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a b s t r a c t 

The objective of this work is to study the dynamical behavior of vehicle suspension sys- 

tems employing asymmetrical viscous damping, with a focus on improving passenger com- 

fort. Previous studies have shown that the use of asymmetrical dampers in these types of 

systems can be advantageous with regard to comfort of the passengers. The modeling and 

the behavior of a quarter-car model with asymmetrical viscous damping under harmonic 

excitation is presented. The response is obtained with an analytical approximation via the 

method of Harmonic Balance. The choice of the asymmetry ratio diminishes the effects 

that the uneven road causes on the displacement and acceleration of the sprung mass. 

Although current systems usually adopt larger damping during the expansion phase, it is 

shown in this work that, for lower frequencies, smaller damping in this phase results in 

better comfort. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Suspension systems with nonlinear elements have been studied extensively, including nonlinear springs and nonlinear

dampers [1–4] . Shekhar et al. showed that the dampers have more influence on the dynamics than the springs [5] , and

the difference between linear and nonlinear elements is more pronounced for more severe shock loads [6] . These nonlinear

elements have been included in active and semi-active suspension systems, in which damping properties vary according

to a control algorithm applied, adding or removing energy of the system by means of valves with variable orifice area or

magneto-rheological fluids [7–10] . Electromechanical suspension systems have also been studied with great interest as a

means of energy recovering system [11,12] . 

Asymmmetrical dampers are usually designed to provide significantly greater damping force during the extension period

compared to the force during the compression period [13] . These different damping coefficients in extension and compres-

sion define an asymmetry ratio. The use of an asymmetrical damping induces a shift in the steady state response of the

system. The magnitude of this shift depends on the asymmetry ratio and on the excitation frequency [14] . 

In addition to vertical motion, usually studied with quarter-car models, the pitch displacement and acceleration were

shown to be smoother for a half-car model which utilizes asymmetrical dampers [15] . Also, the vertical and angular acceler-

ations reach minimum values at different points in the presence of asymmetrical dampers. Generally, the extension force is
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Fig. 1. Two-degree-of-freedom quarter-car model of a suspension system (a) and the generic asymmetrical characteristic of a shock absorber (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

defined between three to four times the compressive force [16] . However, the variation of this ratio can provide very differ-

ent behaviours, and has been used in control strategies [17] . The use of more stages of asymmetry has also been studied [18] .

It is commonly understood and accepted that the human response to dynamic excitation depends on many mechanical,

physical, physiological and psychological parameters [19] . Besides the suspension system per se , the seat of the vehicle is

also focus of study to improve comfort in vehicles [20] . The level of comfort for the passengers depends on factors as the

frequency of vibration, direction, location and time of exposure to which the passenger is subjected [20] . Apart from causing

discomfort, severe vibrations may cause occupational disorders [21] . 

In order to further explore the use of asymmetrical damping to improve the level of comfort at different frequencies of

excitation, in this paper a classical quarter-car model with 2 degrees of freedom is used with harmonic base excitation. The

model is presented in Section 2 ; the response of the system is obtained using an analytical approximation via the method

of Harmonic Balance, shown in Section 3 ; the convergence of the approximate solutions is illustrated in Section 4 ; the

influence of the asymmetry ratio on the response is studied in Section 5 ; and conclusions are drawn in Section 6 . 

2. A 2-DOF quarter-car model with asymmetrical damper 

There are many models suited for the dynamical analysis of vehicles, varying from simpler models to more sophisticated

ones. Lower order models with lumped parameters are very common for analysis of the vertical dynamics. Quarter-car

models describe exclusively vertical motion of the chassis. 

Fig. 1 shows a two-degree-of-freedom shock absorption system. This system comprehends two subsystems connected in

series. Each subsystem comprehends a spring and a viscous damper assembled on a structure with mass. 

The base of the system represents the road on which the vehicle travels, whose irregularities cause the forces that excite

the system. The lower subsystem, comprehended by the mass m u , the spring with elastic constant k u and the viscous damper

with viscous damping coefficient c u , represents the un-sprung mass of the vehicle, e.g. wheels, tyres, brake discs, uprights.

These elements have elastic and damper characteristics that, although not being the proper suspension system, contribute

to the overall dynamical behaviour of the vehicle. The upper subsystem, comprehended by m s , k s , and c s , represents the

proper suspension system and the sprung mass. The nonlinear absorber is adopted at this subsystem. It is clear that the

behaviour of the whole system depends on the contribution of each subsystem, as on the interaction between them. 

