Puig, and Moreno (2015) the authors present a

ystem with segmentation of the ROIs, feature extraction based

n uniform local directional pattern and classifications using the

VM. In Rouhi and Jafari (2016) the authors consider texture fea-

ure computed from GLCM and CLBP, with classification obtained

ia SVM and supervised by radiologists. In these works the authors

onclude that these approaches can describe breast tissues prop-

rly and with promising results. However, as mentioned in Abdel-

asser et al. (2015) , it is not possible to elect just one of these

eature descriptors as optimal to quantify breast tissues. 

Also, there are many techniques to identify patterns, such as lo-

al and mid-level features ( Kong, Jiang, & Yang, 2015 ). For instance,

ocal binary patterns (LBP) have been relevant to texture analysis in

everal applications ( Guo, Zhao, & Pietikäinen, 2014; Nanni, Lumini,

 Brahnam, 2010; Song, Yan, Chen, & Zhang, 2013 ). The LBP is an

ffective texture description operator with many significant advan-

ages, for it generates histograms that are very useful to represent

exture features that are invariant by rotations and brightness lev-

ls. LBP labels can be regarded as local primitives such as curved

dges, spots and flat areas, among others. They have been largely

pplied to classify abnormalities detected in images ( Choi, Kim, &

o, 2012; Llad, Oliver, Freixenet, Mart, & Mart, 2009 ). 

In fact, there is not a universal texture descriptor that always

ives the best quantification for all different kinds of images. How-

ver, curvelet transform and LBP appear to be more effective for

exture analysis. Eltoukhy, Faye, and Belhaouari Samir (2010a) used

he 100 greatest coefficients from each decomposition level of the

urvelet transform in order to identify lesions in mammograms.

hang and Pham (2011) applied curvelet transform with Haralick

o describe microscopy images. Zhou Li-Jian (2012) also applied

urvelet transform and LBP to solve problems in face recognition

hen illumination is variable. In their approach the LBP technique

as applied only over subband level 1. Nagaraja, Prabhakar, and

raveen Kumar (2013) proposed a technique for facial expression

epresentation based on a combination that uses curvelet trans-

orm to obtain the several approximation subbands, of which the

nes with highest energy are selected and then submitted to CLBP.

l-Hammadi, Muhammad, Hussain, and Bebis (2013) used the LBP

echnique over the curvelet transform coefficients and SVM clas-

ifier to describe information from chrominance components for

mage forgery detection. Dhahbi, Barhoumi, and Zagrouba (2015)

nvestigated the moment theory to characterise the distribution
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Fig. 1. Block diagram of the main steps for processing images; (a) application of the curvelet transform to the image; (b) extraction of the curvelet coefficients to construct 

scale vectors for each decomposition; (c) application of the LBP to the coefficients; (d) construction of the LBP-vectors; (e) aggregation of the LBP-vectors; (f) reapplication 

of the previous steps to all the images; (g) ANOVA application; (h) vector of features; (i) classification. 
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f curvelet coefficients on mammograms. The combination of LBP

nd curvelet transform was also studied by considering part of

he curvelet subbands or coefficients ( Eltoukhy, Faye, & Belhaouari

amir (2010a); Nagaraja et al., 2013; Zhou Li-Jian, 2012 ), by ap-

lying different descriptors over curvelet transform coefficients

 Dhahbi et al., 2015; Zhang & Pham, 2011 ) or even by associating

urvelet transform, LBP and only one classification method, namely

he SVM algorithm ( Al-Hammadi et al., 2013 ). 

In this context, a method that combines curvelet transform, LBP

nd feature selection by statistical analysis is a relevant and un-

xplored combination, specially when we consider different im-

ge datasets commonly studied by specialists in clinical practice.

n this paper we present and detail such a method, which extracts

eatures from images of breast cancer tissues, and also supports

he development of CAD systems. Another innovative characteris-

ic of our method is that it defines the best association after ap-

lying well known algorithms of artificial intelligence, such as de-

ision tree (DT), random forest (RaF), SVM and polynomial (PL)

 Moschidis, Chen, Taylor, & Astley, 2014; Nascimento et al., 2013;

e Nazar Silva, de Carvalho Filho, Corra Silva, Cardoso de Paiva, &

attass, 2015; Ramos et al., 2012 ). The results were evaluated by

onsidering both the rates accuracy (AC) and area under the ROC

urve (AUC), which were computed for images with different phys-

cal properties. The investigated groups were normal, benign and

alignant ( Nascimento et al., 2013 ). 

