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Objective: To histomorphometrically analyze the effect of low-level laser therapy (LLLT) on bone formation
process in surgically created critical-size defects (CSDs) treated with bovine bone graft (BBG) and its influence
over particles' resorption of BBG.

Methods: A 10-mm diameter CSD was surgically created in the calvaria of 64 male rats, which were distributed
into 4 experimental groups: the C group (control), only blood clot; the LLLT group, LLLT (GaAlAs, 660 nm) and

gg’l"ev Orrgsf;m blood clot; the BBG group, CSD filled with BBG; the BBG/LLLT group, LLLT and CSD filled with BBG. Animals
Bone fegene%ation were euthanized at either 30 or 60 days post-operation. A histological analysis was performed. Additionally,
Calvaria the percentage of newly formed bone area (NFBA) and remaining particles areas (RPA) of BBG were

histometrically evaluated and data statistically analyzed.
Results: The LLLT (5.82 4 2.05; 7.34 + 1.01) group presented significantly greater NFBA when compared to the C
group (1.61 £ 0.30; 5.59 £ 0.94) at 30 and 60 days post-operation (p < 0.05). The BBG/LLLT group (7.39 4 1.45;
9.44 4 2.36) presented significantly greater NFBA than the BBG group (3.85 4 1.56; 8.02 + 0.63) at 30 and
60 days postoperation (p < 0.05). There was no significant difference in the mean percentage of implanted ma-
terial RPA between the BBG and the BBG/LLLT groups.
Conclusions: LLLT can improve bone formation process in CSD filled or not with BBG in rat calvaria, but it is not
able to accelerate particles resorption of this material in the interior of bone defect.

© 2016 Elsevier B.V. All rights reserved.

Low-level laser therapy

1. Introduction

Bone loss in the maxillofacial region presents a challenging clinical
issue, especially in the case of large defects, where their physiological
regenerative capability is exceeded [1]. A variety of bone grafting or
substitutes [2,3,4,5] have been suggested in order to regenerate these
defects [6].

Among the materials used for bone regeneration, autogenous bone
has been considered the ideal graft material [7,8,9] because of its
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osteoinductive, osteoconductive, and osteogenic characteristics [10].
However, its collection is associated with significant donor site morbid-
ity, including damage to anatomic structures [11], infections [11,12],
pain [13,14], hematoma formation [12,15], and unpredictable graft
resorption [7,8,16]. Obtaining bone tissue from donor site sufficient to
fill the defect also becomes a challenge in some complex clinical condi-
tions that require bone regeneration in large quantity, such as bone
defects resulting from trauma, infection, tumor resection, skeletal
abnormalities, atrophic non-unions and osteoporosis conditions [17].
Moreover, grafts are often resorbed before osteogenesis is finished in
large defects [15].

Consequently, a search for bone biomaterials that could replace the
autologous bone, with the advantages of unlimited supply and no
need for a donor site [16], has taken place [10]. Nonetheless, these
are not always graced with the advantages of osteogenesis and
osteoinduction inherent of the autologous grafts [10,18]. Xenogeneic
bovine bone grafts (BBG) are the most commonly used material [19,
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20,21,22,23]. The literature reports its superior biocompatibility and
osteoconductivity compared to other bone substitutes [19,22]. Howev-
er, this material still lacks factors that promote osteogenesis and
osteoinduction [10]. In turn, this increases healing time compared to au-
tologous bone, which feature live cells and growth factors, fulfilling
their osteogenic and osteoinductive potentials [18]. Such properties re-
flect positively on the time required for bone healing [24].

