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a b s t r a c t 

This paper presents a new artificial immune algorithm with continuous-learning, which is inspired by 

the biological immune system, to realize the voltage diagnosis in electrical distribution systems. This 

conception allows one to compose a diagnosis system that can continuously learn without reinitializa- 

tion when new disturbances occur due to the evolution of the electrical system. Two artificial immune 

algorithms, which are the negative selection algorithm and the clonal selection algorithm, are used for 

the pattern recognition process and the learning process, respectively. The principal application of this 

new method aids the operation during failures, supervises the protection system, and can evolve with 

the power systems to continuously acquire new knowledge. This new methodology has a direct impact 

in the area of diagnosis in electrical systems, as well as, in the pattern recognition problem, because the 

main contribution and novelty of this method is the continuous learning capability, which enables the 

system to learn unknown patterns without having to restart the knowledge. This is the major advantage 

of this methodology. To evaluate the efficiency and performance of this new method, failure simulations 

were performed in a real distribution system with 134 buses using the EMTP software. The results show 

robustness and efficiency. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, a new concept of electrical power systems called

mart Grids requires several investments to transform the electri-

al systems that provide modern technologies to generate, trans-

it and principally distribute electrical energy systems ( Dongli,

eng, & Song, 2011 ), ( Gungor et al., 2011 ). The smart grid con-

ept is based on an intense usage of automation, computation and

elecommunication technologies to monitor and control electrical

ystems that allow the implementation of new control, communi-

ation, protection and optimization strategies to improve the effi-

iency of the currently available systems ( Gungor et al., 2011 ). 

Thus, several technologies are used, particularly digital and in-

ormation technology ( Alag et al., 2001 ), which allow the devel-

pment of integrated systems that combine acquisition, analysis

nd data processing techniques, to provide the necessary assistance

o automation, control and decision-making processes ( Northcote-

reen & Wilson, 2007 ). 
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Considering the failure diagnosis for the smart grid, those sys-

ems must be based on auto-restoration idea, i.e., they must be

ble to automatically detect, analyze, respond and restore failures

 Dongli et al., 2011 ) without human intervention. Thus, using in-

elligent techniques (artificial neural networks, fuzzy logic, artifi-

ial immune systems, etc.) is an alternative to the diagnosis prob-

em. Several techniques based on this concept have been used to

id the operators in executing routines in electrical systems, which

rovides security, velocity and efficiency in planning corrective ac-

ions. 

However, most failure-diagnosis methods based on intelligence

roposed to the actual electrical systems have a learning strategy

o obtain the knowledge, on which all efficiency and robustness

epend. Normally, these strategies (training or learning algorithms)

ust always reinitialize the learning process when the system is

xecuted or a new disturbance occurs; therefore, the system is not

ignificantly intelligent. The system does not constantly learn, and

hen a new pattern appears, every learning process is executed

gain. 

A modern and intelligent failure-diagnosis system to the smart

rids must continuously learn, follow innovations and mod-

rnizations of the electrical system, which include new types

f prominent failures, learn with experience and constantly

volve. 

http://dx.doi.org/10.1016/j.eswa.2016.03.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.03.010&domain=pdf
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Developing a system with these characteristics is a complex

task. In the literature, many studies present methods to solve the

problem of the diagnosis of disturbances, as in ( Uyar, Yildririm,

& Gencoglu, 2008 ), ( Oleskovicz et al., 2009 ), ( Zhang, Li, & Hu,

2011 ), ( Lima, Lotufo, & Minussi, 2014 ), ( Lima, Minussi, Bessa, & Fi-

dalgo, 2015 ), however these approaches do not consider the min-

imum requisites to the smart grids, i.e., the objective to provide

continuous-learning to a pattern recognition system. This requisite

based on auto-restoration idea, i.e., continuous learning provide

the ability to perform the detection, analyze, respond and classify

failures without human intervention. 

In the literature, there are a few approaches that propose

methodologies to develop a system with continuous training to

realize diagnosis. For example, in Pham and Cham (2007 ) is pro-

posed an online learning asymmetric boosted classifiers for ob-

ject detection. This approach is one of the first to try the continu-

ous learning in techniques of pattern recognition. In the reference

( Marchiori, Silveira, Lotufo, Minussi, & Lopes, 2011 ) the authors

presents a methodology to analyze the transient stability in elec-

trical energy systems using, a Euclidean ARTMAP neural network

with continuous training. In this paper the Euclidean ARTMAP neu-

ral network was modified to learning continuously and identify

novelties in the analysis of the transient stability in electrical sys-

tems, i. e., the Euclidean ARTMAP neural network was able to iden-

tify unknown patterns, which were not learned yet in the train-

ing process. In Barros, Tonelli-Neto, Decanini, and Minussi (2015 )

the authors present a method to detection and classification of

voltage disturbances in electrical power systems using a modified

Euclidean ARTMAP neural network with Continuous Training. In

this strategy the neural network is initially trained to obtain the

knowledge. In the online process, if a pattern in analysis is un-

known by the diagnostic system, is executed an online learning

phase, and starting this, the diagnostic system is able to identify

and classify the pattern that was unknown to the system. This

method presents a precision of 90.32% in the voltage disturbance

diagnosis. 

