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Abstract

This paper presents the design and simulation results considering the use of functional electrical stimulation to control the leg 
position of paraplegic patients. The plant is described by a nonlinear system using Takagi–Sugeno fuzzy models and a closed-loop 
control is presented. A transfer function represents the mathematical model related to the muscle torque and the electrical stimu-
lation pulse width. Considering that, during the operation, the leg position is between 0◦ and 60◦, then two fuzzy regulators were 
designed, assuming that the state vector is available or using an observer when only the output is available. This design was based 
on the Lyapunov stability theory and Linear Matrix Inequalities (LMIs). The simulation results show that the proposed procedures 
are efficient and offer good results for this control problem. Finally, new conditions regarding the design of the output tracking 
control, using a suitable nonlinear transformation for the description of the plant in an adequate form, is presented.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The presented study shows, through theoretical studies and simulations, the possibility of designing a nonlinear 
controller for tracking control of the leg position for paraplegic patients, using the description of the plant by a 
Takagi–Sugeno (T–S) fuzzy model. The control system was designed considering that, during the operation, the angle 
position of the joint knee is between 0◦ and 60◦. Several researchers have used Functional Electrical Stimulation 
(FES) to restore some motion activities of persons with injured spinal cord [1–5]. However, FES is not yet a regular 
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clinical method because the amount of effort involved in using actual stimulation systems still outweighs the functional 
benefits they provide. One serious problem using FES is that artificially activated muscles fatigue at a faster rate than 
those activated by the natural physiological processes. Due to these problems, a considerable effort has been directed 
toward developing FES systems based on closed-loop control.

The movement of the lower limb is measured in real time with several types of sensors and the stimulation pattern 
is modulated accordingly [5–8]. The dynamics of the lower limb were represented by a nonlinear second order model, 
which took into account the gravitational and inertial characteristics of the anatomical segment as into well as the 
damping and stiffness properties of the knee joint. In this paper, the authors present a Takagi–Sugeno nonlinear 
system [9–18] with the aim of controlling the position of the leg of a paraplegic patient [19,20]. The controller was 
designed in order to track a desired trajectory of the joint knee angle, that is between 0◦ and 60◦. The input of the 
plant is an electrical stimulation applied to the quadriceps muscle. The leg mathematical model proposed by [5] was 
considered. The authors showed that, for the conditions considered in their experiments, a simple one-pole transfer 
function was able to model the relationship between the stimulus pulse width and the active muscle torque. The state 
space model of paraplegic patients to vary knee joint angle with stimulus pulse width and active muscle torque was 
developed by the authors [19–23].

The systematic procedure for fuzzy control systems design proposed in this manuscript involves fuzzy model 
construction for nonlinear systems [24], considering arbitrary operation points [18,25,26].

Muscle is a highly complex nonlinear system capable of producing the same output for a variety of inputs [27–32]. 
When exploiting physiolocally activated muscle, an important effort of the researches is to minimize fatigue [29,32,
33]. When the quadriceps is electrically stimulated, its response is nonlinear. Thus, T–S fuzzy models are used to 
design a controller to vary the knee joint angle.

In [19,20,22,23], feedback strategies were proposed for controlling the leg position of paraplegic patients, con-
sidering a given operation point. The nonlinear plant was described by a Takagi–Sugeno (T–S) fuzzy model and an 
electrogoniometer was used fastened on the thigh and shank of the patient. The design method considered all plant 
nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient, applying electric stim-
ulation at the quadriceps muscle.

The design of tracking control systems for nonlinear plants described by T–S fuzzy systems has been studied in 
[34–38], and allows the design of the feedback gains, without the need of a new design of the gains for each point 
operation systems. The tracking procedure proposed in this manuscript allows the tracking of a broader class of signals 
than the control strategies presented in [39] and [40], where the operation point is not completely known but is in a 
given region.

For the design method proposed in this paper, the concept of virtual desired variables was used. In turn gener-
alized kinematic constraint are introduced, to make the design procedure clear. The design procedure is split into 
two independent steps: i) determine the virtual desired variables from the desired output equation and the generalized 
kinematic constraint; and ii) determine the control feedback gains and observer gains by solving a set of Linear Matrix 
Inequalities (LMIs) [15,41,42], the same type of LMIs for stabilization problem [43]. The LMIs problems have been 
solved with Matlab Toolbox [44]. Simulation results illustrate the performance of the proposed procedure.

2. Takagi–Sugeno fuzzy representation

Some classes of nonlinear systems can be exactly represented by T–S fuzzy models [45]. The local description of 
the dynamic plant to be controlled, in terms of local linear models, is:

ẋ(t) = Aix(t) + Biu(t),

y(t) = Cix(t),

where i = 1, 2, . . . , r (r is the number of linear models), x(t) ∈ �n is the state vector, u(t) ∈ �m is the input vector, 
y(t) ∈ �q is the output vector, Ai ∈ �n×n, Bi ∈ �n×m and Ci ∈ �q×n. This information is represented by IF-THEN 
rules, where the i-th rule is given by:

Rule i : IF z1(t) is Mi
1 AND . . . AND zp(t) is Mi

p,

THEN

{
ẋ(t) = Aix(t) + Biu(t),

y(t) = C x(t).
(1)
i



R. Gaino et al. / Fuzzy Sets and Systems 314 (2017) 1–23 3
Considering the fuzzy model (1), one has, by definition, that Mi
j (j = 1, 2, . . . , p) is the fuzzy set j of the rule i, 

z1(t), . . . , zp(t) are the premise variables and μi
j (zj (t)) are the membership functions of the fuzzy rule Mi

j . Define:

wi(z(t)) =
p∏

j=1

μi
j (zj (t)), z(t) = [z1(t) z2(t) . . . zp(t)]. (2)

Since μi
j (zj (t)) ≥ 0 one has, for i = 1, 2, . . . , r ,

wi(z(t)) ≥ 0 and
r∑

i=1

wi(z(t)) > 0. (3)

To get a T–S fuzzy model for nonlinear systems, one usually adopts z(t) = x(t), where x(t) is the nonlinear system 
state vector. Thus, for a given pair (x(t), u(t)), the resulting fuzzy system is the weighted mean of the local models 
described in (1):