The contributions of this paper can be summarised as follows: 

• An original combination of curvelet transform, local binary pat-

terns and feature selection with statistical analysis that, to-

gether with distinct classification methods (SVM, DT, RaF and

PL), was tested in order to support the development of CAD

systems; 
• The evaluation of ANOVA as the statistical method applied to

exclude similar features after associating the curvelet transform

with the LBP descriptor, in order to enhance the classification

step with well known algorithms of artificial intelligence; 
• The identification of the PL classifier as the one that, in some

cases, builds an ideal system when aggregated to our proposed

combination of curvelet transform, LBP and ANOVA. Even in the

non-ideal cases the PL classifier always achieved the highest

AUC and AC values after tests with different datasets of breast

images, such as mammograms (digital and analogical) and

histology. 

. Methodology 

The steps involved on the feature extraction algorithm are

chematised in Fig. 1 . They are based on the application of LBP

o curvelet transforms with the purpose of differentiating normal,

enign and malignant in breast tissue images. The features are

xtracted from the breast tissue images and grouped into three

lasses. After obtaining the desired features we use the ANOVA

echnique to select features that are statistically different. Finally,

e apply the PL classifier for distinguishing among the different

roups. In this study there is a comparison with other classification

ethods (DT, RaF and SVM). Each step is detailed in the following

ubsections. 

.1. DataSets 

We evaluated our proposed approach with four distinct classi-

ers, two metrics and four breast cancer datasets obtained with

ifferent clinical equipment techniques. The datasets used in our

valuation were: 

• The digital database for screening mammography (DDSM) : this

dataset ( Heath, Bowyer, Kopans, Moore, & Kegelmeyer, 2001 )

contains 2500 cases, and each of them is composed of 4

images: CC-left, MLO-left, CC-right and MLO-right. We have

worked with cases in which the number of masses was at most

one. More specifically, we have worked with 240 ROIs cut out
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Fig. 2. Wrapping an image by wedge data (AlZubi et al., 2011, Fig. 10) . 
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at a standard size of 512 × 512 pixels of the CC-view. Our ref-

erence point to locate the centre of this frame was given by

the coordinates of the region of interest (ROI) in the cases ma-

lignant and benign. For the normal case the ROI was taken at

random. Despite the random selection there was special care to

guarantee that each ROI had a resolution of 12 bits per pixel

and a quantisation of 50 μm. 
• Breast cancer digital repository (BCDR) : this database ( López

et al., 2012; Moura & López, 2013 ) is subdivided in two dif-

ferent datasets: the film mammography repository (BCDR-FMR)

and the full field digital mammography repository (BCDR-DMR).

In the BCDR-FMR the images have grey level with a bit depth

of 8 bits per pixel and in the BCDR-DMR they have a bit depth

of 14 bits per pixel. For BCDR-FMR we have worked with 106

ROIs cut out at a standard size of 512 × 512 pixels. These are

mammogram ROIs obtained from the CC-view of the types ma-

lignant, benign and normal. In the case of BCDR-DMR we used

95 ROIs of images of that three types as well. The databanks in-

clude in each mammogram the coordinates of the ROI for ma-

lignant and benign. In the normal case the ROI was taken at

random. 
• The UCSB biosegmentation benchmark (UCSB-BB) : this dataset

( Gelasca, Obara, Fedorov, Kvilekval, & Manjunath, 2009 ) belongs

to David Rimm’s Laboratory at Yale. It contains 58 H&E stained

histopathology images that were used in order to detect breast

cancer cells. We have worked with all the 58 images, half of

them show the malignant case and the other half the benign.

They are colour images in the RGB system with 896 × 768 pix-

els of resolution and 24 bits of quantisation. In this study we

also converted them into grey level images. 

2.2. Extraction of descriptors 

Textural features were used to represent medical images. The

vectors of features were obtained by applying LBP operators on

curvelet transform coefficients obtained from the breast tissue im-

ages. These two techniques and the way they were used will be

resumed next. 