In this sense, this work aims to propose a new approach to

develop a system with continuous training to realize the voltage

disturbances diagnosis in electrical distribution systems based on

the Biological Immune System (BIS). Two immune algorithms were

used to compose this system: the Negative Selection Algorithm

(NSA) ( Forrest, Perelson, Allen, & Cherukuri, 1994 ) and the clonal

selection algorithm (CLONALG) ( de Castro & Von Zuben, 20 0 0 ). 

The artificial immune algorithm, which is inspired by the BIS,

is a promising technique in Intelligent Computing (IC). The BIS

computationally reproduces the principal characteristics and the

propriety functionalities and abilities. It has a stable, reliable, and

adaptive architecture, allowing the continuous inclusion of the

training module. This propriety allows the system to introduce new

experiences and knowledge without the need to reinitialize the

immune memory of the system. This is one advantage of using

Artificial Immune Systems, which allow the possibility of contin-

uous training unlike in other techniques such as using Artificial

Neural Networks (ANNs). In some ANNs, to improve the training, it

is necessary to reinitialize the process, consequently destroying the

knowledge previously acquired, except for a few architectures that

have the plasticity propriety as in the neural networks of the ART

(Adaptive Resonance Theory) family ( Carpenter, Grossberg, Marku-

zon, Reynold, & Rosen, 1992 ). The main contribution and novelty

of the approach proposed in this paper is the paradigm shift, that

is, enable continuous learning for the pattern recognition methods.

This ability allows great evolution to intelligent systems, where the

methods are able to learn in online mode, acquiring knowledge of

the unknown patterns for the system. 

To evaluate and validate the efficiency of this new approach,

the results were compared with a conventional diagnosis system
ased only in the NSA, proposed and presented in Lima, Lotufo,

nd Minussi (2013 ). 

This paper is organized as follows. Section 2 discusses the BIS,

ection 3 focuses on the NSA, and Section 4 tackles the CLONALG.

he modeling and simulations is presented in Section 5 . The pro-

osed methodology is presented in Section 6 , and the applications

nd results are discussed in Section 7 . The conclusions are pre-

ented in Section 8 . 

. Biological immune system 

The BIS is the principal defense of organisms against several in-

ective agents that invade/infect the human body. In this case, the

IS must instantaneously act by effectively responding to the in-

ading agents and identifying them to protect the human body (in-

icating the disease). There are two types of responses: the innate

mmune system and the adaptive immune system. 

The innate immune system is the first defense line with a fast

esponse characterized by dendritic cells (APC- Antigen Present-

ng Cell) and phagocyte (Granulocytes, Macrophages, etc.), which

re responsible for ingesting strange particles to the organism and

ther types of defenses, such as physical barriers (skin) and chem-

cals ( de Castro, 2001 ). 

The adaptive immune system is the second level, which can

ecognize microorganisms, such as viruses, bacteria, fungi, proto-

oa, helminthes, and some types of worms. The adaptive immune

ystem is responsible for realizing the learning process on the in-

ective agents on the first contact with the antigens, i.e., the first

xposure to the infective agent. In addition, it is responsible for

reating memory immune cells from the first exposure to the in-

ective agent to accelerate a response to this type of infective agent

n future exposure ( de Castro & Timmis, 2002 ). 

.1. Operation of the pattern recognition of the BIS 

The biological organism, particularly the human body, is com-

osed of several cells and molecules that work in harmony and re-

pond to strange agents that enter the organism, which are called

ntigens. 

The BIS has fundamental characteristics such as pattern recog-

ition, learning and neutralization of infective agents. These steps

epresent an immune response, which is illustrated on Fig. 1. 

Step (I) represents the BIS exposure to an antigen (infective

gent). The BIS can react with two types of responses: the innate

mmune response, which begins at step (II), and the adaptive im-

une response, which begins at step (VII). If the process begins

ith the innate immune system (step (II)), the infective agent is

onsidered to be an unknown agent by the BIS, and the infective

ell in the organism must be identified and informed a posteriori ;

hen, the adaptive immune system begins an adaptive response

learn and generate antibodies to neutralize the antigen). If the

rocess begins with the adaptive immune system (step (VII)) the

ntigen is known by the BIS, and the detection process is realized

y the memory lymphocytes in the organism. 