ẋ(t) =
∑r

i=1 wi(x(t))(Aix(t) + Biu(t))∑r
i=1 wi(x(t))

=
r∑

i=1

αi(x(t))(Aix(t) + Biu(t))

=
(

r∑
i=1

αi(x(t))Ai

)
x(t) +

(
r∑

i=1

αi(x(t))Bi

)
u(t) = A(α)x(t) + B(α)u(t),

αi(x(t)) = wi(x(t))∑r
i=1 wi(x(t))

, α = [α1, . . . , αr ]T , (4)

for i = 1, 2, . . . , r .
The nonforced system (u(t) = 0) is defined as:

ẋ(t) =
∑r

i=1 wi(x(t))Aix(t)∑r
i=1 wi(x(t))

=
r∑

i=1

αi(x(t))Aix(t) = A(α)x(t). (5)

For both cases, forced and nonforced, the output is given by:

y(t) =
∑r

i=1 wi(x(t))Cix(t)∑r
i=1 wi(x(t))

=
r∑

i=1

αi(x(t))Cix(t) = C(α)x(t). (6)

Observe that, for i = 1, 2, . . . , r ,

αi(x(t)) ≥ 0 and
r∑

i=1

αi(x(t)) = 1. (7)

3. Takagi–Sugeno fuzzy tracking control

Takagi–Sugeno fuzzy models can be used for tracking control systems design for nonlinear systems. The tracking 
control system proposed in this manuscript uses the concept of virtual variable [43], introduced to simplify the design 
procedure. This method can be divided into two steps:

• determination of the desired virtual variables of the system dynamics;
• determination of the control gains, using LMI-based design, for system stabilization.

At first, for fuzzy regulator design, the premise variables of fuzzy rules are assumed to be measurable. After that, 
this concept of virtual variable is used for immeasurable state variables in dynamic nonlinear systems, to design fuzzy 
observers [43]. Both of cases are applied to design controllers such that the joint knee angle follows a given trajectory.
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3.1. Tracking control and state regulator

The basic architecture for output tracking control, presented in this section, considers that all state variables are 
available. The method was proposed in [43]. In a general form, consider a nonlinear dynamic equation given by:

ẋ (t) = f (x (t)) + g (x (t))u (t) ,

y (t) = q (x (t)) , (8)

where x(t) ∈ �n is the state vector, y(t) ∈ �m is the output variable, u(t) ∈ �m is the input vector, r(t) ∈ �m is the 
desired output, f(x), g(x) and q(x) are nonlinear functions with appropriate dimensions.

The goal of the tracking control is to assure that the equilibrium point of the controlled system is asymptotically 
stable and:

y(t) − r(t) → 0 when t → ∞, (9)

where r(t) denotes the desired trajectory or the reference signal. To convert the tracking problem in a stability problem, 
one defines the desired virtual variables, represented by the vector xd(t), such that, for x(t) = xd(t) and from (8), the 
condition y(t) = q(x(t)) = q(xd(t)) = r(t) holds.

Defining ̃x(t) = x(t) − xd(t) as the tracking error and representing the first equation of the plant (8) by the T–S 
fuzzy model given in (1)–(7), one has:

˙̃x(t) = ẋ(t) − ẋd(t) =
r∑

i=1

αi(x(t))

(
Aix(t) + Biu(t)

)
− ẋd(t). (10)

From [43], suppose that the control law u(t) satisfies the following equation:

r∑
i=1

αi(x(t))Biτ c(t) =
r∑

i=1

αi(x(t))Biu(t) +
r∑

i=1

αi(x(t))Aixd(t) − ẋd(t), (11)

where τ c(t) is the new control law. Then, the error equation (10) can be described by the equations:

˙̃x(t) =
r∑

i=1

αi(x(t))Biτ c(t) +
r∑

i=1

αi(x(t))Ai (x(t) − xd(t)),

˙̃x(t) =
r∑

i=1

αi(x(t))Ai x̃(t) +
r∑

i=1

αi(x(t))Biτ c(t). (12)

The new fuzzy control law τ c(t) is determined via parallel distributed compensation (PDC):

τ c(t) = −
r∑

i=1

αi(x(t))Fi x̃(t). (13)

Replacing (13) into (10), one gets the closed-loop form:

˙̃x(t) =
r∑

i=1

r∑
j=1

αi(x(t))αj (x(t))
(
Ai − BiFj

)
x̃(t). (14)

3.2. Generalized dynamics constraints

The goal of the output tracking is to get the control law u(t) such that (11) holds and the equilibrium point ̃x = 0 of 
the tracking error equation (12) is asymptotically stable in the large. For that, one uses g(x) =∑r

i=1 αi(x(t))Bi , that 
allows to rewrite equation (11) in a compact form:

g(x)(u(t) − τ c(t)) = −A(x)xd(t) + ẋd(t), (15)
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where A(x) =∑r
i=1 αi(xi (t))Ai ∈ �n×n. From (15), the existence of the control law u(t) depends on the structure 

of g(x). Consider that the input matrix g(x) has full rank and is given by:

g(x) =
[

0n−m

B(x)

]
, (16)

where 0n−m ∈ �(n−m)×m denotes a matrix with null elements and B(x) ∈ �m×m is nonsingular. Similarly, A(x) and 
xd are partitioned as follows:

A(x) =
[

An−m(x)

Am(x)

]
, xd =

[
xd(t)n−m

xd(t)m

]
. (17)

Consequently, the condition (15) is described as:[
0n−m

B(x)(u(t) − τ c(t))

]
=
[

ẋd(t)n−m − An−m(x)xd(t)

ẋd(t)m − Am(x)xd(t)

]
. (18)

Then, the virtual variables are determined according to the following conditions:

ẋd(t)n−m = An−m(x)xd(t),

ẋd(t)m = Am(x)xd(t) + B(x)(u(t) − τ c(t)). (19)

From (13) and (18), the control law proposed in [43] is given by:

u(t) = −
r∑

i=1

αi(x(t))Fi x̃(t) + B(x)−1(ẋd(t)m − Am(x)xd(t)). (20)

For many physical systems, the desired virtual variables xd = [x1d · · · xnd ]T can be exactly determined by (19)
[43].