2.2.1. The fast discrete curvelet transform 

In Candes, Demanet, Donoho, and Ying (2006) the authors in-

troduced a variation of the curvelet transform called fast discrete

curvelet transform (FDCT). Instead of the complex ridgelet, the FDCT

uses fast Fourier transform (FFT). The result is a considerable sim-

plification in the computational algorithm. In that work the au-

thors explain two ways of implementing FDCT, namely curvelet

transform via unequally spaced fast Fourier transform and curvelet

transform via wrapping function. In the present work we have cho-

sen the wrapping method because it is faster and reduces redun-

dant information ( Candes et al., 2006 ). 

Wrapping method is based on the translation and wrapping of

specially selected Fourier samples. It starts by taking a 2D-image

as a cartesian array f [ m, n ], where 0 ≤ m < M , 0 ≤ n < N and M ×
N are the dimensions of the array. This image is scanned by wedge

data and the output will be a subset of curvelet coefficients c D ( j ,

� , k 1 , k 2 ) indexed by a scale j , an orientation � and spatial location

parameters k 1 and k 2 ( AlZubi, Islam, & Abbod, 2011 ). They consist

of parallelograms containing a digital curvelet waveform ϕ j�k 1 k 2 
de-

picted as an oval. Several copies of it are represented in Fig. 2 . 

The wrapping consists of collecting information from the paral-

lelograms into the rectangle in Fig. 2 . The rectangle is centred at

the origin, and its width and height are 2 j /2 and 2 j , respectively. 

The corresponding curvelet coefficient is then computed via 

c D ( j, �, k 1 , k 2 ) = 

N/ ∑ 

n =1 

M ∑ 

m =1 

f [ m, n ] ϕ 

D 
j�k 1 k 2 

[ m, n ] . (1)
The better f [ m, n ] fits ϕ j�k 1 k 2 
, the higher is c D ( j , � , k 1 , k 2 ). In fact,

 and � can be viewed in the frequency domain as a rectangular

iling, as depicted in Fig. 3 . It can be seen that curvelets become

hinner and smaller in the spatial domain, where 2 j and 2 j /2 are

everted to 2 − j and 2 − j/ 2 . They are optimal at capturing curves in

n image, and one just need a few coefficients to identify curved

ingularities. 

Essentially, by scanning the image, curves in it are represented

y gaps along neighbouring grey levels. The curvelets are numer-

cal data that translate these curves into coefficients. The sharper

he gaps, the higher the coefficients. The reader can refer to AlZubi

t al. (2011) ; Candes et al. (2006) ; Candes and Donoho (2000) for

ore detailed information. 

In this study we used FDCT via wrapping method to extract tex-

ural features of each breast tissue image. The curvelet coefficients

 

D ( j , � , k 1 , k 2 ) at different scales and orientations were derived by

q. (1) . We have used orientation � of 16 degrees and scale of 4

ased on Eltoukhy, Faye, and Samir (2010b) . In the experiments

he parameters � and j were 16 degrees and 4 levels, respectively.

ased on the subband division, 50 = 1 + 16 + 32 + 1 subbands of

urvelet coefficients were obtained. 

.2.2. Local binary patterns 

In 1994 Ojala introduced the technique of local binary pat-

erns (LBP). It was later resumed by Pietikäinen ( Ojala, Pietikainen,

 Maenpaa, 2002; Pietikäinen, Zhao, Hadid, & Ahonen, 2011 ). By

canning the image, among others we get two pieces of informa-

ion: the spatial structure and the contrast . The LBP then uses both

n order to derive texture. 

After the decomposition of each breast tissue image into a se-

ies of curvelet subbands, the LBP codes of these subbands were

alculated by using LBP operator. Then, given a central pixel c as

hreshold value, the LBP operator is computed by comparing its

alue with those of its neighbours p according to the following

quation: 

BP P,R = 

P−1 ∑ 

p=0 

s (g p − g c )2 

p , (2)

here s ( x ) is 1 for x ≥ 0 and 0 for x < 0, g c is the intensity of the

entral pixel, g p is the one of each neighbouring pixel p, P is the

umber of neighbours and R is the radius of the neighbourhood. 
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Fig. 3. Digital image tiling in the frequency domain (AlZubi et al., 2011, Fig. 9) . 

Fig. 4. LBP operator performed onto a 3 × 3 neighbourhood. 
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Fig. 4 shows an example of circularly symmetric neighbour sets

sed to compute the basic LBP operator for parameters P = 8 and

 = 1 . 