According to the classical theory of vibrations [22,23] , the equation of motion for the system depicted in Fig. 1 , regarding

vertical displacement relative to the trivial equilibrium positions, can be written as: 

m u ̈z u + f cu + f ku − f cs − f ks = 0 

m s ̈z s + f cs + f ks = 0 (1)

The springs are considered linear throughout this study. The spring forces f ku and f ks are proportional to the relative

displacement, and are given by: 

f ku = k u ( z u − z r ) f ks = k s ( z s − z r ) (2)

The linear viscous damping force f cu is proportional to the relative velocity, and is given by: 

f cu = c u ( ̇ z u − ˙ z r ) (3)

The nonlinear damping force depends on the relative velocity and its direction. In order to perform the switching of

the absorber signal between the viscous damping coefficient at expansion ( c + s ) and at compression ( c −s ), representing its

nonlinear characteristic, a Heaviside type function is used as follows: 

c ±s ( ̇ z s − ˙ z u ) = 

{
c + s if ˙ z s − ˙ z u ≥ 0 

c −s if ˙ z s − ˙ z u < 0 

(4)
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The base excitation is a result from the irregularities of the road on which the vehicle travels. The base excitation used

here is a harmonic function given by 

z r (t) = z max sin ( ω r t + φ) (5) 

in which z max is the amplitude of excitation, ω is the frequency of excitation and φ is the phase. The amplitude and fre-

quency of excitation can be tuned to represent different types of roads and different velocities at which the vehicle is

travelling. Usually φ can be set arbitrarily to zero. However, in this case it has to be taken into consideration for the correct

match between the responses of the expansion and compression phases. 

It is convenient to rewrite Eq. (1) in terms of the relative displacements between unsuspended mass and base displace-

ments, and between suspended mass and unsuspended mass displacements, respectively given by 

y u = z u − z r y s = z s − z u (6) 

Using equations (6) , the equations of motion in terms of relative displacements are given by 

m u ̈y u + m u ̈z r + c u ̇ y u + k u y u − c ±s ˙ y s − k s y s = 0 

m s ̈y s − m s 

m u 
c u ̇ y u − m s 

m u 
k u y u + 

(
1 + 

m s 

m u 

)
c ±s ˙ y s + 

(
1 + 

m s 

m u 

)
k s y s = 0 (7) 

The nondimensional time, mass ratio, stiffness ratio and damping factors for the unsuspended and suspended systems

are introduced, respectively, as 

τ = 

√ 

k s 

m s 
t m = 

m s 

m u 
k = 

k u 

k s 
ζu = 

c u 

2 

√ 

k s m s 

ζ±
s = 

c ±s 
2 

√ 

k s m s 

(8) 

Using Eqs. (7 ) and ( 8) , the nondimensional equations of motion in terms of relative displacement are given by 

1 

m 

y ′′ u + 

1 

m 

z ′′ r + 2 ζu y 
′ 
u + ky u − 2 ζ±

s y ′ s − y s = 0 

y ′′ s − 2 mζu y 
′ 
u − mky u + ( 1 + m ) 2 ζ±

s y ′ s + ( 1 + m ) y s = 0 (9) 

in which a prime denotes differentiation with respect to τ . 

3. Approximate analytical solution using Harmonic Balance 

The system represented by (9) possesses a non-smooth nonlinearity due to the asymmetric damper and can be classified

as a piecewise linear system. A semi-analytical exact solution can be obtained by patching together the complete solutions in

the two different linear systems with numerical solution of the switching times. However, the algebra becomes involved due

to the complicated analytical expressions for the complete coupled system. Since numerical solution of the switching times

between the two linear systems is anyway involved in the exact formulation, a closed form semi-analytical approximate

solution based on harmonic balance is seeked. 

The periodic solution for y s and y u for a given harmonic forcing is approximated as a Fourier series, with the funda-

mental frequency equal to the excitation frequency. The Fourier coefficients for the approximate solution can be obtained

in closed form in terms of the switching times, and numerical solution of the switching times from an algebraic equation

is required for approximation involving higher harmonics, although the one-term approximation leads to a closed-form an-

alytical solution. The accuracy of this approximate solution improves with increasing number of harmonics retained in the

approximation, as will be shown later. For most practical scenarios, an approximate solution with the first three harmonics

is as good as the exact solution. First, the closed form analytical expression obtained for the one-term approximation is

presented, followed by a refined solution with more harmonics. 