In step (II), the innate immune process begins when some anti-

en (infective agent) is ingested by a dendritic cell (APC- Anti-

en Presenting Cell). At this phase, the antigens are ingested and

isintegrated into antigen peptides. In step (III), the pieces of

eptides are linked to the MHC (Major Histocompatibility Com-

lex) molecules and presented to the surface of the dendritic

ell. 

In step (IV), the T lymphocytes, which have receptive

olecules at the surface, can recognize/identify different anti-

en MCH/peptides that are processed by the dendritic cells, i.e.,

hen there is a link (combination), the antigen is recognized,
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Fig. 1. Representation of the BIS. 
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nd the lymphocyte state is activated. This step represents the

roper/non-proper discrimination of the organism, which distin-

uishes proper cells from the infective agents ( de Castro, 2001 ),

 Dasgupta, 1998 ). Based on this pattern recognition principle, ref-

rence ( Forrest et al., 1994 ) proposes the NSA. After the antigen

etection, at step (V), the lymphocytes T are activated and secrete

hemical signals (lymphokine) that suggest to other BIS compo-

ents that a cell is infected. 

After an infected cell is identified (step (VI)), B lymphocytes

an recognize the infected cell and start the learning process,

hich is more commonly known as the principle of clonal selec-

ion (step (VII)). In this case, B lymphocytes can recognize free

dentified antigens without ingesting and digesting the presenting

ells (APC). 

When B cells recognize an antigen (by indication or memory),

he clonal selection process begins, which is also known as learn-

ng process (step VIII). In this step, the lymphocytes pass under a

lone and hyper-mutation process, which generates a set of B lym-

hocytes in the organism. 

Then, step (IX) is a discerning process, where B lymphocytes

ith high affinity are separated to pertain to the memory set, and

hose with low affinity are activated and transformed in plasmo-

ytes (step X) to secrete antibodies. In step (XI), the BIS-detected

ntigens are neutralized by the generated antibodies, which de-

troys the risk (disease). 

In step (XII), the high-affinity lymphocytes in the distinguishing

rocess are transformed and pertained to memory lymphocytes to

ubstitute for those with low affinity. The new memory lympho-

ytes begin to circulate in the organism to ensure an efficient and
ast response to a future exposure to the same antigen (infective

gent). 

It is emphasized that the entire process is realized with the co-

peration of the cells that form the BIS, each of which is respon-

ible for a relatively simple function, and the set that realizes an

xtremely complex work ( de Castro, 2001 ), ( Dasgupta, 1998 ). 

This paper was inspired by the BIS operation, pattern recogni-

ion and learning processes. 

. Negative selection algorithm 

The NSA is based on the pattern recognition process of the bi-

logical immune system and elaborated as a computational model.

he NSA is proposed in Forrest et al. (1994 ). In this algorithm (neg-

tive selection) the T lymphocytes that occur at a specific time and

iscriminates the proper/non-proper cells in the organism. The al-

orithm is executed in two phases, such as presented in Figs. 2

nd 3 ( de Castro, 2001 ): 

The censor phase of the NSA consists primarily of generating

 detector set from the data that were randomly chosen and ver-

fying which data can recognize a non-proper pattern. The detec-

ors are similar to the mature T cells that can recognise pathogenic

gents ( Lima et al., 2013 ). 

The monitoring phase consists of monitoring a system to iden-

ify a change in behaviour; thus, this monitoring phase classifies

he change using the detector set that was created in the censor

hase. The censor phase occurs in the off-line mode, and the mon-

toring phase occurs in real-time mode ( de Castro & Timmis, 2002 ),

 Dasgupta, 1998 ). 
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Fig. 2. Flowchart of the censor phase of the NSA. 

Fig. 3. Flowchart of the monitoring phase of the NSA. 
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The chains at the NSA represent the patterns by data structures

(vectors). These chains can be classified in two types of NSA: the

antigens ( Ag ) and the lymphocytes ( Ab ). The Ag is the signal to

be analyzed, unknown by the NSA and represented by expression

( 1 ). The detectors, that is, the lymphocytes ( Ab ), are expressed ac-

cording to expression ( 2 ) ( Lima et al., 2013 ), ( de Castro & Timmis,

2002 ): 

Ag = A g 1 , A g 2 , A g 3 , . . . , A g L (1)

Ab = A b 1 , A b 2 , A b 3 , . . . , A b L (2)

where: 

L is the dimension of the lymphocytes ( Ab ) and antigens ( Ag ). 

It is emphasized that the censor and monitoring phases of the

NSA are executed off-line and on-line, respectively ( de Castro &

Timmis, 2002 ). 

3.1. Matching criterion and affinity rate 

A criterion called matching or combination is used to evaluate

the affinity with the chains (antigens and lymphocytes) and deter-

mine their similarity. The matching can be perfect or partial. 