In general, for an N × M input matrix, after LBP converts it into

 logical matrix (0 and 1 entries), the weights 2 p of each pixel ( i, j )

re represented by an histogram vector h of length K , whose bins

re given by: 

(k ) = 

N ∑ 

i =1 

M ∑ 

j=1 

f (LBP P,R (i, j) , k ) , k ∈ [0 , K] (3) 

here K is the maximal LBP pattern and f ( x, y ) coincides with the

hreshold σ given by: 

(x ) = 

{
1 if x = y ;
0 otherwise . 

(4) 

In Ojala et al. (2002) the authors introduce an improvement to

he non-uniform LBP, namely 

BP u P,R = 

{∑ P−1 
p=1 s if U(LBP P,R ) ≤ 2 ;

P + 1 otherwise , 
(5) 

here 

(LBP P,R ) = | s (g P−1 − g c ) − s (g 0 − g c ) | 

+ 

P−1 ∑ 

p=1 

| s (g p − g c ) − s (g p−1 − g c ) | . (6) 

The application of LBP operators on curvelet coefficients is sim-

lar to LBP operation on grey scale images. The only difference is

hat the LBP kernel is moving along all the curvelet coefficients

n each subband. In the decomposition stage, the subbands con-

ain both positive and negative coefficients. Therefore, we used the

bsolute value of the coefficients to compute LBP, which contain

he histograms h for each subband. We chose the parameters P = 8

nd R = 2 by following ( Nanni, Brahnam, & Lumini, 2011 ). 
.3. Reduction of attributes 

After the computation of the texture histograms for each sub-

and, we have applied analysis of variance (ANOVA) in order to

elect the relevant features. By applying ANOVA to our large set

f descriptors they are grouped into statistically similar subgroups,

xcept for isolated descriptors discarded as noise ( Surendiran &

adivel, 2010 ). 

In the present work, ANOVA technique compared breast tissue

mages that showed either lesion or normal states. The texture his-

ograms were evaluated for each attribute and when two attributes

ere statistically similar, both were discarded. Moreover, the con-

dence interval was taken to be within 5% in our case ( Jacomini

t al., 2013 ). The following hypotheses were considered: 

• The descriptors are all random and statistically independent

variables; 
• They are all obtained from the breast tissues described in

Section 2.1 ; 
• Each subgroup consists of breast tissues that have the same

variance. 

.4. Performance of the proposed algorithms 

In this paper we study each dataset by subdividing it into two

roups. The first group is composed of tissues stated as normal

nd malignant, and the second group is formed by benign and

alignant breast tissues. The purpose of the classifier is to iden-

ify in which class each tissue is likely to be, considering the two

roups separately. Four classification algorithms, PL, DT, RaF and

VM, were used to distinguish the two classes for each group. They

re briefly described in this subsection. 

.4.1. Polynomial classifier 

For the classification of different groups of breast tissue im-

ges, the feature vectors were passed as inputs defined by
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x = [ x 1 . . . x d ] 
T , and they were expanded in terms of the vector-

based polynomial p n ( x ). This process make it possible to map a

d -dimensional feature vector into an L -dimensional vector. For ex-

ample, given a two-dimensional input vector x = [ x 1 x 2 ] 
T , the el-

ements of p 2 ( x ) result in parameters similar to those shown in

Campbell, Assaleh, and Broun (2002) : 

p 2 (x ) = [1 x 1 x 2 x 1 
2 x 1 x 2 x 2 

2 ] T . (7)

Therefore, the dimensionality of the expanded vector p n ( x ) can

be expressed in terms of the polynomial order and the dimension-

ality of the input vector x . Finally, the classifier output y i was ob-

tained after a linear combination of the expanded vector p n ( x ) as 

y i = a T i p n (x ) , (8)

where a i is a coefficient vector of the polynomial discriminant

function for the class ω i . The model was divided into two stages,

namely training and testing, which are detailed in Nascimento

et al. (2013) . 

2.4.2. Decision tree 

Decision tree (DT) is a statistical method composed of nodes

connected by edges. This structure is established from the informa-

tion gain, as for instance the difference in entropy: the descriptor

with the highest information gain is the splitting criterion. There-

fore, a node indicates that samples were divided into enriched sub-

sets. The splitting process is tested on each subset in a recursive

manner, resulting in a hierarchical structure. For a DT linearised

into decision rules, the rules are defined by the conditions along

the path and the outcome is the contents of the leaf node ( Chau,

Li, & Yu, 2013; Freund & Mason, 1999; Quinlan, 1993; Safavian &

Landgrebe, 1991; Snousy, El-Deeb, Badran, & Khlil, 2011 ). 