3.1. Analytical solution using one-term approximation 

For the road profile defined by Eq. (5) , the solution for Eq. (9) is seeked in the form 

y u ( τ ) = Au 0 + Au 1 cos ( ωτ ) + Bu 1 sin ( ωτ ) 

y s ( τ ) = As 0 + As 1 cos ( ωτ ) + Bs 1 sin ( ωτ ) (10) 

Note that the constant term is necessary for both y u and y s because the asymmetrical non-smooth nonlinearity intro-

duced by the damper appears in the equations for both of them. Substituting this into Eq. (9) results in 

C u 0 + C u 1 cos ( ωτ ) + C u 2 sin ( ωτ ) + HOH = 0 

C s 0 + C s 1 cos ( ωτ ) + C s 2 sin ( ωτ ) + HOH = 0 (11) 
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in which HOH , standing for higher order harmonics, are a result of the asymmetrical damping term 2 ζ±
s y ′ s . While writing

Eq. (11) , the asymmetric damping term 2 ζ±
s y ′ s , after substituting y s ( τ ) from Eq. (10) , has been replaced by its Fourier series

expansion as 

2 ζ±
s y ′ s = c 0 + 

∞ ∑ 

j=1 

c 2 j−1 sin ( jωτ ) + 

∞ ∑ 

j=1 

c 2 j cos ( jωτ ) . (12)

The coefficients c 0 , c 2 j−1 and c 2 j are given by 

c 0 = 

ω 

2 π

∫ 2 π
ω 

0 

2 ζ±
s ω ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) dτ

c 2 j−1 = 

ω 

π

∫ 2 π
ω 

0 

2 ζ±
s ω ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) sin ( jωτ ) dτ

c 2 j = 

ω 

π

∫ 2 π
ω 

0 

2 ζ±
s ω ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) cos ( jωτ ) dτ (13)

Note that the evaluation of the integrals above requires finding the time instants corresponding to transition from the

compression phase ( y s 
′ < 0), with the damping coefficient as ζ−

s , to the expansion phase ( y s 
′ ≥ 0), with the damping

coefficient as ζ+ 
s , and vice versa. The transition times are given accordingly by the two roots of the equation y s 

′ = 0 , lying

between 0 and 2 π / ω. Under the one-term approximation for y s ( τ ) as given by Eq. (10) , the relevant equation is 

−As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) = 0 (14)

whose relevant roots are 

τc = 

1 

ω 

arctan 

(
Bs 1 
As 1 

)
and τc = 

1 

ω 

[ 
arctan 

(
Bs 1 
As 1 

)
± π

] 
(15)

The choice of the sign in the second root depends on the signs of As 1 and Bs 1 , so as to ensure that the roots lie in the

right interval. For example, if both As 1 and Bs 1 are positive, the first root lies in the first quadrant and the second root, with

a + sign, lies in the third quadrant. If both As 1 and Bs 1 are negative, the first root is in the third quadrant, while the second

root, with a - sign, is in the first quadrant. Note that the above solution for τ c implies that the damper spends the same

amount of time π / ω during the expansion and the compression phases. This is not necessarily true. Hence, there is a need

for an approximation involving more harmonics. However, the one-term approximation as above helps in getting a closed

form analytical approximation for the periodic solution, and is still of interest in understanding the key qualitative features

of the solution. Accordingly, the relevant Fourier coefficients, i.e. c 0 , c 1 and c 2 , are evaluated. Without loss of generality, it

is assumed that the damper is in the compression phase at the beginning of the cycle. The coefficient c 0 can be evaluated

as 

c 0 = 

ω 

2 

π

[∫ τc 

0 

ζ− ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) dτ (16)

+ 

∫ τc + πω 

τc 

ζ+ ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) dτ (16)

+ 

∫ 2 π
ω 

τc + πω 
ζ− ( −As 1 sin ( ωτ ) + Bs 1 cos ( ωτ ) ) dτ

]
(16)

which reduces to 

c 0 = 

2 ω 

π

(
ζ− − ζ+ )[ As 1 cos ( ωτc ) + Bs 1 sin ( ωτc ) ] . (17)

In the above, the root for τ c from Eq. (15) with ωτ c < π should be used. Similarly, the coefficients c 1 and c 2 can be

evaluated as 

c 1 = −ω 

(
ζ− + ζ+ )As 1 and c 2 = ω 

(
ζ− + ζ+ )Bs 1 . (18)

Note again that, under the one-term approximation, the coefficients c 1 and c 2 do not depend on the transition time τ c .