This paper uses the partial matching and affinity proposed in

Bradley and Tyrrell (2002 ). The affinity rate represents the similar-

ity grade with the two analyzed chains. According to Bradley and

Tyrrell (2002 ), the affinity is defined as follows: 

T A f = 

(
An 

At 

)
100 (3)

where: 

TAf affinity rate; 

An number of normal chains in the problem (proper chains);

At total number of chains in the problem (proper and non-

proper chains). 
The precise affinity rate can be calculated using Eq. (3) , where

 statistical relation with the samples is proposed. 

A deviation, i.e., a tolerance rate, is proposed where the combi-

ation with the patterns is acceptable and can improve the diag-

osis ( Lima et al., 2013 ): 

b i ≤ A g i ≤ Ab i (4)

here: 

g i nominal value of position i of the antigen (pattern under

analysis); 

b i nominal value of position i minus the deviation adopted

in the antibody (detector pattern); 

Ab i nominal value of position i plus the deviation adopted

in the antibody (detector pattern). 

Expression ( 5 ) represents the method to quantify the total affin-

ty with the analyzed patterns ( Bradley & Tyrrell, 2002 ), ( Lima &

inussi, January-2014 ): 

 f T = 

L ∑ 

i =1 

P c 

L 
100 (5)

here: 

f T percentage of affinity with the analyzed patterns; 

 total number of positions; 

c matching position; 
L ∑ 

 = 1 
P c sum (number) of the matching positions. 

Thus, if Af T is greater than TAf , then the combination/matching

ith the patterns occurs, i.e., the patterns are considered

qual/similar. Otherwise, there is no matching with the patterns. 

. Clonal selection algorithm 

The clonal selection algorithm, CLONALG, was originally pro-

osed in de Castro and Von Zuben (20 0 0 ). There are two avail-

ble versions of the algorithm in the literature, one of which solves

achine learning problems and pattern recognition, and the other

olves optimization problems ( de Castro, 2001 ). 

The CLONALG for recognition problems and machine learning

as the following steps ( de Castro, 2001 ), ( de Castro & Timmis,

002 ): 

Step I : Initialization: generate a random population ( Ab = Ab { M } +
Ab { R } ) with N lymphocytes for each antigen ( Agi ). N is

given by M + R ; 

Step II : Affinity evaluation: each antigen ( Agi ) is presented to ev-

ery Ab of the population ( Ab ) in a process of affinity

evaluation. A vector f of affinity is determined; 

Step III : Selection: the n Ab s with high affinity f to Agi are se-

lected to compose a sub population ( Ab { n } ); 

Step IV : Cloning: the n selected Ab s proliferate (clone) propor-

tionally to the affinities of the antigen ( Agi ) and generate

a C population of clones in each selected Ab ; 

Step V : Hyper-mutation: the C population of clones is submit-

ted to the maturation affinity process, which generates

a new population, C ∗, where each Ab will mutate with a

rate inversely proportional to the affinity f ; 

Step VI : Affinity evaluation: determine the affinity f ∗ with the set

C ∗ of mutated clones and the antigen Agi ; 

Step VII : Re-selection: from the mature population C ∗, re-select

the n best mature Ab s to make a sub-population ( Ab { n } ).

From this sub-population, choose the best Ab s to enter

the memory set ( Ab { n } ). A Ab enters the memory set if

it has high affinity rate and can substitute a Ab of the

memory; 
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Table 1 

Number of simulations executed. 

Voltage disturbance 134 buses 

Outage 48 

Harmonic 144 

Swell 72 

Sag 72 

Swell with harmonic 96 

Sag with harmonic 96 

Oscillatory transient 96 

Total 624 
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tep VIII : Meta-dynamics: substitute d antibodies of ( Ab { R } ) by

new individuals ( Ab { d } ) to make the repertoire diverse.

The anti-bodies with the lowest affinity are substituted; 

Step IX : Repeat steps II-VIII until the stop criterion is satisfied. 

At the end of the iterative process, the memory set ( Ab {M} ) has

 Ab s with high affinity rates to the antigen ( Agi ). This memory

et can be used by the NSA to detect and classify learned antigens

n the clonal selection process. 

For learning problems, step VIII (meta-dynamics) is not exe-

uted; therefore, d = 0. 

The number N c of clones generated in Step IV for each Abi is

iven by Eq. (6) ( de Castro, 2001 ): 

 

i 
c = round 

(
β N 

i 

)
(6) 

here: 

β is a multiplicative factor between [0,1], N is the total number

of Ab s of population Ab , and round (.) is the approximation

operator to the closest integer. 