2.4.3. Random forest 

The random forest (RaF) is an algorithm that combines many

decision trees to make predictions. It is a concept of regression

trees induced by bootstrap samples of a training data set, with

random features selected in the induction tree process ( Pang-Ning,

Steinbach, & Kumar, 2006 )[PP.290–294]] and ( Nisbet, Elder IV,

& Miner, 2009 )[PP.248–250]]. The proposed approach produces a

large set of features that we call ν . In its turn, ν is submitted to

the RaF algorithm, which starts by taking a random training set

I ⊂ν . 

After getting I , RaF makes each tree grow randomly from dif-

ferent trunks I ′ ⊂ I . Each node of the tree is labelled by a number

n , and the corresponding I n ⊂ I is split into left and right subsets I � 
and I r , respectively. Notice that I 1 = I ′ . The splitting is determined

by a threshold t and a function f ( ν i ), ν i ∈ ν and i ∈ I n . Once these

decision trees are obtained, RaF combines them in order to con-

struct a new one called I ∗. 

2.4.4. Support vector machines 

In the 1990s, Vapnik introduced a technique called support vec-

tor machine (SVM) ( Vapnik, 1999 ). Its purpose was to minimise

and balance two types of error: training set and test set. To be

more specific, consider a training set {
(z i , y i ) : z i ∈ R 

n f , y i ∈ {−1 , +1 } }n s 

i =1 
, (9)

where n f is the number of characteristics and n s is the number of

samples. Hence, in order to establish the two classes normal and

abnormal (malignant or benign) we can use the dual form to find

the Lagrange multipliers { αi } n s i =1 that minimise the objective func-

tion 

Q(α) = 

1 

2 

−
n s ∑ 

i =1 

αi + 

n s ∑ 

i =1 

n s ∑ 

j=1 

αi α j y i y j K(z i , z j ) (10)
onstrained to 

n s 
 

i =1 

αi y i = 0 , 0 ≤ αi ≤ C, ∀ i = 1 , 2 , . . . , n s , (11)

here C is a positive constant given by the user, and K ( ·, ·) is a

artially defined positive kernel function. 

Let { αi } n s i =1 
be an optimal solution of (10) and (11) . The decision

unction is given by 

SV M 

(z) = b + 

n s ∑ 

i =1 

αi y i K(z i , z) , (12)

here b is some bias value. Here, we have used the polynomial

ernel function given by 

(x i , x j ) = (x i x j + 1) 2 . (13)

.4.5. Cross-validation 

We trained and tested the proposed approach using an n -fold

ross-validation method. The samples are distributed into n sub-

ets. Both the distribution and the number of samples in each sub-

et are as uniform as possible. Afterwards, we take one of the n

ubsets as test and the remaining n − 1 partitions as the train-

ng set. The accuracy of the model is then computed for this

 × (n − 1) separation. 

This procedure is repeated for each one of the n subsets, and

o we end up with n values of accuracy. The final accuracy is com-

uted as an average of that n values. A final accuracy close to

ero means that data generation is well-represented by the model.

ig. 5 shows how the sets were distributed in order to apply the

ross-validation method to the classifiers. 

.5. Evaluation of performance 

The feature vectors were combined and compared in order to

valuate the proposed approach, where the metrics accuracy (AC)

nd area under the ROC curve (AUC) were considered ( Dua, Singh,

 Thompson, 20 09; Fawcett, 20 06 ). All tests were evaluated with

hese metrics because they are the most significant measures to

valuate the classification algorithms ( Huang & Ling, 2005 ). 

The AC measure is defined as the proportion of correct predic-

ions related to the total number of evaluated cases: 

C = 

T P + T N 

P + N 

, (14)

here TP is the rate of true positive cases, TN is the rate of true

egative cases, both calculated in relation to all positive ( P ) and all

egatives ( N ) cases. 

The AUC metric relates the success rate to the failure rate of

roups ( Beck & Shultz, 1986 ). Both rates range from zero to one.

he ROC curve is plotted in the xOy -plane, in which the sensitiv-

ty varies along Oy , whereas the specificity varies along Ox . One

akes the AUC as an evaluation of the classifier. A classification test

s called perfect when its AUC equals 1.0, and it is called perfectly

rong when its AUC equals 0.0. 