They also never involve As 0 , because of the use of the derivative and, therefore, the equations for evaluating the unknown

coefficients As 1 , Bs 1 , Au 1 and Bu 1 for the approximation is essentially decoupled from the equations for determining the

unknowns As 0 and Au 0 . 

For Eq. (11) to be valid for arbitrary τ , it is required that the Cs i ’s as well as Cu i ’s vanish, yielding the following system

of equations 

k Au 0 − 2 ω 

π

(
ζ−

s − ζ+ 
s 

)
[ As 1 cos ( ωτc ) + Bs 1 sin ( ωτc ) ] − As 0 = 0 , (19)
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(
k − ω 

2 

m 

)
Bu 1 − Bs 1 − 2 ζu ω Au 1 + ω 

(
ζ− + ζ+ )As 1 − ω 

2 

m 

A = 0 , (20)

(
k − ω 

2 

m 

)
Au 1 − As 1 + 2 ζu ω Bu 1 − ω 

(
ζ− + ζ+ )Bs 1 = 0 , (21) 

−m k Au 0 − 2 ω 

π

(
ζ−

s − ζ+ 
s 

)
( 1 + m ) [ As 1 cos ( ωτc ) + Bs 1 sin ( ωτc ) ] + ( 1 + m ) As 0 = 0 , (22) 

(
1 + m − ω 

2 
)
Bs 1 − m k Bu 1 − ω 

(
ζ− + ζ+ )( 1 + m ) As 1 + 2 m ζu ω Au 1 = 0 , (23)

(
1 + m − ω 

2 
)
As 1 − m k Au 1 + ω 

(
ζ− + ζ+ )( 1 + m ) Bs 1 − 2 m ζu ω Bu 1 = 0 . (24)

Eqs. (20) , (21), (23) and (24) can be solved for As 1 , Bs 1 , Au 1 and Bu 1 as 

As 1 = 

−m ω 

3 A 

[
k ( ζ− + ζ+ ) 

(
−m ω 

2 − ω 

2 + m k 
)

+ 4 m ζ 2 
u ω 

2 ( ζ− + ζ+ ) + 2 ζu ω 

2 
(
1 + m − ω 

2 
)]

ω 

8 + a 6 ω 

6 + a 4 ω 

4 + a 2 ω 

2 + k 2 m 

2 
(25) 

Bs 1 = 

−m ω 

2 A 

[
k 
(
−ω 

4 + ω 

2 ( k m + m + 1 ) − k m 

)
+ 4 m ζ 2 

u ω 

2 
(
ω 

2 − 1 

)
+ 2(1 + m ) ω 

4 ( ζ− + ζ+ ) 
]

ω 

8 + a 6 ω 

6 + a 4 ω 

4 + a 2 ω 

2 + k 2 m 

2 
(26) 

Au 1 = 

−m ω 

3 A 

[
k m ω 

2 ( ζ− + ζ+ ) + 2 ζu 

(
ω 

4 + ω 

2 
(
(1 + m ) ( ζ− + ζ+ ) 2 − m − 2 

)
+ m + 1 

)]
ω 

8 + a 6 ω 

6 + a 4 ω 

4 + a 2 ω 

2 + k 2 m 

2 
(27) 

and 

Bu 1 = 

−ω 

2 A 

[
ω 

6 + b 4 ω 

4 + b 2 ω 

2 − k m (1 + m ) 
]

ω 

8 + a 6 ω 

6 + a 4 ω 

4 + a 2 ω 

2 + k 2 m 

2 
(28) 

in which 

a 6 = (1 + m ) 2 
(
ζ− + ζ+ )2 − 2(1 + m ) + 4 m 

2 ζu 

(
ζu + ζ− + ζ+ ) − 2 m k , 

a 4 = (1 + m ) 2 + 4 m 

2 ζ 2 
u 

((
ζ− + ζ+ )2 − 2 

)
+ k m 

(
2(1 + m ) 

(
1 −

(
ζ− + ζ+ )2 

)
+ k m + 2 

)
, 

a 2 = m 

2 
(

k 

((
ζ− + ζ+ )2 

k − 2 k − 2 

)
+ 4 ζ 2 

u 

)
− 2 k m , 

b 4 = m 

2 
(
ζ− + ζ+ )(2 ζu + ζ− + ζ+ ) + m 

(
2 

(
ζ− + ζ+ )2 − k − 2 

)
+ 

(
ζ− + ζ+ )2 − 2 , 

and 

b 2 = m 

2 
(

k − k 
(
ζ− + ζ+ )2 + 1 

)
+ m 

(
2 k − k 

(
ζ− + ζ+ )2 + 2 

)
+ 1 . 

