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Attention deficit hyperactivity disorder (ADHD) is characterized by decreased attention span, impulsiveness, and

hyperactivity. Autonomic nervous system imbalance was previously described in this population. We aim to com-

pare the autonomic function of children with ADHD and controls by analyzing heart rate variability (HRV). Chil-

dren with ADHD (22 boys, mean age 9.964 years) and 28 controls (15 boys, mean age 9.857 years) rested in supine

position with spontaneous breathing for 20 min. Heart rate was recorded beat by beat. HRV analysis was performed

by use of chaotic global techniques. ADHD promoted an increase in the chaotic forward parameter. The algorithm

which applied all three chaotic global parameters was only the second optimum statistically measured by Krus-

kal�Wallis (P < 0.0001) and low standard deviations. It was also highly influential by principal component analy-

sis with almost all variation covered by the first two components. The third algorithm which lacked the (high

spectral Detrended Fluctuation Analysis) parameter performed best statistically. However, we chose the algorithm

which applied all three chaotic globals due to previous studies mentioned in the text—forward and inverse prob-

lems. Comparison of the autonomic function by analyzing HRV with chaotic global techniques suggests an increase

Correspondence to: Tatiana Dias de Carvalho; Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de

S~ao Paulo, UNIFESP, S~ao Paulo, Brazil. E-mail: carvalho.td1@gmail.com

The authors declare that there is no conflict of interests regarding the publication of this article

412 C O M P L E X I T Y Q 2015 Wiley Periodicals, Inc., Vol. 21 No. 6
DOI 10.1002/cplx.21700

Published online 2 June 2015 in Wiley Online Library
(wileyonlinelibrary.com)



in chaotic activity in children with ADHD in relation to the control group. VC 2015 Wiley Periodicals, Inc. Complexity

21: 412�419, 2016
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1. INTRODUCTION

A
ttention deficit hyperactivity disorder (ADHD) is

characterized by lower levels of concentration,

impulsiveness, and hyperactivity [1,2]. Evidence sug-

gests that ADHD is more prevalent in children with car-

diac diseases and drug treatment has effects on

cardiovascular parameters, such as heart rate and blood

pressure [1�3]. Considering that cardiac function is regu-

lated by the interaction of sympathetic and parasympa-

thetic branches of the autonomic nervous system (ANS),

heart rate variability (HRV) allows the investigation of

fluctuations in the intervals between consecutive heart

beats (RR intervals), which are related to the influences of

the ANS on the sinus node [4].

The rhythm of cardiac interbeat intervals can vary in a

complex and chaotic manner [5�10]. Traditionally, meth-

ods derived from statistical mechanics have enabled

researchers to investigate such systems [11]. Nonlinear

methods permit the analysis of physiological processes,

such as the effect of breathing on the ANS [12] and dis-

eases, such as ADHD. A literature search revealed only

one study [13] addressed the effect of ADHD on cardiac

autonomic modulation using a nonlinear analysis of HRV.

The aim of this study was to analyze the effect of ADHD

on cardiac autonomic modulation using chaotic global

[14] analysis of HRV. Furthermore, there has been specula-

tion that if Shannon entropy [15,16] and Detrended Fluc-

tuation Analysis (DFA) [17,18] previously applied to Welch

power spectra were applied to multi-taper method (MTM)

spectra [19]; which are adaptive and more sensitive, the

results may have greater chaotic parametric response.

In this study, we have the Electrocardiographics RR

intervals in normal and ADHD children. The main objec-

tive is to take two sets of HRV time-series from control

and ADHD and calculate novel parameters to achieve a

significant statistical association to determine mathemati-

cally which series is the control, and which is the experi-

mental. We are assuming that the ADHD subjects RR

intervals behave in a nonlinear way akin to asthma [20],

cardiac arrest [21,22], and epilepsy [23,24]; as dynamical

conditions [25] which can be quantified and assessed by

applying globally chaotic algorithms [14].

The perceived benefit for testing the correlation with

HRV is that it can provide an indicator of the risk of

dynamical diseases [25] in ADHD subjects. HRV is a sim-

ple, noninvasive and cheap method of monitoring the

ANS. Other methods are either not sensitive enough as

with Sympathetic Skin Response or too complex and

expensive such as Quantiative Pupillography [26].