Low-level laser therapy (LLLT) has emerged as a strategy to acceler-
ate the healing of bone defects treated with xenogeneic BBG [16,23]
and others bone substitutes materials [25], since it can acts as an
osteoinductive factor [26,27]. The exact mechanism of action of LLLT
on bone healing is not well understood [23], but it has been reported
that it can promote angiogenesis [28] and increase local blood flow (en-
hancing the supply of circulating cells, nutrition, oxygen, and inorganic
salts to the bone defect) [29], stimulate cell growth such as fibroblasts
(which are related to collagen production) [30], increase osteoblast
proliferation and differentiation [31] and promote mitochondrial respi-
ration and ATP synthesis [32]. Specifically regarding xenogeneic BBG,
there is a report that LLLT can improve bone formation process and
accelerate particles resorption in the interior of bone defects [16],
since it can increases osteoblastic [33] and osteoclastic activity [34].
This is a valuable finding when particles fail to resorb and remain like
a motionless body surrounded by the host bone [35,36].

Few studies have addressed the action of LLLT on the interaction of
implanted biomaterial and tissue during bone healing process [37,38].
It has been shown that LLLT promotes bone healing and bone minerali-
zation [39]. In the search for the optimal biomaterials tissue interaction,
the effect of LLLT on these cells is an important field of investigation
[39]. Thus, the purpose of the present study was to analyze
histomorphometrically the effect of LLLT on bone formation process in
surgically created critical-size defects (CSDs) treated with BBG and its
influence over particles resorption of BBG.

2. Materials and Methods
2.1. Animals and Experimental Groups

After careful planning of a double-blind interventional animal study
and an ethical approval by the Ethics Committee on Animal Use (proto-
col #003162/2007) of the School of Dentistry, Aragatuba Campus, Sdo
Paulo State University, sixty four 3-month-old male rats (Rattus
norvegicus, albinus, Wistar) weighing 250 to 300 g (UNESP, Dental
School of Aragatuba, Animal Care Unit) were included in the study.
This study conforms to ARRIVE (Animal Research: Reporting of In Vivo
Experiments) [40]. The animals were kept in plastic cages with access
to food and water ad libitum, in a room with a 12-h light/dark cycle
and a temperature between 22 and 24 °C. Prior to surgical procedures,
all animals were allowed to acclimatize to the laboratory environment
for a period of 7 days. Following a table generated by a computer pro-
gram, the animals were distributed into 4 experimental groups (n =
16): the C group (control), only blood clot; the LLLT group, LLLT and
blood clot; the BBG group, CSD filled with BBG; BBG/LLLT group, LLLT
and CSD filled with BBG.

2.2. Creation of the CSD

For surgical procedures, the animals were anesthetized by intramus-
cular injection with ketamine (70 mg/kg) (Vetaset, Zoetis, Florham
Park, NJ) and xylazine (6 mg/kg) (Coopazine, Coopers, Sdo Paulo, Sdo

Paulo, Brazil). After aseptic preparation, a semilunar incision was
made in the scalp in the anterior region of the calvarium, allowing re-
flection of a full thickness flap in a posterior direction. A 10-mm CSD
was made with a trephine (3i Implant Innovations Inc., FL, USA) in a
low-speed hand piece under continuous sterile saline irrigation. Ex-
treme care was taken not to damage the dura mater during the creation
of the CSD. The defect included a portion of the sagittal suture. The CSD
of each animal was filled with particles of 250 to 1000 um of BBG (Gen-
Mix Baumer S.A., Sdo Paulo, SP, Brazil) using a 6 mm> measuring cup [6].
The soft tissues were then repositioned and sutured (4-0 Silk; Ethicon,
Sdo Paulo, SP, Brazil) to achieve primary closure. Each animal received
post-surgical intramuscular injections of 24.000 IU of penicillin G-
benzathine (Fort Dodge, Satide Animal Ltd., Campinas, SP, Brazil).

2.3. LLLT Protocol

In the LLLT and BBG/LLLT groups the LLLT was used after the dis-
placement of the total retail and clothing of the surgical defect. The
laser used in this study was gallium aluminum-arsenide (Bio Wave;
Kondortech Equipment Ltd., Sdo Carlos, Sdo Paulo, Brazil), with a wave-
length of 660 nm, power of 35 mW, and spot size of 0.07 cm?. LLLT was
performed once in eight points around the CSD, in contact with the bone
tissue, and also in a central point of the CSD in the scanning procedure
[41]. The treatment laser was emitted with power of 0.03 W during
72 s/point, irradiance of 0.42 W/cm?, and fluency of 30.85 J/cm?/point.
The area received a total energy of 19.44 ].