The mutation rate ( α) of each clone is defined according to

q. (7) ( de Castro, 2001 ): 

= exp (−ρ f n ) (7) 

here: 

ρ is a control damping parameter of the exponential function

and f n is the normalized value of affinity f , which is calcu-

lated using Eq. (8) . 

f n = 

f 

f max 
(8) 

Then, each clone mutates according to ( 9 ) ( de França, Von

uben, & de Castro, 2005 ): 

 = round{ α N(0 , 1) } (9)

here: 

m is the number of mutations that each clone has, round (.) is

the approximation operator to the closest integer, α is the

mutation rate, and N (0,1) is the Gaussian random variable

with mean zero and σ =1. 

. Modelling and disturbance simulation 

Although there was no database of distribution systems under

erturbations, the data to evaluate the methodology was provided

imulating events in test systems. 

Using the routine models ( Dubé, 1996 ) from the EMTP software

 EMTP-RV 2011 ), a real distribution system with 134 buses was

odeled. A sample frequency of 15.36 kHz, which is equivalent to

56 samples per cycle, was used as a parameter. The simulation

ime was 200 ms. 

For the voltage disturbances, the theoretical model proposed

y Abdel-Galil, Kamel, Youssef, El-Saadany, and Salama (2004 ) was

sed for the simulations, where each disturbance was generated

y varying the parameters in the equations that represented the

aveform of the disturbances. 

In total, 624 simulations were executed for the 134-bus sys-

em ( LaPSEE 2011 ). The simulations considered the phase where

he disturbance occurred, 50–120% to loading system, and the pa-

ameters of the theoretical model. Table 1 presents the quantity of

xecuted simulations for each class of disturbance. 
. Proposed methodology 

This section describes the methodology proposed to realize the

oltage disturbance diagnosis in electrical distribution systems us-

ng the artificial immune algorithm with continuous-learning. 

The voltage disturbance diagnosis system with continuous-

earning in this section is inspired by the pattern recognition and

earning process of the BIS, which was described in Section 2 . A of

his work. To computationally formulate and reproduce this bio-

ogical process, the NSA proposed by Forrest et al. (1994 ) and the

LONALG proposed by de Castro and Von Zuben (20 0 0 ) were used.

he NSA realizes the voltage diagnosis disturbance and the CLON-

LG as a strategy for learning. 

The diagnosis system with continuous-learning has five princi-

al steps: NSA (off-line) censoring, novelty detection, continuous-

earning, NSA monitoring and knowledge updating. The block dia-

ram is shown in Fig. 4 . According to Fig. 4 , in the off-line process

alled censor module, the proper and disturbance detectors for the

SA are defined, which form the set of NSA detectors. 

Thus, from the data acquisition system (SCADA ( Wylie & Pley-

ell, 2008 )), voltage readings are executed at the electrical dis-

ribution substation to obtain the oscillographs. Then, the censor

odule defines the proper detector set. For electrical distribution

ystems, the proper signals have the normal operation characteris-

ics. Then, 256 window samples of the signal that represents the

ormal system operation are filed as proper detectors. 

Subsequently, the censor module is executed to generate the

isturbance detectors, and for each type of disturbance, the cen-

or module is executed once. 

In this phase, the detectors are randomly generated from a set

f signals that represent the disturbed system. Thus, 1 cycle (256

oints) in the simulated data is windowed and these data are com-

ared window by window with the proper detectors. If there is

atching, the random vector is rejected. Otherwise, it is accepted

nd filed as a disturbance detector in the set of the disturbance

etectors. The censor process is illustrated in Fig. 5. 

The system operator defines the number of detectors (proper

r disturbances). The detector set is used for the novelty detection

nd monitoring steps of the NSA. 

The monitoring process (on-line) is executed after the off-line

rocess. The test set (antigens), which is obtained from the acqui-

ition system (SCADA ( Wylie & Pleydell, 2008 )), is formed using

very available signal in the database. Then, a random signal is se-

ected to be analyzed. 

The novelty detection step is executed when a signal is selected

o be analyzed, and the analyzed signal is compared with the de-

ector set of the NSA. The matching of the signal with some detec-

or is verified. If they match, the analyzed signal is known by the

ystem, i.e., there is no novelty. Otherwise, the signal is considered

 novelty or unknown by the system. 

When the system identifies a novelty, the continuous-learning

tep is executed to learn about the new antigen (analyzed signal),

nd the learning process occurs, which is realized by the CLONALG.
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Fig. 4. Diagnosis system with continuous-learning. 
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The objective of the CLONALG is to generate a memory set

(knowledge) from an unknown signal (antigen). This process fol-

lows the steps in Section 4 of this work. Initially, a population of

lymphocytes is randomly generated. To randomly generate a lym-

phocyte, the maximum and minimum values of the voltage signal

to be detected (antigen) are identified, and a vector with 256 po-

sitions is created and randomly filled with real values between the

maximum and minimum voltages, which generates a random sig-

nal. 