2. MATERIALS AND METHODS
2.1. Population

Twenty-eight children with ADHD (22 boys, mean age

9.964 6 1.93 years) and 28 controls (15 boys, mean age

9.857 6 1.84 years) were recruited from the N�ucleo Espe-

cializado em Aprendizagem da Faculdade de Medicina do

ABC (Learning Disabilities Center of Medicine ABC Uni-

versity), Santo Andr�e, Brazil, where they are treated by a

multidisciplinary team. All volunteers in this study had

the medical diagnosis of ADHD, according to the Diagnos-

tic and Statistical Manual of Mental Disorders, 4th edition,

published by the American Psychological Association

[27,28], and all met the following inclusion criteria: (1)

absence of congenital anomalies such as congenital heart

disease, pulmonary malformations, diaphragmatic hernia,

and defects of abdominal wall closure; (2) absence of cen-

tral nervous system malformations and/or neurological

syndromes; (3) absence of metabolic disorders; (4)

absence of medication that influences cardiac autonomic

modulation since that drug treatment (e.g., methylphene-

dite) has effects on cardiovascular parameters such as

heart rate and blood pressure. The control group was

composed of healthy children without a diagnosis of

ADHD. Parents of the children were asked for consent.

The study received approval from the Ethics Committee of

Faculdade de Medicina do ABC (protocol number 312/11)

and was in compliance with Resolution 196/96 of the

Conselho Nacional de Sa�ude.

2.2. Procedure
Datasets were collected under controlled temperature

(21�23 8C) and humidity (40�60%). Participants attended

the laboratory each time between 8:00 and 11:00 to avoid

circadian influences. They were instructed to avoid con-

suming ANS stimulants for 24 h before evaluation. Parents

and guardians of the children stayed in the room during

the entire protocol. Demographics and anthropometric
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measurements were obtained following the standard rec-

ommendations proposed by Lohman et al [29]. A heart

monitor strap was placed on the chest, over the distal

third of the sternum, and the heart rate receiver (Polar

RS800 CX monitor; Polar, Kempele, Finland) was placed

on the wrist. This type of equipment has been previously

validated for beat-by-beat measurements and for HRV

analysis [30�32]. Children rested in supine position with

spontaneous breathing for 20 min and were instructed to

avoid talking during data collection.

For HRV analysis, the heart rate was recorded beat-by-

beat at a sampling frequency of 1000 Hz. The data series

was first digitally filtered using Polar Precision Perform-

ance SW software (version 4.01.029; Polar), in which only

series with more than 95% sinus rhythm beats were

included [33]. It was then manually complemented, and

the visual inspection of the time series on the computer

showed absence of artifacts. 1000 RR intervals were

selected for data analysis.

2.3. Statistical Analysis
As mentioned in the introduction a potential criticism

in previous studies on diabetes [34] and childhood obesity

[35] with respect to chaotic global parameters is that the

spectral entropy [36] and spectral Detrended Fluctuation

Analysis (sDFA) [14] analysis may be more sensitive if we

applied the Shannon entropy and DFA algorithms to the

multi-taper spectrum [19] rather than the Welch power

spectrum [37]. Thus, the spectra applied in all three cha-

otic global parameters would correspond.

MTM is useful for spectral estimation and signal recon-

struction, of a time series of a spectrum that may contain

broadband and line components. MTM is nonparametric

since it does not apply an a priori, parameter dependent

model of the process that generated the time series under

analysis. MTM reduces the variances of spectral estimates

using a small set of tapers. Data is premultiplied by

orthogonal tapers created to minimize the spectral leakage

owing to the finite length of the time series. A set of inde-

pendent approximations of the power spectrum is calcu-

lated. Functions identified as discrete prolate spheroidal

sequences (DPSS) [38] are a set of functions which opti-

mize the tapers. They are defined as eigenvectors of a Ray-

leigh�Ritz minimization problem [39]. In this study, the

parameters for MTM are: (i) sampling frequency of 1Hz;

(ii) time bandwidth for the DPSS is 3; (iii) FFT length of

256; (iv) Thomson’s adaptive nonlinear combination

method to combine individual spectral estimates.