From the above solutions for Au 1 , Bu 1 , As 1 and Bs 1 , it is difficult to make any judgement about the right sign for τ c given

in Eq. (15) for different ranges of ω. However, one should just remember to use the lower value of τ c to get the mean shift

As 0 and Au 0 from Eqs. (19) and (22) . From Eqs. (19) and (22) , one can easily find that 

Au 0 = 0 . 

The solution for the mean term As 0 , introduced due to the asymmetrical damper, after duly accounting for the right τ c is 

As 0 = 

2 m ω 

3 
√ 

4 ζ 2 
u ω 

2 + k 2 ( ζ− − ζ+ ) A 

π
√ 

ω 

8 + a 6 ω 

6 + a 4 ω 

4 + a 2 ω 

2 + k 2 m 

2 
(29) 

in which the constants a 6 , a 4 and a 2 are as reported above. Note that As 0 < 0 when ζ+ > ζ−, while As 0 > 0 when ζ− < ζ+ .
In general, for vehicle dynamics applications, ζ+ > ζ−, which leads to A 0 < 0, referred to as jacking down of the suspension.

The final one-term approximation for the absolute displacement of the suspended mass z s under harmonic road profile is

given by 

z s ( τ ) = z r + y u + y s 

= As 0 + ( As 1 + Au 1 ) cos (ωτ ) + ( A + Bs 1 + Bu 1 ) sin (ωτ ) (30) 

with the constants As , As , Au , Bs and Bu given by Eqs. (25 –29) . 
0 1 1 1 1 
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With this analytical form for the approximation and an analytical solution for the switching time τ c , the smaller of

the two roots in Eq. (15) , it is possible to calculate all relevant quantities of interest, such as the energy dissipated by the

damper during the compression and the expansion phases. Note that the one-term approximation presented in this subsec-

tion implies that the system spends the same time during the compression and the expansion phases, and the energies as

calculated from the above analytical approximation are almost the same. To account for the different times spent by the

system during the two phases, higher order harmonics are needed, which is presented next. 

3.2. Approximation with higher harmonics 

With the higher harmonics, the solution for Eq. (9) takes the form 

y s ( τ ) = As 0 + 

N ∑ 

n =1 

[ As n cos ( nωτ ) + Bs n sin ( nωτ ) ] (31)

and 

y u ( τ ) = Au 0 + 

N ∑ 

n =1 

[ Au n cos ( nωτ ) + Bu n sin ( nωτ ) ] , (32)

in which N represents the number of harmonics retained in the approximation. With this approximation, the transition

times from the compression to the expansion phase, and vice versa, are given by the first two non-zero roots ( τ c 1 , τ c 2 , with

τ c 1 < τ c 2 ), of the equation 

N ∑ 

n =1 

[ −nAs n sin ( nωτ ) + nBs n cos ( nωτ ) ] = 0 . (33)

Again without loss of generality, it is assumed that the cycle starts with the compression phase. Accordingly, the various

terms of interest in the Fourier series of the asymmetrical damping term 

2 ζ±
s y s 

′ = c 0 + 

N ∑ 

j=1 

c 2 j−1 sin ( jωτ ) + 

N ∑ 

j=1 

c 2 j cos ( jωτ ) (34)

can be calculated as 

c 0 = 

ω 

2 

π

[ ∫ τc1 

0 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) dτ

+ 

∫ τc2 

τc1 

ζ+ 
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) dτ

+ 

∫ 2 π
ω 

τc2 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) dτ

] 

, (35)

c 2 j−1 = 

2 ω 

2 

π

[ ∫ τc1 

0 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) sin ( j ωτ ) d τ

+ 

∫ τc2 

τc1 

ζ+ 
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) sin ( j ωτ ) d τ

+ 

∫ 2 π
ω 

τc2 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) sin ( j ωτ ) d τ

] 

(36)

and 

c 2 j = 

2 ω 

2 

π

[ ∫ τc1 

0 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) cos ( j ωτ ) d τ

+ 

∫ τc2 

τc1 

ζ+ 
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) cos ( j ωτ ) d τ

+ 

∫ 2 π
ω 

τc2 

ζ−
s 

N ∑ 

n =1 

n ( −As n sin ( nωτ ) + Bs n cos ( nωτ ) ) cos ( j ωτ ) d τ

] 