The algorithms were implemented in MATLAB R2012b with

he help of WEKA platform 3.6.6 to classify features. We have

sed MATLAB packages curvelab ( Demanet, 2007 ) to compute

urvelet coefficients and the function anova1 to select features

ith ANOVA technique. 

. Results 

The quantification and distinction of the several images of

reast tissues were performed by applying the techniques de-

cribed previously. Examples of breast tissues are shown in Figs. 6 ,

 and 8 . The next Section 3.1 and 3.2 explain our procedures in a
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Fig. 5. Relation between training sets and test sets. 

Fig. 6. ROIs taken from DDSM, (a) C-0 0 09-1-Right (malignant tissue); (b) B-3128-1-Right (benign tissue); (c) B-3013-1-Left (normal tissue). 
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ay that will later make it easier to understand and discuss our

nal results. Now we are going to consider the steps of Extraction

f Descriptors and Reduction of Attributes, both already described

n Sections 2.2 and 2.3 , respectively. 

.1. Descriptors 

In Section 2.2.1 we applied the curvelet transform to images of

reast cancer tissues. These images belong to the dataset described

n Section 2.1 . The curvelet transform gave a total of 740,897 co-

fficients for each image composed of 512 × 512 pixels. For each

mage that consisted of 896 × 768 pixels we got far more coef-

cients, namely 1.111,113. Some examples of coefficients obtained

ith the Curvelet Transform are shown in Fig. 9 . The RGB model

as used on images of Fig. 9 to show the difference between val-

es of the coefficients in each scale. We randomly chose a subband

f the scale 2 and of the scale 3. Afterwards, the LBP technique ex-

lained in Section 2.2.2 was applied and the number of coefficients

or each breast cancer image of the dataset was reduced to 6,656. 

.2. Reduction and classification 

The attribute reduction technique ANOVA explained in

ection 2.3 was then applied to that 6656 coefficients of each

mage. By means of ANOVA, the samples obtained via our data
ining technique proved it to be successful. The total values are

n accordance with existing data in nine-folds of the training

tep. For instance, by considering images in size 512 × 512 pixels

he ANOVA technique gave an average of 961 features for the

ormal-malignant group. This average was 1889 for the benign-

alignant group of nine-folds used in the training step with

DSM. 

But for same size images in the datasets BCDR-FMR and BCDR-

MR, the results of the normal-malignant group had averages 626

nd 376, respectively. For the benign-malignant group the averages

ere 331 and 4 4 4, respectively. Fig. 10 summarises these results,

hich consider the amount of curvelet coefficients, LBP operators

nd finally their reduction by ANOVA in accordance with the nine-

olds of the training step. 

After the attribute reduction, we applied the PL, DT, RaF and

VM classifiers mentioned in Section 2.4 . The results are shown

n Tables 1 , 2 , 3 and 4 , which consider the datasets DDSM, BCDR-

MR, BCDR-DMR and UCSB-BB, respectively. Discriminative perfor-

ances were evaluated by the metrics AC and AUC. 

From Tables 1 –4 the association of curvelet transform, LBP and

NOVA with a PL classifier achieved higher AUC and AC values

or all cases compared with other tested combinations, namely the

nes in which algorithms DT, RaF and SVM were used. The ob-

ained rates are between 91% and 100%. 
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Fig. 7. ROIs taken from images of the BCDR datasets, BCDR-FMR: (a) img-21-22-1-Left (malignant tissue); (b) img-269-279-1-Right (benign tissue); (c) img-13-14-2-Left 

(normal tissue). BCDR-DMR: (d) img-3-4-1-Left (malignant tissue); (e) B-3128-1-Right (benign tissue); (f) B-3013-1-Left (normal tissue). 

Fig. 8. Images taken from UCSB-BB, (a) ytma23-022103-malignant3-ccd; (b) ytma10-010704-benign1-ccd. 

Table 1 

Performance of the PL, DT, RaF and SVM algorithms for tis- 

sues of the DDSM dataset. 

Classification Normal-malignant Benign-malignant 

Algorithm AC AUC AC AUC 

PL 91 0.91 94 0.94 

DT 64 0.67 72 0.72 

RaF 66 0.75 79 0.89 

SVM 63 0.63 85 0.85 

 

 

 

Table 2 

Results obtained with classification algorithms for breast tis- 

sue images of the BCDR-FMR dataset. 