2.4. Chaotic Globals
High spectral entropy (hsEntropy) is a function of the

irregularity of amplitude and frequency of the power spec-

trums peaks. It is derived by applying Shannon entropy to

the MTM power spectrum. This output is then normalized

so that the sum of the magnitude is equal to unity; giving

a normalized power spectrum. We then calculate an inter-

mediate parameter which is the median Shannon entropy

of the value obtained from three different power spectra

using the MTM power spectra under three test conditions:

a perfect sine wave, uniformly distributed random varia-

bles, and finally the experimental oscillating signal. These

values are then again normalized mathematically so that

the sine wave gives a value of zero, uniformly random var-

iables give unity, and the experimental signal between

zero and unity. It is this final value that corresponds to

hsEntropy.

The standard DFA algorithm can be applied to datasets

where statistics such as mean, variance and autocorrela-

tion vary with time. Regarding DFA, the scaling exponent,

a is not constant. Such variability and introduction of

errors in the time-series and its mathematical relation-

ships over the duration of the datasets is reduced by

applying the algorithm to power spectra. The standard

DFA derivation is shown below. Given a bounded time

series xt , t 2 N then its intergation converts it to Xt :

Xt5
Xt

i51

ðxi2hxiiÞ

Subsequently, Xt is divided into windows of length L

samples, and a local least squares straight line fit is calcu-

lated by minimising the squared error E2 with regards to

the slope and intercept parameters a, b: respectively.

E25
XL

i51

ðXi2ai2bÞ2

The root-mean-square divergence from the trend, is

considered over every window at every time scale.

Then, the fluctuation measurement process is repeated

over the whole signal at a range of different window sizes

L, and a log-log graph of L against F(L) is constructed. A

linear relationship FðLÞ / L/ is expressed. The scaling

exponent a is calculated as the slope of a straight line fit

to the log-log graph of L against F (L) using least-squares.

FðLÞ5 1

L

XL

i51

ðXi2ai2bÞ2
" #1

2

To obtain high spectral Detrended Fluctuation Analysis

(hsDFA) we calculate the spectral adaptation in exactly the

same way as for hsEntropy using a MTM power spectrum

with the same settings; but DFA rather than Shannon

entropy is the algorithm applied.

Spectral multi-taper method (sMTM) is founded on the

increased intensity of broadband noise in power spectra

generated by irregular and chaotic signals. sMTM is the

area between the MTM power spectrum and the baseline.
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2.5. Statistical Analysis
The parameter [CFPx] represents Chaotic Forward

Parameter and x corresponds to the normal and ADHD

datasets. There are seven different combinations of three

chaotic global parameters. Since hsDFA responds to chaos

in the opposite way to the others, we subtract its value

from unity when applying here. All three chaotic global

values have equal weighting. The significances of the vari-

ous combinations is assessed by multivariate analysis

later. It is expected that the [CFP] which applies all three

should be the most significant since it takes the informa-

tion and processes it in three different ways.

½CFP1�5½normðhsEntropyÞ21normðsMTMÞ21
�

12½normðhsDFAÞ�
�2

�
1
2

½CFP2�5½normðhsEntropyÞ21
�

12½normðhsDFAÞ�
�2

�
1
2

½CFP3�5½normðhsEntropyÞ21normðsMTMÞ2�
1
2

½CFP4�5½normðsMTMÞ21
�

12½normðhsDFAÞ�
�2

�
1
2

½CFP5�5½
�

12½normðhsDFAÞ�
�2

�
1
2

½CFP6�5½normðsMTMÞ2�
1
2

½CFP7�5½normðhsEntropyÞ2�
1
2

:

The potential pitfall in the analysis here is that the

since we are only taking spectral components; the phase

information is lost. Taking groupings of spectral parame-

ters in addition to the interpeak parameters could be a

rewarding exercise. Here, we undertake the same analysis

as in Vanderlei [35]. Nevertheless, there are other techni-

ques which could be added to the [CFP] such as DFA,

Shannon entropy, fractal dimension [40,41], correlation

dimension [42,43], approximate entropy [44], and sample

entropy [45,46]. Note, however, that these techniques are

standard techniques applied to the temporal separations

of the RR-intervals. They are not chaotic globals and do

not include a power spectrum step in the algorithm.