(37)
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using j = 1 : N. Substituting y s ( τ ) from Eq. (31) , y u ( τ ) from Eq. (32) and the Fourier series expansion for the asymmetrical

damper from Eq. (34) in Eq. (9) , it is possible to write 

C u 0 + 

N ∑ 

n =1 

[ C u 2 n −1 cos ( nωτ ) + C u 2 n sin ( nωτ ) ] + HOH = 0 

C s 0 + 

N ∑ 

n =1 

[ C s 2 n −1 cos ( nωτ ) + C s 2 n sin ( nωτ ) ] + HOH = 0 (38) 

in which HOH stands for the harmonics of order higher than N of the asymmetrical damping term 2 ζ±
s y s 

′ . Again, validity

of Eq. (38) for arbitrary τ is achieved by requiring the various Cu ′ 
i 
s and Cs ′ 

i 
s to vanish. This gives 4 N + 2 equations, which

in conjunction with two equations for τ c 1 and τ c 2 , obtained by substituting τc = τc1 and τc = τc2 in Eq. (33) , gives the

complete set of 4 N + 4 equations in the 4 N + 4 unknowns, viz. τ c 1 , τ c 2 , As 0 , Au 0 , As n , n = 1 , · · · , N, Bs n , n = 1 , · · · , N, Au n , n =
1 , · · · , N, and Bu n , n = 1 , · · · , N. It is emphasized here again that under the approximation with the higher harmonics, all

the Fourier coefficients depend on the transition times, making the coupling stronger, and also causing the entire system

of equations to be nonlinear, as opposed to the one-term approximation in which only the coefficient c 0 dependes on τ c ,

while the coefficients c 1 and c 2 were independent of τ c . However, the equations are linear in the unknown coefficients of the

approximation As 0 , Au 0 , As n , Au n , Bs n and Bu n , and the only source of nonlinearity comes from the unknown transition times

τ c 1 and τ c 2 . The unknown coefficients As 0 , Au 0 , As n , Au n , Bs n and Bu n can be solved in closed form in terms of the forcing

parameters A and ω, the system parameters m, k, ζ u , ζ
+ 
s and ζ−

s , and the transition times τ c 1 and τ c 2 . Substitution of these

in Eq. (33) results in a set of coupled equations for the transition times τ c 1 and τ c 2 , which have to be solved numerically

for each combination of the system and forcing parameters. However, since the nonlinearity has the scaling property (i.e.,

f(ax) = a f(x)), these equations become independent of the forcing amplitude A , and depend only on the forcing frequency ω
and the damping coefficients ζ u , ζ

+ 
s and ζ−

s , along with the mass and stiffness ratios, m and k . 

Once the transitions times τ c 1 and τ c 2 are evaluated numerically, the approximation for the periodic solution of the

system is known in closed form, and again all the relevant quantities of interest can be evaluated. The inclusion of the higher

harmonics also results in the possibility of evaluating the different times which the system spends in the compression and

the expansion phases. The time spent in the expansion phase is τc2 − τc1 , while the time spent during the compression

phase is 2 π/ω + τc1 − τc2 . 

4. Convergence of approximate analytical solutions 

For illustration of the differences between the solutions from the one-term approximation and the approximation with

higher harmonics, the parameters are set to k = 

100 

11 
, m = 

15 

2 
, ζu = 

√ 

66 

3300 
, ζ+ 

s = 

√ 

66 

22 
, ζ−

s = 

1 √ 

66 
, ω = 

5 
√ 

66 

11 
and A = 1 . All

parameters are representative of a medium passenger vehicle (e.g. a sedan carrying four passengers) [3,4,15,24] . The choice

of A is not really important due to the scalability property mentioned earlier. The solutions for the transition times are

independent of A , and the solutions for the unknown coefficients A 0 , A n and B n can simply be obtained by multiplying the

solution for A = 1 by the desired A value. For this set of parameters, the solution for the one-term approximation is 

y s ( τ ) = −0 . 6753929944 − 1 . 160029991 sin ( ωτ ) + 0 . 1273125741 cos ( ωτ ) 

y u ( τ ) = 0 . 05798611519 sin ( ωτ ) − 0 . 2726469840 cos ( ωτ ) (39) 

with the transition time from compression phase to expansion phase as 0.4549754579, while the transition time from ex-

pansion to compression phase is 1.305722770. The time-period is 1.701494625, and the system spends 0.8507473122 in both

the expansion and the compression phases. The total displacement of the suspended mass is 

z s ( τ ) = −0 . 6753929944 − 0 . 1020438758 sin ( ωτ ) − 0 . 1453344099 cos ( ωτ ) . (40)