3.3. Tracking control based on observer and state regulator

In tracking design with fuzzy observer [43], the estimation error is required to satisfy:

x(t) − x̂(t) → 0 when t → ∞, (21)

where x̂(t) is the estimated state of x(t). For that, the nonlinear system (8) is expressed in fuzzy equations, as in 
(4)–(7), with q(x) = ∑r

i=1 αi(xi (t))Cix(t). Therefore, the generic equation for each observer local model can be 
written as:

Observer Rule i : IF x1(t) is Mi
1 AND . . . AND xp(t) is Mi

p,

THEN

{ ˙̂x(t) = Ai x̂(t) + Biu(t) + Hi

{
y(t) − ŷ(t)

}
,

ŷ(t) = Ci x̂(t).
(22)

The vectors x̂(t), ŷ(t) denote the estimated vectors of x(t) and y(t), respectively, and Hi , i = 1, 2, . . . , r , are the 
observer gains.

Remark 1. The design of fuzzy observers for plants described by Takagi–Sugeno models assumes that the plant state 
vector x(t) is not available, the plant output y(t) is available and can consider two cases: (i) the premise variables of the 
plant are available because they depend only on the available output y(t) such that αi(x(t)) = αi(y(t)), i = 1, 2, ..., r ; 
(ii) the premise variables of the plant, αi(x(t)), i = 1, 2, ..., r are immeasurable because they depend on the plant state 
vector x(t) that is not available. In the first case it is possible to obtain the observers equations to estimate the vector 
x(t) without estimating the premise variables because αi(x(t)) = αi(y(t)), i = 1, 2, ..., r are available [43]. In the 
second it is necessary to estimate the premise variables αi(x(t)), i = 1, 2, ..., r , usually using αi(x̂(t)), i = 1, 2, ..., r , 
where x̂(t) denotes the estimate vector of x(t). A design method for observers in the second case, considering that 
the membership functions satisfy a Lipschitz-like condition, can be found in [43]. Fortunately, in the plant studied in 
this manuscript, the variables αi(x(t)) = αi(y(t)), i = 1, 2, ..., r , are available. Thus, only the first case is studied in 
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Fig. 1. Shank-Foot Complex and its parameters θ , θv and Ma [5].

this manuscript, and then, the observer equations given in (23) and (24) can be easily implemented for estimating the 
vector x(t) [43]:

˙̂x(t) =
r∑

i=1

αi(y(t))

(
Ai x̂(t) + Biu(t) + Hi

{
r∑

i=1

αi(y(t))Cix(t) −
r∑

i=1

αi(y(t))Ci x̂(t)

})
, (23)

ŷ(t) =
r∑

i=1

αi(y(t))Ci x̂(t). (24)

In this case, B(x) and Am(x), defined in (17) and above (15) and (16), are available because the variables αi(x(t)) =
αi(y(t)), i = 1, 2, . . . , r , are available. Thus, based on the regulator control law (20), the new control law with the 
observer state is the following [43]:

u(t) = −
r∑

i=1

αi(y(t))Fi (x̂(t) − xd(t)) + B(x)−1(ẋd(t)m − Am(x)xd(t)). (25)

Define the estimation error as e(t) = x(t) − x̂(t) [43]. Then, from the Takagi–Sugeno fuzzy model of the plant 
given in (4) and the observer equations (23) and (24), taking the derivative of e(t) it follows that:

ė(t) =
r∑

i=1

r∑
j=1

αi(y(t))αj (y(t))(Ai − Hj Ci )e(t), (26)

that is the well-known Takagi–Sugeno observer error equation [46].

4. Dynamic model used in the control of the leg positon of a patient

The mathematical model of the leg used in this manuscript was proposed in [5]. This model relates the applied pulse 
width with the torque generated on the knee joint. In the modeling [5], the leg was considered as an open kinematic 
system composed by two rigid segments: the thigh and the shank-foot complex, as shown in Fig. 1. From [5], the 
system equation is:

J θ̈v = −mgl sin(θv) − Ms − Bθ̇ + Ma, (27)

where:

• J is the inertial moment of the shank-foot complex;
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Table 1
Numeric values of the shank-foot complex parameters [5].

J = 0.362 [kg m2] m = 4.37 [kg] l = 23.8 [cm]
B = 0.27 [N m s/rad] λ = 41.208 [N m/rad] E = 2.024 [1/rad]
ω = 2.918 [rad] τ = 0.951 [s] G = 42500 [N m/s]

Table 2
Numeric values of the knee active torque, 
where 

(
θv, θ̇v,Ma

)= (θv0,0,Ma0) is an 
equilibrium point [5].

θv0 Ma0

30◦ 4.6069 N m
47◦ 7.2826 N m
60◦ 8.7653 N m

• θv is the knee angle, between the shank and the vertical axis on sagittal plane;
• θ = θv + π/2 is the knee angle, between the shank and the thigh on sagittal plane;
• θ̇ = θ̇v is the knee angular velocity;
• m is the mass of shank-foot complex;
• g is the gravitational acceleration;
• l is the distance between the knee and the shank-foot complex mass center;
• B is the viscous friction coefficient;
• Ms is the torque due to the rigidity component;
• Ma is the knee active torque generated by electrical stimulation;
• Mg is the torque due to gravity;
• Mi is the inertial total torque.

The rigidity moment is defined as:

Ms = λe−Eθ (θ − ω), (28)

where λ and E are the coefficients of the exponential terms and ω is the elastic rest angle of the knee. In [5], it was 
observed that the torque applied to the muscle (Ma) and the electrical stimulation pulse width (P ) can be adequately 
related by the following equation, where G and τ are positive constants:

τṀa + Ma = GP. (29)

In [5], the authors suggest methods to experimentally obtain the parameters of interest. In this manuscript, the same 
parameters in [5] were adopted, as given in Tables 1 and 2, where 

(
θv, θ̇v,Ma

)= (θv0,0,Ma0) is an equilibrium point.
Considering (27)–(29), the authors proposed the following state space representation of the system [19,20,23,47,

48]: ⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦=
⎡⎣ 0 1 0

f̃21(x1) −B
J

1
J

0 0 − 1
τ

⎤⎦⎡⎣ x1
x2
x3

⎤⎦+
⎡⎣ 0

0
G
τ

⎤⎦u, (30)

where, by definition, x1 = θv , x2 = θ̇v , x3 = Ma and u = P .
The function f̃21(x1) is a nonlinear parameter of the system, given by:

f̃21(x1) = 1

Jx1

[
−mgl sin (x1) − λe−E

(
x1+ π

2

) (
x1 + π

2
− ω

)]
. (31)

5. Tracking design for electrical stimulation of paraplegic patients

The advantage of signal tracking is the facility on regulator or observer design without the necessity of getting a 
new T–S fuzzy model representation for each new operation point or desired output trajectory. This strategy offers a 
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Table 3
Parameters for the Healthy Group (H) and Paraplegic Group (P).