3. RESULTS
Parametric statistics generally assume the data are nor-

mally distributed, hence, the use of the mean as a mea-

sure of central tendancy. If we cannot normalize the data,

we should not compare means. To test our assumptions of

normality we apply the Anderson�Darling [47] and Lillie-

fors [48] tests. The Anderson�Darling test for normality

applies an empirical cumulative distribution function. The

Lilliefors test is an alternative algorithm which can be

applied in these circumstances where the number of sub-

jects is quite low. In the majority of cases the P< 0.05; for

both tests so we cannot assert that the observations follow

a normal distribution. Therefore, we have a probability

plot of mainly non-normal data and so we must apply the

Kruskal�Wallis [49] test of signficance. The results illus-

trate that there is a wide variation in both the mean values

and standard deviation for both normal and ADHD (See

Table 1). The Kruskal�Wallis algorithm computes a signifi-

cant statistical result for three of the seven combinations

(P< 0.0001) for normals versus ADHD. These are combi-

nations [CFP 1, 3, and 6].

In Figures 1 and 2, we refer to CFP1 as CFP where CFP

is the summation of the derivative of three chaotic global

techniques (hsEnt)(1-hsDFA)(sMTM). CFP2 to CFP4 is the

summation of two such derivatives. CFP2 is (hsEnt)(1-

hsDFA); CFP3 is (hsEnt)(sMTM) and, CFP4 is (1-

hsDFA)(sMTM). Finally CFP5 to CFP7 is the function of a

sole chaotic global CFP5 is (1-hsDFA); CFP6 is (sMTM)

and, CFP7 is (hsEnt). These are expressed in the equations

above.

3.1. Principal Component Analysis
Principal Component Analysis (PCA) [50] is a multivari-

ate technique which can be applied here (See Table 2). We

have the values of CFP for seven groups of 28 subjects

who are ADHD children. Hence, a grid of 7 by 28 to be

TABLE 1

The Table Below Shows the Mean Values and Standard Deviation for Chaos Forward Parameters [1 to 7] for 1000 RR Intervals from the Normal and
ADHD Subjects

Combination of Chaotic Globals Mean and SD Normal (n 5 28) Mean and SD ADHD (n 5 28) Kruskal�Wallis (P-value)

CFP1 0.7745 6 0.1265 0.9209 6 0.0916 <0.0001
CFP2 0.5976 6 0.1021 0.6055 6 0.1181 0.4173
CFP3 0.6429 6 0.1235 0.8292 6 0.0859 <0.0001
CFP4 0.6290 6 0.2029 0.7733 6 0.2030 0.0083
CFP5 0.4036 6 0.1288 0.3702 6 0.1594 0.5498
CFP6 0.4773 6 0.1448 0.6733 6 0.1535 <0.0001
CFP7 0.3730 6 0.2057 0.4119 6 0.2251 0.5943

Kruskal�Wallis test of significance was applied to results.
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assessed. The First Principal Component (PC1) has a var-

iance (eigenvalue) of 4.7521 and accounts for 67.9% of the

total variance. The Second Principal Component (PC2) has

an eigenvalue of 2.2430 accounting for 99.9% of cumula-

tive total variance. PC2 accounting for 32.0% of its propor-

tion of the variance. Therefore, we assume that the

majortity of variance is acheived in the first two

components.

[CFP 1] has the First Principal Component (0.113) and

the Second Principal Component (20.647); whereas, [CFP

3] has the First Principal Component (20.151) and the

Second Principal Component (20.630). Only the first two

components need be considered due to the steep scree

plot. Only [CFP 1,3, and 6] need to be considered due to

statistical signficance at the level P< 0.0001(Table 1).

Since [CFP 6] represents just the increased intensity of

broadband noise in the MTM power spectrum we do not

consider it further. Accordingly, [CFP 1] which applies all

three chaotic globals techniques is the best overall combi-

nation with regards to influencing the correct outcome.

This on the basis of three statistical tests (See Discussion).

4. DISCUSSION
The ANS plays an important role in regulation of physi-

ological mechanisms, such as cardiac and metabolic

FIGURE 1

The boxplots illustrate the mean values and standard deviation of
[CFPx] for the 1000 RR intervals of 28 normal subjects (left) and
28 ADHD subjects (right). Mean values are indicated by the (1)
symbol. The output is measured in arbitrary units (a.u.).