For the two-term approximation, the solution is 

y s ( τ ) = −0 . 6781289249 − 1 . 155693927 sin ( ωτ ) + 0 . 1228181574 cos ( ωτ ) 

− 0 . 0842603988 sin ( 2 ωτ ) − 0 . 04093687024 cos ( 2 ωτ ) (41) 

and 

y u ( τ ) = 0 . 04866710965 sin ( ωτ ) − 0 . 2630427168 cos ( ωτ ) 

+ 0 . 08713668254 sin ( 2 ωτ ) + 0 . 04240858075 cos ( 2 ωτ ) (42) 

with the transition times τc1 = 0 . 4130503940 and τc2 = 1 . 332931751 . The system spends 0.9198813570 time units in the ex-

pansion phase, which is slightly higher than 0.7816132680 which it spends in the compression phase. The total displacement

of the suspended mass is 

z s ( τ ) = −0 . 6781289249 − 0 . 1070268174 sin ( ωτ ) − 0 . 1402245594 cos ( ωτ ) 

+ 0 . 0 0287628372 sin ( 2 ωτ ) + 0 . 0 0147171051 cos ( 2 ωτ ) (43) 
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Table 1 

Switching times with higher harmonics. 

N τ c 1 τ c 2 

1 0 .4549754579 1 .305722770 

2 0 .4130503940 1 .332931751 

3 0 .4003939010 1 .334942409 

4 0 .4016793221 1 .337299495 

5 0 .40 0 0764645 1 .336891773 

6 0 .4004410651 1 .337329595 

7 0 .40 0 0541553 1 .337249220 

Fig. 2. Displacement of the suspended mass for various numbers of harmonics at ω = 5 (a) and ω = 20 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the values for As 0 , Au 0 , As 1 , Au 1 , Bs 1 and Bu 1 as obtained from the one-term approximation as well as the two-

term approximation are very close. Also, the magnitude of the coefficients of the second harmonics are at least an order

smaller than the coefficients of the terms of the first harmonics, indicating convergence. For this set of parameters, the time

spent in the compression and the expansion phases are different, but the difference is not very large and hence, a one-term

approximation yielding closed form solutions is a good approximation. For values closer to the resonance, i.e., ω = 1 , an

approximation with higher harmonics is required, because in this regime, the time spent by the system during compres-

sion and expansion phases is significantly different. To complete this analysis of the convergence of the approximation, the

solution with three harmonics is presented as well, which is 

y s ( τ ) = −0 . 6715757140 − 1 . 155735330 sin ( ωτ ) + 0 . 122548469 cos ( ωτ ) 

− 0 . 09005465407 sin ( 2 ωτ ) − 0 . 04214340498 cos ( 2 ωτ ) 

− 0 . 01250716472 sin ( 3 ωτ ) + 0 . 00891232319 cos ( 3 ωτ ) (44)

and 

y u ( τ ) = 0 . 0487541786 sin ( ωτ ) − 0 . 2624645675 cos ( ωτ ) 

+ 0 . 09312987609 sin ( 2 ωτ ) + 0 . 04366085332 cos ( 2 ωτ ) 

+ 0 . 01181099136 sin ( 3 ωτ ) − 0 . 008408776026 cos ( 3 ωτ ) (45)

The total displacement of the suspended mass under this approximation is 

z s ( τ ) = −0 . 6715757140 − 0 . 1069811513 sin ( ωτ ) − 0 . 1399160976 cos ( ωτ ) 

+ 0 . 0 0307522202 sin ( 2 ωτ ) + 0 . 0 0151744834 cos ( 2 ωτ ) 

− 0 . 0 0 069617336 sin ( 3 ωτ ) + 0 . 0 0 050354716 cos ( 3 ωτ ) (46)

The switching times for the three-term approximation are 0.4003939010 and 1.334942409, which differ from the ones from

the two-term approximation in the second decimal place. To further investigate the convergence aspect, the variation in the

transition times with up to N = 7 is summarised in Table 1 . 

From these results, it is possible to safely conclude that an approximation with 4 harmonics is capturing the solution very

well for this set of parameters. For values of ω close to 1, one might require more harmonics to capture the transition times

accurately. However, as far as the total displacement of the suspended mass is concerned, even the one-term approximation

is very good, as shown in Fig. 2 . 

5. Influence of the asymmetry ratio 

Using the parameter values introduced in the previous section, the influence of β is studied for different values of ω.