Subject J [kg m2] m [kg] l [cm] λ [N m/rad] E [1/rad] w [rad]

H1 0.377 4.05 25.3 1.199 −0.486 2.548
H2 0.358 4.63 23.9 4.679 0.041 2.427
H3 0.399 4.38 24.8 3.657 −0.031 2.71
H4 0.375 3.83 23.7 4.49 0.257 2.701
H5 0.384 4.36 24.3 3.889 −0.079 2.412

P1 0.362 4.37 23.8 41.208 2.024 2.918
P2 0.292 3.42 23.1 3.761 1.317 2.52
P3 0.394 4.76 23.3 15.352 1.644 3.896

Results reported in [5].

new design method for this control problem that is a generalization of the method that considers only a given operation 
point, designed in [19,20]. From the plant equation that defines the dynamics of the leg movement of the paraplegic 
patient (given in (30)), a new method is presented, using a change of variables, for the regulator design, and then, for 
the regulator and observer designs.

5.1. Regulator design with tracking

Note that the plant given in (30) and (31) does not satisfy the condition (18), that must hold in the design method 
proposed in [43]. This follows firstly observing that the plant (30) and (31) can be rewritten as dx(t)/dt = A(x)x(t) +
g(x)u(t), where g(x) and A(x) where defined in (16) and (17). Then, for desired operation points (x10, x20, x30) =
(θv0, θ̇v0, Ma0) = (θv0, 0, Ma0) = (xe1, xe2, xe3), a necessary condition for (18) is that f̃21(x1)x10 + Ma0/J = 0 for 
all x1 in the operation range. In this application, this condition holds only for x1 = x10 and thus the method presented 
in Section 3 cannot be directly applied to control the plant (30) and (31). A solution for this problem can be obtained 
considering a new representation of the plant equations (30) and (31), using the definition below:

x1n(t) = f̃21(x1(t))x1(t) = f (x1(t)). (32)

Considering that f (x1(t)) is an invertible function, one can write:

f (x1(t)) = x1n(t) ⇐⇒ f −1(x1n(t)) = x1(t). (33)

This consideration can be verified by data analysis of two groups of patients (Table 3), five of the healthy group and 
three of the paraplegic group. Note that in Fig. 2, considering the analyzed groups, it can be observed that the function 
f (x1(t)) is an injective function in the operation region (x1(t) ∈ [0◦, 70◦]), that assures the existence of f −1(x1(t)). 
Thus, we consider that this invertibility condition is an acceptable assumption.

Define a new representation of f −1(x1n(t)) in (33):

f −1(x1n(t))
�= ψ(x1n(t)). (34)

A new representation of (30) can be obtained with the definition (34). Determining the new equations from (30), 
(32)–(34), defining x2n(t) = x2(t) and x3n(t) = x3(t), one has:

ẋ1(t) = ∂ψ(x1n(t))

∂(x1n(t))

dx1n(t)

dt
= ∂ψ(x1n(t))

∂(x1n(t))
ẋ1n(t) = x2n(t)

ẋ2n(t) = x1n(t) − B

J
x2n(t) + 1

J
x3n(t)

ẋ3n(t) = −1

τ
x3n(t) + G

τ
P(t) (35)

The following equationing, based on (35), exists if and only if:

∂ψ(x1n(t)) �= 0. (36)

∂x1n(t)
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Fig. 2. Function f (x1(t)): (·− Healthy group) and (− Paraplegic group).

Fig. 3. Verification of (36): (·− Healthy group) and (− Paraplegic group).

Fig. 3 shows that the condition (36) is satisfied, considering the groups studied in [5], described in Table 3. Note that 
(36) holds in all cases, in the operation region (x1n(t) ∈ [−26.4080, 6.3820]). Thus, we consider that this condition 
is an admissible assumption.

From (35) and (36) one obtains the new equation:

ẋ1n(t) = 1
∂ψ(x1n(t))

∂x1n(t)

x2(t) = f̃12n(x1n(t))x2(t) = f̃12n(x1n(t))x2n(t), (37)

where:

f̃12n(x1n(t)) = 1
∂ψ(x1n(t))

∂x1n(t)

.

The equations (35), (36) and (37) redefine the matrix (30), to represent the new system:⎡⎣ ẋ1n(t)

ẋ2n(t)

ẋ3n(t)

⎤⎦
︸ ︷︷ ︸

ẋn(t)

=
⎡⎢⎣ 0 f̃12n(x1n(t)) 0

1 −B
J

1
J

0 0 − 1
τ

⎤⎥⎦
︸ ︷︷ ︸

⎡⎣ x1n(t)

x2n(t)

x3n(t)

⎤⎦
︸ ︷︷ ︸

xn(t)

+
⎡⎣ 0

0
G
τ

⎤⎦
︸ ︷︷ ︸
g(xn(t))

P . (38)
A(xn(t))
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The problem consists of the control input design such that the known equilibrium point (θv0, θ̇v0, Ma0) of the 
controlled system is asymptotically stable and thus, from resting conditions, the leg converges to θv = θv0. Then, 
consider, for the tracking, that when t → ∞ the desired state vector xin(t) → xind , i = 1, 2, 3, where, from (32), 
x1nd = f (θv0), x2nd = d(θv0)/dt = 0 and x3nd = x3 = Ma0. Write the reference virtual variables as a vector:

xnd =
⎡⎣ x1nd

x2nd

x3nd

⎤⎦=
⎡⎣ f (θv0)

0
Ma0

⎤⎦ . (39)

As a natural consequence, ẋnd = 0. Therefore, according to (15):

g(xn)(u(t) − τ c(t)) = −A(xn)xnd + ẋnd︸︷︷︸
=0

. (40)