Classification Normal-malignant Benign-malignant 

Algorithm AC AUC AC AUC 

PL 100 1 .00 100 1 .00 

DT 45 0 .45 52 0 .52 

RaF 53 0 .53 45 0 .47 

SVM 80 0 .80 70 0 .70 

t  

s  

W  
When considering mammographic images the proposed ap-

proach achieved the best value AUC = 1 for the datasets BCDR-

FMR and BCDR-DMR. Regarding lower AUC values DDSM presented
he worst performance for the proposed association. However, one

hould notice how the proposed approach improves performance.

hen the Polynomial classifier was applied to the descriptors, in
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Fig. 9. Examples of curvelet coefficients of the four scales resulting in the decomposition process of the image. Case C-0 0 09-1-Right: (a) scale 1; (b) scale 2; (c) scale 3 

and (d) scale 4. Case img-21-22-1-Left: (e) scale 1; (f) scale 2; (g) scale 3 and (h) scale 4. Case img-3-4-1-Left: (i) scale 1; (j) scale 2; (k) scale 3 and (l) scale 4. Case 

ytma23-022103-malignant3-ccd: (m) scale 1; (n) scale 2; (o) scale 3 and (p) scale 4. 

Table 3 

Results obtained with PL, DT, RaF and SVM algorithms for 

tissues of the BCDR-DMR dataset. 

Classification Normal-malignant Benign-malignant 

Algorithm AC AUC AC AUC 

PL 100 1 .00 100 1 .00 

DT 55 0 .59 63 0 .62 

RaF 46 0 .47 43 0 .46 

SVM 61 0 .61 53 0 .53 
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e  

i  
he normal-malignant group of DDSM we achieved AUC = 0.91. By

pplying DT, RaF and SVM the AUC values were 0.72, 0.89 and 0.85,

espectively. 

For DDSM the proposed approach, which uses the Polynomial

lassifier, led to an improvement greater than 24%, 16%, 28% com-

ared with the other approaches that use DT, RaF and SVM, respec-

ively. In these tests the best performance AUC = 1 was achieved

ith the Folds 4 (benign-malignant) and 5 (normal-malignant).

hese results can indicate a presence of noise or artefacts influ-
ncing the other Folds. Regarding UCSB-BB in Table 4 , which is

he only dataset with colour images, although they were also anal-

sed with separate RGB colour channels and grey scale, it again

chieved the best result AUC = 1. This indicates that colour chan-

els are irrelevant for classification. Comparing the performance in

his dataset, the association among curvelet transform, LBP, ANOVA

nd polynomial classifier was also the best one. Considering the

esults with DT, RaF and SVM classifiers, the association with the

olynomial method presented differences greater than 12% with

espect to RaF with the Red channel, and the peak of 40% with

espect to DT with the Blue channel. 

Several methods have been developed to study breast tissues.

mong others we cite ( Dhahbi et al., 2015; Eltoukhy, Faye, &

elhaouari Samir, 2010a ). But none of them has used our proposed

ombination. However, an illustrative overview is now propitious

o show the good quality of our method. Table 5 lists several val-

es of AC and AUC in the literature, including those presented in

his work. One sees that the proposed combination leads to AUC

alues similar to the best rates found by other authors. Of course,

ach author chooses a strategic methodology that looks promis-

ng, although its consistency will only be evidenced by the final
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Fig. 10. Number of features after the application of the proposed method for each fold used during the training step, (a) X-rays images; (b) histological images. 

Table 4 

Evaluation of the benign and malignant tissues of the dataset UCSB-BB using the classification 

algorithms. 

Classification Channel red Channel green Channel blue Grey scale 

Algorithm AC AUC AC AUC AC AUC AC AUC 

PL 100 1 .00 100 1 .00 100 1 .00 100 1 .00 

DT 67 0 .70 65 0 .65 60 0 .60 67 0 .68 

RaF 67 0 .88 82 0 .87 75 0 .85 72 0 .72 

SVM 72 0 .72 750 0 .75 82 0 .82 72 0 .72 

Table 5 

Comparison of AUC values from different approaches for benign-malignant group. 