Eq. (5) is used to quantify the affinity with the lymphocytes

of the population ( Ab ) and the antigen. Then, the n best lympho-

cytes with highest affinity values to the antigen are selected for

the clonal process. 

To quantify the affinity with the lymphocytes of the population

( Ab ) and the antigen, Eq. (5) is used. Then, the n best lympho-

cytes with highest affinity values to the antigen are selected for

the cloning and hyper-mutation processes. The number of clones

is calculated using Eq. (6) , and the number of mutations to be re-

alized on the clones depends on the calculus of Eqs. (7) –( 9 ). Mu-

tation is an evolutionary process to execute little modifications in

the lymphocyte structure to increase the affinity to the antigen. 

Due to the analyzed signals are expressed by vectors with real

positive and negative numbers, this method uses the inductive

mutation techniques ( Wylie & Shakhnovich, 2012 ), which is an

evolutionary-algorithm technique to solve this type of problems.

Thus, the mutation process consists of realizing a mutation using

Eq. (10) in a random position of the signal (lymphocyte). 

Ab ′ i = 

{
A b i + α∗(A b i − A g i ) , A b i > 0 

A b i + α∗(A g i − A b i ) , A b i < 0 

(10)
here: Ab ′ 
i 

is the mature lymphocyte, Ab 
i 
is the position to be mu-

ated, Ag 
i 
is the goal (learning pattern), and α is a random number

etween [0, 1]. 

After the lymphocytes are matured, the n best matured clones

re re-selected to be included in the population. The selected lym-

hocytes replace the worst lymphocytes of the population. Further-

ore, the best lymphocytes are separated for the memory set. The

rocess is repeated until the stop criterion is satisfied. In this work,

he stop criterion is that every lymphocyte of the memory set

eaches at least 92% affinity with the antigen (signal to be learned).

Fig. 6 illustrates the learning process of CLONALG to learn a har-

onic signal. Fig. 6 (a) illustrates the signal to be learned. Fig. 6 (b)

hows the memory antibody randomly generated in red in the it-

ration 1. Fig. 6 (c), (d), (e), (f), (g), (h) and (i) shows the memory

nti-body after 50, 100, 150, 20 0, 250, 30 0 and 350 iterations, re-

pectively. Finally, Fig. 6 (j) illustrates the memory anti-body after

he stop criterion is satisfied, i.e., the affinity with the random sig-

al and the pattern to be learned are greater than 92%. 

At the end of the CLONALG process, there is a memory set

knowledge) related to the unknown antigen. This knowledge set

s included to the detector set of the NSA to provide knowledge to

he system. For example, in another analysis of the same type, the

ystem can recognize and classify the disturbance. This character-

stic is known as continuous-learning. 

When the novelty detection step does not identify a novelty,

.e., when the antigen is known by the NSA, the process occurs ac-

ording to Fig. 7 , similarly to the conventional NSA. Thus, the sig-

al under analysis must be compared with the detector set of the

SA and evaluate the matching and affinity to detect the abnor-

ality and later classify the signal according to the class of distur-

ance where matching occurs. 
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Fig. 5. Censor Module of NSA. 
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After the signal is analyzed, the monitoring process of the NSA

nishes. 

Furthermore, the knowledge module is updated, which is re-

ponsible for evaluating whether there is a requirement to up-

ate the detector set of the NSA (knowledge) to improve the dis-

urbance detection and classification processes. This case uses the

atching of the detectors with the antigen signal (signal under

nalysis) as the criterion. If 70% of the disturbance detectors match

he analyzed signal, it is not necessary to update the detection set

f the NSA for the signal classified. If less than 70% of the detectors

o not match with the classified pattern, the knowledge-updating

rocess occurs. When the NSA cannot recognize the signal with

ess than 70% of the detectors, it is necessary to update the detec-

or set of the NSA to improve the recognition process and use the

ntigen to learn (obtain knowledge). 

Therefore, it is necessary to update the knowledge of the CLON-

LG learning process, which is executed according to the previous

escription and identical to the process realized by the continuous-

earning module. 

After the learning process and a set of memory lymphocytes

f the antigen signal (signal under learning) is obtained, the best
ymphocyte of the memory set must be selected and updated to

he detector set of the NSA. The updating occurs on the substitu-

ion of one detector that does not match the antigen pattern. This

etector is substituted by the best lymphocyte of the memory set

enerated on the learning process realized by the CLONALG. 

The learning updating only occurs when there is the need to

einforce the NSA knowledge, i.e., when fewer than 70% of the de-

ectors do not satisfy the affinity criterion, matching no antigen.

hen, this detector is substituted by a new detector generated in

he learning process, which is called the updating knowledge. 

The process in Fig. 4 is repeated until every antigen (test set) is

nalyzed. 