FIGURE 2

The boxplots illustrate the mean values and standard deviation of
[CFPx] for the RR intervals of ADHD subjects. The number of RR
intervals is 1000 and number of subjects is 28; and mean values
are indicated by the (1) symbol and output in arbitrary units (a.u).

TABLE 2

The Table Below is the Principal Component Analysis for [CFPx] for Seven Groups of 28 Subjects Who Are ADHD Children

[CFPx] PC1 PC2 PC3 PC4 PC5 PC6 PC7

CFP1 0.113 20.647 0.517 20.421 0.259 0.240 20.020
CFP2 20.394 20.343 0.333 0.674 20.180 20.049 0.359
CFP3 20.151 20.630 20.584 0.071 20.005 20.273 20.400
CFP4 0.445 20.161 0.036 20.220 20.435 20.605 0.413
CFP5 0.458 20.037 0.233 0.310 20.519 0.241 20.558
CFP6 0.438 20.196 20.456 0.190 0.064 0.551 0.467
CFP7 20.458 20.039 20.134 20.429 20.661 0.371 0.109

PC1 refers to the first prinicipal component, PC2 the second up to the seventh at PC7.
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systems; and alterations in autonomic activity in children

with ADHD have been investigated in several studies

[1,3,13]. To the best of our knowledge, this is the first

study to examine the effect of ADHD on cardiac auto-

nomic modulation using chaotic global [14] analysis of

HRV.

[CFP 1 and 3] are the main functions suitable as

deduced by the three assessments (Kruskal�Wallis : P-val-

ue< 0.0001, low standard deviation and influencial PCA).

There is evidence to apply [CFP 1] as the most robust

function as with the optimization study by Garner and

Ling [14]. This in addition to forward problems in child-

hood obesity [35], diabetes mellitus [34] and COPD [51].

Nevertheless, it could be argued that [CFP 3] is the best

on the basis of this study alone. With regards to PCA

applied to the seven different arrangements of chaotic

globals for ADHD subjects; 99.9% of influence is achieved

by the first two principal components. The third algorithm

[CFP3] which lacks the (1-hsDFA) parameter, performs

best on standard deviation which are low and PCA which

the first two components signify a strong influence. It is

important to recognize that in all cases, where the differ-

ences are significant the chaosity of the data increases

from normal to ADHD children.

A literature search revealed only one study [13]

addressed the effect of ADHD on cardiac autonomic mod-

ulation using a nonlinear analysis of HRV. In this investi-

gation, according to the frequency and time domains and

the Poincar�e plot, the indexes that indicate parasympa-

thetic activity were higher in children with ADHD than in

children without the disorder. In another study that eval-

uated ANS functioning and the effects of methylphenidate

in stimulant-free children with ADHD and controls, the

authors [1] also found that stimulant-free children with

ADHD have a parasympathetic dominance of the auto-

nomic balance relative to control subjects. We could sug-

gest that increased parasympathetic is related to increased

chaosity found in this work.

So, we have developed two robust functions which take

short time-series of HRV and discriminate between the

control and experimental groups. There is a very high level

of significance for both these algorithms (P< 0.0001). By

applying either of these novel functions to the shorter

time-series via spectrally determined parameters it should

be possible to determine which are ADHD or normal. The

relationship between ADHD and complexity measures is

useful in the risk assessment of dynamical diseases [25]

associated with the condition. It identifies severity of the

situation from a noninvasive, cheap, and reliable method

of monitoring the ANS. This is useful in treatments, assist-

ing the determination of the level of medical intervention

especially in related dynamical diseases.

Future development could involve the DPSS of the

MTM being adjusted to optimize the final level of signifi-

cance. In addition, the weighting of the three chaotic

global parameters could be modified since here they have

weightings of unity. It would also be statistically favour-

able to have larger, but equal datasets for both normal

and ADHD subjects. If the time-series were longer this

may also enhance statistical significances.

5. CONCLUSIONS
The chaotic response of HRV in child subjects with

ADHD increases. The parameter which applies all three

chaotic global parameters is statistically most significant

based overall on this and previously cited studies. In this

case, the three chaotic global derivatives are summated

and we term this function chaos forward parameter. This

is useful in the risk assessment of dynamical diseases

associated with ADHD.
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