Replacing the terms of the matrices defined in (38) in (40), one gets:⎡⎣ 0
0
G
τ

⎤⎦
︸ ︷︷ ︸
g(xn(t))

(u(t) − τ c(t)) = −
⎡⎣ 0 f̃12n(x1n(t)) 0

1 −B
J

1
J

0 0 − 1
τ

⎤⎦
︸ ︷︷ ︸

A(xn(t))

⎡⎣ f (θv0)

0
Ma0

⎤⎦
︸ ︷︷ ︸

xnd

(41)

where u(t) = P(t). Applying the distributive property in (41), one finds:⎡⎣ 0
0

G
τ
(u(t) − τ c(t))

⎤⎦=
⎡⎣ 0

−f (θv0) − Ma0
J

Ma0
τ

⎤⎦ . (42)

Note that, from (19) and (39), when xn = xnd , then:

ẋ2n = ẋ2nd = 0 = x1nd − B

J
x2nd + 1

J
x3nd = f (θv0) + Ma0

J
.

Then, equations (18) and (42) hold for t ≥ 0. Hence, from (42), the control law is determined as follows:

G

τ
(u(t) − τ c(t)) = Ma0

τ
,

u(t) = Ma0

G
+ τ c(t), (43)

where, from (13), τ c(t) = − 
∑r

i=1 αi(x1n(t))Fi x̃n(t) and ̃xn(t) = xn(t) − xnd .
The vector ̃xn(t) denotes the tracking error vector.

5.2. Tracking results with regulator

In this subsection, the simulation results, obtained through Matlab, are presented. Considering the curve of the 
nonlinear function f̃12n(x1n(t)) defined in (33)–(37) and represented in Fig. 4, the local models (Ai , Bi ), i = 1, 2
which represent the plant (38), as a T–S fuzzy model described in (4), for r = 2, can be obtained applying the method 
proposed in [45]. From Fig. 4, the minimum and the maximum values of f̃12n(x1n(t)), for 0 ≤ θv ≤ 70◦, that is, 
−26.4080 ≤ x1n ≤ 6.3820, are determined, considering that, during the operation of the system:

a121 = max
{
f̃12n(x1n(t))

}
= −11.8078,

a122 = min
{
f̃12n(x1n(t))

}
= −42.6560.

Thus, the local models matrices are given by [45]:
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Fig. 4. Curve of f̃12n(x1n(t)).

A1 =

⎡⎢⎢⎢⎢⎣
0 −11.8078 0

1 −0.7458 2.7624

0 0 −1.0515

⎤⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎣
0 −42.6560 0

1 −0.7458 2.7624

0 0 −1.0515

⎤⎥⎥⎥⎥⎦ , (44)

B1 = B2 =
⎡⎣ 0

0
44690

⎤⎦ .

In the new formulation, the membership functions, for the tracker case, are the following [45]:

α1(x1n(t)) = f̃12n(x1n(t)) − a122

a121 − a122
, (45)

and

α2(x1n(t)) = f̃12n(x1n(t)) − a121

a122 − a121
. (46)

Note that, from (45) and (46):

α1(x1n(t)) + α2(x1n(t)) = 1, α1(x1n(t)) ≥ 0, α2(x1n(t)) ≥ 0 (47)

and the nonlinear system (38) can be exactly represented by (44)–(47) and

ẋn(t) =
(

2∑
i=1

αi(x1n(t))Ai

)
xn(t) +

(
2∑

i=1

αi(x1n(t))Bi

)
P(t),

= A(α(x1n(t)))xn(t) + B(α(x1n(t)))P (t). (48)

Considering the regulator design method described in Subsections 3.1 and 3.2 for the nonlinear system (48), from 
(20), the control law is the following:
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Fig. 5. Simulation of the controlled paraplegic system (30), (49) and (54). The reference angles are 30◦, for 0 s ≤ t < 10 s, 47◦ , for 10 s ≤ t < 20 s, 
and 60◦ , for t ≥ 20 s.

P(t) = −
(

2∑
i=1

αi(x1n(t))Fi

)
x̃n(t) +

(
G

τ

)−1

⎛⎜⎝ẋ1nd︸︷︷︸
0

−
⎡⎣ 0

0
−1.0515

⎤⎦T

xnd

⎞⎟⎠ , (49)

where x̃n(t) = xn(t) − xnd , with xnd defined in (39).
In this design, the specifications are the asymptotic stability of the equilibrium point xn(t) = xnd , a decay 

rate greater than or equal to βr = 1.6 and an input constraint ||P(t)||2 ≤ μ + 1.0515(G
τ
)−1, where from Table 1

1.0515(G
τ
)−1 = 2.3529 × 10−5, and μ = 1 × 10−3 s, for an initial condition xn(0) = [ −20.1178 0 0 ]T . For an LMI-

based design of the regulator gains, following the method presented in [15,41,42], find matrices X = XT > 0 and Mi , 
i = 1, 2, . . . , r , such that the LMIs (50)–(53) are feasible:

XAT
i − MT

i BT
i + AiX − BiMi + 2βrX < 0, i = 1,2, . . . , r, (50)

XAT
i − MT

j BT
i + XAT

j − MT
i BT

j + AiX + BiMj + Aj X − Bj Mi + 4βrX ≤ 0, (51)

i = 1,2, . . . , r, j = 2,3, . . . , r and j > i,[
X MT

i

Mi μ2I

]
≥ 0, i = 1,2, . . . , r, (52)[

1 xn(0)T

xn(0) X

]
≥ 0. (53)

The LMIs (50)–(51) were feasible and thus, the gains were obtained as follows [15,41,42]:

F1 = M1X−1 = 10−3 × [ 0.0237 0.3929 0.2093
]
,

F2 = M2X−1 = 10−3 × [ 0.0301 0.2511 0.1870
]
. (54)

Fig. 5 shows the simulation results of the paraplegic patient closed-loop system of the plant (30), (or its equivalent 
representations (38) and (44)–(48)) with the control law (49).
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Fig. 6. Signal tracking, for the reference angles 30◦ , for 0 s ≤ t < 10 s, 47◦ , for 10 s ≤ t < 20 s, and 60◦ , for t ≥ 20 s.

Fig. 7. Membership functions α1(x1n(t)) and α2(x1n(t)) – tracking results with regulator.