. Results and applications 

This section presents the obtained results of the proposed

ethod in the simulated test system. The algorithm was devel-

ped using MATLAB® ( MATLAB 2011 ). Every test and simulation

as performed using a PC Intel Core 2 Duo 1.9 GHz with 2 GB

f RAM (Random-Access Memory). The proposed algorithm used

 real distribution system with 134 buses ( LaPSEE 2011 ). 
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Fig. 6. Learning process of the CLONALG. 
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Fig. 7. Monitoring Module of the NSA. 
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Table 2 

Parameters. 

Parameters NSA without continuous training NSA with continuous training 

TAf 66.66% 66.66% 

N – 25 

M – 9 

R – 16 

n – 5 

β – 0.3 

ρ – 4 

d – 0 

Table 3 

Results of the system without continuous training. 

Disturbances 134 buses 

Tested patterns Matching patterns Matching (%) 

Swell 72 0 0 .00 

Sag 72 70 97 .22 

Outage 48 48 100 .00 

Harmonic 144 0 0 .00 

Swell with harmonic 96 96 100 .00 

Sag with harmonic 96 95 98 .95 

Oscillatory transient 96 0 0 .00 

Total 624 309 49 .51 

Table 4 

Results of the continuous-training system. 

Disturbances 134 buses 

Tested patterns Matching patterns Matching (%) 

Swell 72 71 98 .61 

Sag 72 72 100 .00 

Outage 48 48 100 .00 

Harmonic 144 140 97 .22 

Swell with harmonic 96 96 100 .00 

Sag with harmonic 96 96 100 .00 

Oscillatory transient 96 95 98 .95 

Total 624 618 99 .03 
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The proposed method was evaluated to verify the efficiency,

recision and robustness in the voltage disturbance diagnosis us-

ng the conventional algorithm (without continuous training), pro-

osed and explained in Lima et al. (2013 ), and the algorithm with

ontinuous training. The metrics adopted to the efficiency, preci-

ion and robustness are: ability to learn unknown patterns, per-

entage of correct answers and computational time. 

Table 2 presents the parameters in the tests, which were ob-

ained using an empirical test process. 

Three patterns were excluded during the censor phase in

oth systems (with and without continuous training) to evaluate

he performance of the novelty-detection, continuous-learning and

nowledge-updating modules of the proposed algorithm. The ex-

luded patterns were: swell, harmonic and oscillatory transient.

hey were randomly chosen like any disturbance, and the al-

orithms began the monitoring process online without knowing

hese patterns. 
Table 3 shows the results with the previously mentioned pat-

erns and configurations for the conventional diagnosis, i.e., the di-

gnosis without continuous training. 

The conventional diagnosis system cannot identify the excluded

atterns from the censor process, i.e., it cannot identify these types

f patterns. 

Table 4 presents the results of the diagnosis process with con-

inuous training. The configurations and parameters are identical

o those used for the conventional NSA algorithm. 

Table 4 shows that the continuous-training system can learn the

nknown disturbances and execute the diagnosis in another anal-

sis. In addition, the updating knowledge module contributes to

ncrease the matching rate for some known disturbances because

he system updates the detector set of the NSA in the online mon-

toring process, which reinforces and improves the knowledge. 

Tables 3 and 4 show an improvement in diagnosing the distur-

ances, i.e., the system with continuous training can evolve with

he experience and diagnose the disturbances that were not pre-

iously diagnosed. The excluded patterns from the censor process

ere not recognized by the system without continuous training

ith 0% matches. After using the continuous training, the patterns

re identified with a matching rate of approximately 98.95% for the

well, 97.22% for the harmonic and 98.95% for the oscillatory tran-

ient. 

In conclusion, it is possible to control the quality of the gener-

ted lymphocytes in the memory set of the learning process with

he CLONALG. To finish the learning process, the lymphocytes of
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Fig. 8. Graph of the efficiency with time. 

Fig. 9. Graph of the precision with time. 
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the memory set and the antigens (pattern to be learned) must have

an affinity of at least 92%. With this criterion, it is possible to en-

sure that the memory lymphocytes have high affinity values and

provide efficiency in the diagnosis process. 

Figs. 8 and 9 show graphs of the obtained results with and

without continuous training to analyze the matches and the pre-

cision in a given time. The instant of time is the occurrence of a

failure, i.e., the quantity of failures that the system analyzes until

the considered instant. 

Fig. 8 shows a linear relationship between the instant of time

(number of failures) and the number of matches until this instant

of time. When the system continuously learns, the linear relation-

ship tends to have an angular coefficient of approximately 1 and

a linear coefficient of approximately 0 for each analyzed instant,

i.e., an inclination of approximately 45 o represents an optimal pre-

cision. For the system without continuous training, the linear re-

lationship presents different coefficients with an inclination of ap-

proximately 22 o , which confirms that after the continuous training,

the system improves the performance with time. 