Fig. 3 shows the maximum displacement, maximum velocity and maximum acceleration of the suspended mass for varying

ω. Three possibilities for values of β are used, one representing symmetrical damping ( β = 1 ), one representing asymmet-

rical damping with c + > c − ( β = 3 ), and one representing asymmetrical damping with c + < c − ( β = 1 / 3 ). Although asym-
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Fig. 3. Maximum displacement (a), maximum velocity (b) and maximum acceleration of the suspended mass for varying excitation frequency with three 

values of β . 

Fig. 4. Maximum acceleration of the suspended mass close to the first resonance peak (a), at intermediate frequencies (b) and close to the second reso- 

nance peak (c). 

Fig. 5. Maximum displacement (a), maximum velocity (b) and maximum acceleration of the suspended mass for varying asymmetry ratio with ω r = 5 . 41 

rad/s. 

 

 

 

 

 

 

 

 

 

metrical dampers in vehicle systems usually have β close to 3 [16] , it is shown in Fig. 3 that β < 1 results in smaller

accelerations for 0 < ω r < 20 rad/s. 

Comparing the accelerations at the two resonance peaks ( Fig. 4 ), the use of β < 1 presents a reduction of 5.29 % at the

first peak, while resulting in an increase of 13.21 % at the second peak when compared to the symmetrical case. The use of

β > 1 presents an increase of 7.60 % at the first peak, and a reduction of 13.25 % at the second peak. For both cases of β ,

the difference from the symmetrical case diminishes as ω r increases past 100 rad/s. 

Fixing the excitation frequency at the first resonance level, it is possible to see that acceleration values are lower for

β < 1 ( Fig. 5 ). This behaviour reverts at the second resonance level, at which the acceleration values are lower for β > 1

( Fig. 6 ). Note that this behaviour is dependent on the direction of the acceleration, which is important for comfort perception

[25,26] . If the absolute value of acceleration is considered, the performance with β < 1 or β > 1 presents advantage over

the symmetrical case in the same frequency ranges. 

The ratio of energy dissipated during the compression phase and the energy dissipated during the expansion phase is

given by 

E R = 

∫ τc1 

0 ζ−
s ˙ x 2 d t + 

∫ 2 π/ω 
τc2 

ζ−
s ˙ x 2 d t ∫ τc2 

τc1 
ζ+ 

s ˙ x 2 d t 
(47) 

while the ratio of time spent in the compression phase and time spent in the expansion phase is given by 

τR = 

τc1 + 2 π/ω − τc2 

τ − τ
(48) 
c2 c1 
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Fig. 6. Maximum displacement (a), maximum velocity (b) and maximum acceleration of the suspended mass for varying asymmetry ratio with ω r = 44 . 72 

rad/s. 

Fig. 7. Energy (a) and time (b) ratios for varying ω r ; and ASD ratio for varying β (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 shows these ratios as function of the excitation frequency. Close to the two resonance peaks, the time spent in the

expansion phase is larger with β > 1, while the time spent in the expansion phase is larger with β < 1. However, due to the

asymmetrical damping, the magnitude of velocities is higher during the shorter phases, resulting in the opposite behaviour

of the energy ratio. Also shown is the asymmetrical to symmetrical ratio of acceleration spectral density ( A r ) of acceleration

responses for varying β . Where A r < 1, the asymmetrical system has a net advantage over the whole frequency range. 

6. Conclusions 

In the analysis of the suspension system using symmetrical and asymmetrical damping with harmonic excitation, it

was observed that the asymmetry ratio directly influences the maximum displacement, maximum speed and maximum

acceleration of the sprung mass. Regarding the maximum acceleration, the asymmetrical damping proves more advantageous

at higher frequencies with β > 1. In the region of lower frequencies, 0 < ω r < 20 rad/s, the asymmetrical system with β < 1

proves more advantageous. Athough the average position of the sprung mass varies, the displacement amplitude practically

remains. The jacking down effect is caused by the asymmetrical damping characteristics, but the frequency of the harmonic

excitation influences the average position of the suspended system. 

The difference in acceleration amplitude between the symmetrical and asymmetrical cases is explained by the different

dissipation of energy in the system in the expansion and compression phases, and also with the different time spent in each

phase, with more time in the phase with lower damping. 

Although current systems usually adopt β > 1, it is shown in this work that, for lower frequencies, β < 1 results in

better comfort. This observation can be used for devising a control system to tune the value of β depending on the road

and driving conditions. 
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