Reference Dataset ROIs Feature extraction Classifier AC AUC 

Eltoukhy, Faye, and Samir (2010b) Curvelet transform 91.68 

and Haralick features Euclidean 

Eltoukhy, Faye, and Belhaouari Samir (2010a) MIAS 322 Greatest coefficients distance 98.59 –

of curvelet transform 

Eltoukhy, Faye, and Belhaouari Samir (2012) Features in curvelet 97.30 

coefficients SVM 

Tai, Chen, and Tsai (2014) 358 Co-occurrence matrix LDA – 0.98 

DDSM and Haralick features 

Görgel, Sertbas, and Uan (2015) 60 Spherical wavelet 83.3 –

MIAS transform 

Dhahbi et al. (2015) 252 Curvelet transform and k-NN 91.27 –

and moment theory 

DDSM 240 94.00 0.94 

BCDR- 106 

Our method FMR Curvelet transform, 

BCDR- 95 LBP and ANOVA PL 10 0.0 0 1.00 

DMR 

UCSB- 58 

BB 

 

 

 

 

 

 

 

4

 

a  

y  

d  

g  

f  
results. Most of the methods in Table 5 lead to an “almost” ideal

system. However, we could not compare them in order to elect the

best one, for this would be a difficult task, not to say senseless. In

fact, the different methodologies are rather complementary than

ratable. Therefore, we believe that our method is reliable for appli-

cations in any other similar image processing. Moreover, we con-

tribute to future works, in which one could profit from valuable

information contained in each of these references. 
. Conclusions 

We have presented a new method based on the association

mong curvelet transform, LBP, feature selection by statistical anal-

sis and distinct classification techniques, in order to support the

evelopment of CAD systems for cancer breast tissues. The studied

roups were normal-malignant and benign-malignant from the dif-

erent datasets: DDSM, BCDR-FMR, BCDR-DMR and UCSB-BB. The
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est association was curvelet transform, LBP and ANOVA with a

L classifier, when the AUC and AC values are compared with the

thers achieved by the algorithms DT, RaF and SVM. These algo-

ithms have been largely used in the literature, as explained be-

ore. The obtained rates lie between 91% and 100%, which are very

ompetitive results when compared to the described in state-of-

he-art approaches. Another advantage is in tested results on im-

ges with different physical properties commonly explored in clin-

cal practice. Of course, even if our proposed method outperforms

he others, once again we emphasise that it is senseless to rate

ur results with the others, because the different methodologies

re in fact complementary. However, to the best of our knowledge,

he proposed methods in our work are new . Also, another innova-

ion was the exclusion of similar features by ANOVA, which pro-

ided relevant rates. For instance, by considering images in size

12 × 512 pixels, the reduction rate was approximately 85% for the

ormal-malignant group and 71% for the benign-malignant group

f nine-folds used in the training step with the DDSM dataset. For

he BCDR-FMR and BCDR-DMR datasets the rates were 90% and

4%, respectively. These values endorse the proposed association as

n improvement of the classification step towards exactness with

ell known techniques of artificial intelligence and the chosen best

ombination. 

According to the analyses presented previously, our contribu-

ions are: (a) The presented values with the proposed association

re clinically significant, specially when one considers the difficul-

ies in clinical practice to distinguish the two groups normal ver-

us malignant and benign versus malignant. These groups were

ell represented by the images used in this work, namely from

he datasets DDSM, BCDR-FMR, BCDR-DMR and UCSB-BB; (b) The

roposed association (curvelet transform, LBP, feature selection by

NOVA and PL classifier) is useful as an automated protocol for the

iagnosis of breast tissues: a reference to pathologists and special-

sts; (c) Considering the fact that cancer cases have been increas-

ng over the years ( Ferlay et al., 2012 ) and have been causing a

onsiderable loss in the patients’ quality of life, the presented as-

ociation may contribute to the correct diagnosis of breast tissues

mammographic and histopathological images) and to the efficient

evelopment of CAD systems. 

As a variation of this present method, in future works we in-

end to investigate local binary pattern operators (CLBP, LTP, etc.)

pplied to different levels of subbands and sub-images obtained

ia the curvelet transform. Of course, this study can be com-

lemented and improved with the following strategies: (1) apply

ther statistical methods in the feature selection to understand

heir influence on the classification step; (2) identify the most rel-

vant features for distinction among groups with the polynomial

lassifier; (3) test other classification methods; (4) evaluate our

roposed method applied to many more datasets other than clini-

al images. In Computer Vision there are many problems that can

e handled with our method. We intend to assess its generality

nd its quality when applied to these problems. 
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