Finally, Fig. 9 shows the precision of the system considering the

analyzed instants of time (failures) until the moment. The system

without continuous training has a low error precision of approxi-

mately 50% until the end. The system with continuous training has

almost no error and maintains a precision of approximately 100%

during the entire time. 
.1. Comparative study 

Table 5 presents a comparative study that uses matching ac-

ording to the proposed method and the principal references that

re available in the literature. This study presented methods with

ontinuous learning and methods without continuous learning. 

The proposed method presents a matching index and a preci-

ion that is similar to other works that are available in the litera-

ure. It should be emphasised that the use of the continuous learn-

ng changes the sensitivity of the voltage disturbance diagnosis and

an detect and classify any abnormality; therefore, good results are

resented. 

.2. Comments about the algorithm 

After carrying out the tests and obtaining the results, we iden-

ified the strengths and weaknesses of the proposed algorithm;

hese are presented in this section. 

Strengths: 

• The proposed algorithm presented excellent performance, pre-

senting a good accuracy rate (99.03%) when compared to the

best works available in the literature. 
• The algorithm require low processing time. 
• This algorithm has the capacity to identify unknown patterns

(unknown disturbances). 
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Table 5 

Comparative Study. 

Reference Electrical system/theoretical model Method used Total match (%) 

( Uyar et al., 2008 ) ( Abdel-Galil et al., 2004 ) Multilayer Perceptron (Levenberg-Marquardt) e wavelet 96 .21 

( Zhang et al., 2011 ) Not specified Decision tree and Fourier transform 99 .00 

( Lima et al., 2013 ) 134-bus Negative Selection Algorithm 99 .11 

( Oleskovicz et al., 2009 ) 138/13,8 kV Multilayer Perceptron e wavelet 99 .31 

( Decanini, Tonelli-Neto, Malange, & 

Minussi, 2011 ) 

134-buss Fuzzy ARTMAP neural network and wavelet transform 99 .66 

( Lima, Lotufo, & Minussi, 2015 ) 134-buss Negative Selection Algorithm with wavelet transform 100 .00 

( Lima et al., 2015 ) 134-buss Modified Negative Selection Algorithm 100 .00 

( Barros et al., 2015 ) 134-bus Modified Euclidean ARTMAP neural network with 

continuous learning 

90 .32 

This work 134-bus Immunologic algorithm with continuous learning 99 .03 
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• This method has the capacity to continuously improve/reinforce

the knowledge and permanently learn without reinitializing the

learning process. 
• This method is able to follow innovations and modernizations

of the electrical system, which include new types of prominent

failures, learn with experience and constantly evolve. 

Weaknesses: 

• The algorithm proposed have several parameters that must be

set in advance. 

. Conclusion 

This work presents a new approach for voltage disturbance di-

gnosis with continuous training based on the BIS. Two artifi-

ial immune algorithms were used for the diagnosis and learning:

SA and CLONALG. The continuous learning algorithm is compared

ith the conventional algorithm, i.e., without continuous learning,

roposed and explained in Lima et al. (2013 ). Three patterns were

xcluded from the censor process of both systems to evaluate the

ovelty detection, and the conventional process matches 49.51% of

he analyzed disturbances. The algorithm with continuous learning

atches 99.03% for every pattern. 

The continuous-learning module can continuously learn to

dentify unknown disturbances. The obtained results show that

he diagnosis with continuous learning performs better (in terms

f efficiency, precision and robustness) than the system without

he continuous learning. Therefore, the newly proposed detec-

ion strategies in this paper, which continuously learn and update

nowledge, provide the diagnosis system with sufficient precision,

fficiency and robustness for important applications and the capac-

ty to follow the evolution of electrical systems such as the smart-

rid environment. The main advantage of this method is the ca-

acity to continuous learning, which is a novelty in methods of

oltage disturbances diagnosis. This advantage is very important to

volution of the techniques in intelligent systems. 

The results allow practical applications such as modeling and

evelopment of an efficient system for intelligent diagnosis in

mart grids. Based on the accuracy index of the computational al-

orithm, certainly in a real network with modern relays or a robust

ystem of acquisition data, analysis and diagnosis should provide

etter efficiency. 

Finally, the proposed methodology when compared to other

ethods such as artificial neural networks presents the capacity

o continuously improve/reinforce the knowledge and permanently

earn without reinitializing the learning process, improving the di-

gnosis process. 

To give sequence to this research, it is suggested the follow-

ng topics: add module to perform wavelet analysis and process-

ng of signals; investigate the possibility of investing in distribution
ystems environment in anticipatory character; apply the method

roposed to distribution systems with non-linear loads and dis-

ributed generation. 
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