Fig. 6 shows the behavior of the signal tracking, using the equation ̃xn(t) = xn(t) − xnd . Note that, when t −→ ∞, 
x̃n(t) = 0.

Fig. 7 shows the membership functions α1(x1n(t)) and α2(x1n(t)).
The results considering tracking are similar to the results that assume a specific design for this operation point. 

Using the presented tracking, one can easily find the desired responses when the desired position changes, without the 
need of calculating the new operation point and find a new solution of a set of LMIs, as proposed in [19–23].
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5.3. Regulator and observer design with reference tracking

For tracking, consider the representation of the plant described in (38) and (44)–(48), with the output y(t) = x1n(t)

given in (6) and the input u(t) = P(t). The observer equations, for the plant (48), given by (23) and (24), remembering 
that y(t) = x1n(t) is available, can be implemented and are the following:

˙̂xn(t) =
r∑

i=1

αi(x1n(t))

(
Ai x̂n(t) + BiP(t) + Hi

(
y(t) − ŷ(t)

))
,

ŷ(t) = Cx̂n(t), (55)

where C = [1 0 0].
The control law using the observer state vector, based on (25), is now given by:

P(t) = −
(

2∑
i=1

αi(x1n(t))Fi

)
(x̂n(t) − xnd) +

(
G

τ

)−1

⎛⎜⎝ẋ1nd︸︷︷︸
0

−
⎡⎣ 0

0
−1.0515

⎤⎦T

xnd

⎞⎟⎠ . (56)

Denote the control law with the observer state vector (regulator with observer) given in (56) by Pro(t) and the 
control law using only the plant state vector (regulator) presented in (49) by Pr (t). Then, from (49) and (56), note 
that:

Pro(t) = Pr (t) +
2∑

i=1

αi(x1n(t))Fi (xn(t) − x̂n(t)) = Pr (t) +
2∑

i=1

αi(x1n(t))Fien(t), (57)

where en(t) = xn(t) − x̂n(t). Note that, for an input P(t) = Pr (t), the plant (38) and (44)–(48) can be described from 
the analysis described in Subsection 3.1, equations (10)–(14):

˙̃xn(t) =
2∑

i=1

2∑
j=1

αi(x1n(t))αj (x1n(t))(Ai − BiFj )x̃n(t), (58)

where x̃n(t) = xn(t) − x̃nd . Then, for an input Pro(t), given in (56), from (38), (44)–(48), (57) and (58), it follows 
that:

˙̃xn(t) =
2∑

i=1

2∑
j=1

αi(x1n(t))αj (x1n(t))[(Ai − BiFj )x̃n(t) + BiFj en(t)]. (59)

Consider that, for the plant (30), x1(t) is available and x2(t), x3(t) are not available. Then, as from (32) x1n(t) is 
available, one can implement the observer described in (55). From the observer equations (55) and the plant equation 
(48), note that:

ėn(t) =
2∑

i=1

2∑
j=1

αi(x1n(t))αj (x1n(t))(Ai − HiC)en(t), (60)

where en(t) = xn(t) − x̂n(t).
Finally, from (59) and (60), one obtains the equation of the controlled system with observer [46]:[ ˙̃xn(t)

ėn(t)

]
=

2∑
i=1

2∑
j=1

αi(x1n(t))αj (x1n(t))

[
Ai − BiFj BiFj

0 Ai − HiC

][
x̃n(t)

en(t)

]
. (61)

From this fact, in [46], the authors proved the separation principle for this class of systems, that allows two distinct 
designs in this case: one for the regulator gains and another for the observer gains.



R. Gaino et al. / Fuzzy Sets and Systems 314 (2017) 1–23 15
Fig. 8. Dynamic equations simulation for the paraplegic model, for the reference angles 30◦ , 47◦ and 60◦ and initial condition e(t) = [0 0 0].

5.4. Tracking results with regulator and observer

For simulation of (61), consider only x1(t) = θv(t) available for measurement (therefore x1n(t) is also available). 
The LMIs (50) and (51), where X = XT > 0 are used for designing the regulator gains, and the LMIs (62)–(63), where 
P = PT > 0, for obtaining the observer gains [15,41,42].

PAi + AT
i P − MiCi − CT

i MT
i + 2βoP < 0, i = 1,2, . . . , r. (62)

AT
i P − CT

j MT
i + AT

j P − CT
i MT

j + PAi − MiCj + PAj − Mj Ci + 4βoP ≤ 0, (63)

i = 1,2, ..., r, j = 2,3, ..., r and j > i.

Thus, the LMIs (62) and (63) with P = PT > 0, if feasible, guarantee global asymptotic stability of the equilibrium 
point of en = 0 of the observer, with decay rate greater than or equal to βo.

The design considered as decay rate specifications βr = 1.6 in (50) and (51) (regulator), βo = 8.0 in (62) and (63)
(observer) and an input constraint μ = 1 ×10−3 in the LMIs (52) and (53), and for initial error vector e(t) = [0 0 0]T . 
The results are shown in Fig. 8 and the obtained regulator and observer gains were, respectively:

F1 = M1X−1 = 10−3 × [ 0.0170 0.4605 0.2184
]
,

F2 = M2X−1 = 10−3 × [ 0.0251 0.3373 0.2025
]
,

L1 = P−1M1 = 103 ×
⎡⎣ 0.0571

−0.9149
−3.6903

⎤⎦ , L2 = P−1M2 = 104 ×
⎡⎣ 0.0196

−0.3526
−1.4325

⎤⎦ .

Fig. 8 shows the time evolution of equation (61). Note that only θv(t) is available for measurement. Fig. 9 shows 
the behavior of ̃x̂n(t) = xn(t) − xnd − en(t). When t −→ ∞, ̃x̂n(t) = 0. Since the initial error conditions are null and 
the observer decay rate is five times faster than the regulator decay rate, Fig. 9 is equal to Fig. 6.

Fig. 10 shows the membership functions α1(x1n(t)) and α2(x1n(t)).
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Fig. 9. Signal tracking for the reference angles 30◦ , 47◦ and 60◦ , and initial condition e(t) = [0 0 0].

Fig. 10. Membership functions α1(x1n(t)) and α2(x1n(t)) – Tracking results with regulator and observer, with initial condition e(t) = [0 0 0].

For observer tracking, one considers the existence of an initial error between the plant state and the estimated states. 
In practical applications, it is more real, in view of the difficulty for know the real state parameters of the plant. From 
(61), the initial error vector is defined as e(t) = [−0.8 0 − 0.4]. One considers that the transient response velocity 
and input signal constraint are equal to the preview case. The result is shown in Fig. 11. The state variable x3n is 
shown with more details in Fig. 12. The regulator and observer gains are, respectively:

F1 = M1X−1 = 10−3 × [ 0.0170 0.4605 0.2184
]
,

F2 = M2X−1 = 10−3 × [ 0.0251 0.3373 0.2025
]
.
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Fig. 11. Dynamic equations simulation for the paraplegic model, for the reference angles 30◦ , 47◦ and 60◦ and initial condition e(t) =
[−0.8 0 −0.4].

L1 = P−1M1 = 103 ×
⎡⎣ 0.0571

−0.9149
−3.6903

⎤⎦ , L2 = P−1M2 = 104 ×
⎡⎣ 0.0196

−0.3526
−1.4325

⎤⎦ .

Fig. 13 shows the behavior of equation ̃ x̂n(t) = xn(t) − xnd − en(t) for the reference angles 30◦, 47◦ and 60◦. 
When t −→ ∞, ̃x̂n(t) = 0.

Fig. 14 shows the membership functions α1(x1n(t)) and α2(x1n(t)).
The behavior of the curves attend the control laws that control the system.

6. Tracking control conditions for a class of nonlinear systems

This section presents new conditions regarding the design of the output tracking control method proposed in [43]. 
The main idea was, based on the procedure presented in Subsection 5.1, to use a suitable nonlinear transformation 
and represent a class of plants as ẋ = A(x)x + g(x)u, such that the required tracking conditions (16)–(18), that were 
proposed in [43], hold. This result allows the application of the state feedback tracking method presented in Subsec-
tions 3.1, 3.2, 5.1 and 5.2, and also of the output tracking procedure based on observer and state regulator described 
in Subsections 3.3, 5.3 and 5.4, for a broader class of nonlinear plants than that considered in [43]. By the authors 
knowledge there are not general conditions for the representation of nonlinear plants as ẋ = A(x)x + g(x)u such that 
(16)–(18) hold.

Consider that a nonlinear plant can be described by

ẋp = Ap(xp)xp + gp(xp)u, y = q(xp), (64)

xp =
⎡⎣ z

w
s

⎤⎦ , Ap(xp) =
⎡⎣ Apn−m(xp)

· · · · · · · · · · · ·
Apm(xp)

⎤⎦=

⎡⎢⎢⎣
0 T(xp) 0

R̃(z) V(xp) S

· · · · · · · · · · · · · · · · · ·
A (x )

⎤⎥⎥⎦ , gp(xp) =

⎡⎢⎢⎣
0
0

· · · · · ·
B(x )

⎤⎥⎥⎦ (65)
pm p p
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Fig. 12. Dynamic equations simulation for the paraplegic model, for the reference angles 30◦ , 47◦ and 60◦ and initial condition e(t) =
[−0.8 0 −0.4], with more details at the state variable x3n.

Fig. 13. Simulation of observer for the reference angles 30◦ , 47◦ and 60◦ and initial condition e(t) = [−0.8 0 −0.4].
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Fig. 14. Membership functions α1(x1n(t)) and α2(x1n(t)) – Tracking results with regulator and observer, with initial condition e(t) =
[−0.8 0 −0.4].

where xp ∈ �n, u and y ∈ �m, n − m is even, w and z ∈ � (n−m)
2 , s ∈ �m, S ∈ � (n−m)

2 ×m is a constant matrix, T(xp), 

R̃(z) and V(xp) ∈ � (n−m)
2 × (n−m)

2 , Apm(xp) ∈ �m×n and B(xp) ∈ �m×m.
The goal of the output tracking problem described in Subsection 3.1 and proposed in [43] is to assure that the 

equilibrium point of the controlled system is asymptotically stable and y(t) − r̄(t) → 0 when t → ∞, where r̄(t)
denotes the desired reference signal.

Consider that r̄(t) = r̄ is a constant vector and there exists a constant vector xpd = [zT
d wT

d sT
d ]T , such that (64)

holds and yd = r̄ = gp(xpd). Therefore, from (64) and (65), note that

żd = 0 = T(xpd)wd ,

ẇd = 0 = R̃(zd)zd + V(xpd)wd + Ssd ,= znd + V(xpd)wd + Ssd , (66)

where znd = R̃(zd)zd .
The next theorem presents sufficient conditions for the representation of the plant (64), (65) with (66) such that the 

output tracking conditions (16)–(18) hold.

Theorem 1. Consider the plant (64) and (65), a constant vector xpd = [zT
d wT

d sT
d ]T such that the tracking conditions 

yd = r̄ = gp(xpd) and (66) hold. Suppose that in an operation region �, T(xp) and B(xp) are nonsingular, R(z) =
R̃(z)z = [R1(z) R2(z) · · · Rn−m

2
(z)]T is smooth and the Jacobian matrix

∇R(z) =

⎡⎢⎢⎢⎢⎣
∂R1(z)

∂z1

∂R1(z)
∂z2

· · · ∂R1(z)
∂z n−m

2
...

...
∂R n−m

2
(z)

∂z1

∂R n−m
2

(z)

∂z2
· · ·

∂R n−m
2

(z)

∂z n−m
2

⎤⎥⎥⎥⎥⎦ (67)

is nonsingular. Then, in the region �, the inverse of the function R : � n−m
2 → � n−m

2 there exists, is smooth and the 
plant (64) and (65) can be rewritten as⎡⎣ żn

ẇ
ṡ

⎤⎦=

⎡⎢⎢⎣
0 ∇R(z)T(xp) 0

Im V(xp) S
· · · · · · · · · · · · · · · · · ·

A (x )

⎤⎥⎥⎦
⎡⎣ zn

w
s

⎤⎦+
⎡⎣ 0

0
B(xp)

⎤⎦u =
[

An−m(xp)

Am(xp)

]
x +

[
0

B(xp)

]
u,
pm p
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x =
⎡⎣ zn

w
s

⎤⎦=
⎡⎣R(z)

w
s

⎤⎦ , xp =
⎡⎣ z

w
s

⎤⎦=
⎡⎣R−1(zn)

w
s

⎤⎦ . (68)

Furthermore, in the region � the output tracking conditions (16)–(18) hold for the system (68).

Proof. The nonlinear transformation zn = R̃(z)z = R(z), in an operation region � is smooth and the Jacobian matrix 
∇R(z) given in (67) is nonsingular. Then R : � n−m

2 → � n−m
2 is a local diffeomorphism in � and thus, its inverse R−1

exists and is smooth [49]. Now, from (65) and (67) it follows that

żn = ∇R(z)ż = ∇R(z)T(xp)w,

ẇ = R̃(z)z + V(xp)w + Ss = zn + V(xp)w + Ss, (69)

ṡ = Apm(xp)xp + B(xp)u.

Note that (69) can be rewritten as (68).
Considering that T(xp) is nonsingular in �, from (66) T(xpd)wd = 0 and thus wd = 0. Therefore, from (66) note 

that znd + Ssd = 0.
The conditions (16)–(18), applied to the system (68), taking into account that xpd and xd = [zT

nd wT
d sT

d ]T are 
constant vectors, can be described by

[
0n−m

B(xp)(u(t) − τ c(t))

]
=
[

ẋdn−m − An−m(x)xd

ẋdm − Am(x)xd

]
= −

⎡⎢⎢⎣
0 ∇R(z)T(xp) 0

Im V(xp) S

· · · · · · · · · · · · · · · · · ·
Apm(xp)

⎤⎥⎥⎦
⎡⎣ znd

wd

sd

⎤⎦

= −
⎡⎣ 0

0
Apm(xp)xd

⎤⎦ . (70)

Hence, considering that the plant state vector xp is available, one can design a control law based on (20), given by

u(t) = τ c(t) − B(xp)−1Apm(xp)xd ,

τ c(t) = −
r∑

i=1

αi(x)Fi (x − xd), (71)

where in (64) and (65), (Ap(xp), Bp(xp)) =∑r
i=1 αi(Api, Bpi), αi ∈ [0, 1] for i ∈ {1, 2, ..., r} and α1 + α2 + · · · +

αr = 1 is a Takagi–Sugeno representation of the plant. The design of the gains Fi , i = 1, 2, . . . , r can be done using 
the same procedure described in Section 5. Now, if xp is not available and the plant output y is available, one can 
use the output tracking procedure, based on observer and state regulator, described in Subsections 3.3, 5.3 and 5.4. 
Observe that the results given in Theorem 1 also allow the application of the output tracking design methods proposed 
in [43], when the premise variables of the plant are available (because they depend only on the available output y(t)) 
and also when it is necessary to estimate the premise variables (because they depend on the plant state vector x(t)

that is not available) considering that the membership functions satisfy a Lipschitz-like condition (see Remark 1 in 
Subsection 3.3 and [43] for more details). The proof is concluded. �
Remark 2. Note that the procedure described in Theorem 1 can be applied to the plant (30), for the design (based 
on [43]) of state feedback tracking controllers (as presented in Subsections 3.1, 3.2, 5.1 and 5.2), and also of out-
put tracking controllers (as described in Subsections 3.3, 5.3 and 5.4). In Subsection 5.3 this plant was rewritten 
as presented in (38), that has the form given in (68), using the definitions (32)–(34). Observe that from (32)–(37)

f̃12n(x1n) = [ ∂ψ(x1n)
∂x1n

]−1 = [ ∂f −1(x1n)
∂x1n

]−1 = [ ∂x1
∂x1n

]−1.

Now, following the method proposed in Theorem 1 for the plant (30), then z = x1, zn = R(z) = x1n = f̃21(x1)x1 =
f (x1) = f (z), ∂R(z)

∂z
= ∂f (z)

∂z
= ∂zn

∂z
= ∂x1n

∂x1
. Therefore, note that ∂R(z)

∂z
= ∂x1n

∂x1
= [ ∂x1

∂xn
]−1 = f̃12n(x1n) and then the 

procedure used in Subsection 5.3 is equivalent to that proposed in Theorem 1, because (38) and (68) represent the 
same system. An important fact regarding the method given in Theorem 1, is that it was not necessary to find the 
inverse of functions for the design of the control law, as in the procedure used in Section 5.
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7. Conclusions

The design of the regulator and observer, used to control the position of the leg of a paraplegic patient, met the 
requirements of stability and performance, using an electrical stimulus applied to the quadriceps muscle. The projects 
were designed with strict Lyapunov functions, based on Linear Matrix Inequalities (LMIs) and Takagi–Sugeno (T–S) 
fuzzy models for the representation of the nonlinear plant. Some constraints, such as stability, decay rate, and output 
constraints were considered. Operating points for the position of the leg were specified for projects controlling nonlin-
ear continuous-time (regulator and/or observer tracking the signal with the regulator and observer). New results were 
obtained for the project of tracking the position of the leg with the regulator and observer. These results facilitate the 
designer’s vision, because there is no need to design specific drivers for each operating point. The controlled system 
presented a good performance within a specified range of operation. The proposed method, for tracking the position of 
a leg, can offer more general feasible designs than the methods proposed in [39] and [40] because it allows the tracking 
of a broader class of signals than the control strategies presented in [39] and [40]. In [39] and [40], are considered only 
constant reference signals and all set of the desired operation points for obtaining the maximum and minimum values 
of the plant nonlinear functions, to get the local models following the method proposed in [30]. The proposed method 
can be implemented the same as [50] and [51]. By the authors knowledge, in [50], the Takagi–Sugeno fuzzy models 
method to control the knee joint of paraplegic patients was implemented for the first time. Finally, a more general 
result based on a suitable nonlinear transformation that can be applied to a broader class of plants for output tracking 
control design based on [43] is also proposed. The method studied in the manuscript, proposed in [43], was applied in 
the sensorless control of permanent-magnet synchronous motors and experimental results showed that the proposed 
scheme is suitable in practical applications [52]. Further researches can explore the results presented in this manuscript 
for uncertain plants, for instance, using switched control laws for uncertain plants described by Takagi–Sugeno (T–S) 
fuzzy models with unknown membership functions [53].
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