24. Tissue Processing

Eight animals from each group were euthanized at 30 or 60 days
post-operation. The area of the original surgical defect and the sur-
rounding tissues were removed in block. The blocks were fixed in 4%
paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 48 h, rinsed
with water, and then demineralized in a solution of 10% EDTA. After de-
calcification, they were processed and embedded in paraffin. Serial
6 mm-thick sections were cut in a longitudinal direction. The sections
were stained with hematoxylin and eosin (H&E) for analysis under
light microscopy. Two sections from the central area were selected for
histological and histometric analyses.

2.5. Histomorphometric Analysis

Two histological sections, representing the center of the original
surgical defect, were selected for histologic and histometric analyses
to increase the reliability of the data used in the statistical analysis.
These analyses were performed by an examiner blinded to the treat-
ment rendered (LRC). The images of the histologic sections were cap-
tured by a digital camera (Olympus DP 10, Olympus Optical Co. Ltd.,
Tokyo, Japan) coupled to a light microscope (Olympus BX 50 F4, Olym-
pus Optical Co. Ltd., Tokyo, Japan) with an original magnification of 32 x.
The digital images were saved on a computer. A composite digital image
was then created by combining three smaller images, because it was not
possible to capture the entire defect in one image at the level of magni-
fication used. The composite image was created based on anatomic ref-
erence structures (such as blood vessels and bone trabeculae) within
each of the histologic sections. The Imagelab 2000 software (Diracon
Bio Informadtica Ltd., Vargem Grande do Sul, Sdo Paulo, Brazil) was
used for the histomorphometric analysis. The following criteria [42]

Fig. 1. Panoramic views of the surgical defects and detailed histological appearance of the edges and center of the surgical defect at 30 postoperative days. Photomicrographs showing the
NFB close to the edges of the surgical defect; remnants of granules of BBG and formation areas of osteoid matrix in (A) C; (B) LLLT; (C) BBG and (D) BBG/LLLT. NFB restricted to areas close to
the edges of the surgical defect in C; LLLT; BBG and BBG/LLLT- A(a)/(c), B(a)/(c), C(a)/(c) and D(a)/(c). Range of well-vascularized fibrous CT in C - A(b). Area of osteoid matrix with a large
number of osteoblasts (asterisk) in LLLT - B(b). Granules of BBG encircled by areas of osteoid matrix with a large number of osteoblasts (asterisk) in BBG and BBG/LLLT - C(b) and D(b).
(Hematoxylin and eosin staining; original magnification x50 in A, B, C and D; original magnification x 100 in A(a)/(b)/(c), B(a)/(b)/(c), C(a)/(b)/(c) and D(a)/(b)/(c). Abbreviations: NFB,

newly formed bone; BBG, bovine bone graft; CT, conjunctive tissue.
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were used to standardize the histomorphometric analysis of the digital
images:

(a) The total area to be analyzed corresponded to the entire area of
the original surgical defect. This area was determined by first identifying
the external and internal surfaces of the original calvarium at the right
and left margins of the surgical defect, and then connecting them with
lines drawn following their respective curvatures. The newly formed
bone area (NFBA) was delineated within the confines of the total area.

(b) The total area was measured in square millimeters and was
considered to represent 100% of the area to be analyzed. The NFBA
and remaining particles areas (RPA) of BBG was also measured in square
millimeters and calculated as a percentage of the total area.

2.6. Statistical Analysis

The values of NFBA for each animal were represented by the mean
percentage of the two histologic sections. The data were subjected to
the Shapiro-Wilk test to confirm a normal distribution, and the data
were analyzed by a two-way ANOVA (p < 0.05) with Tukey's post hoc
test for individual comparisons (p < 0.05). All analyses were performed
using BioStat 3.0 software (Bioestat Windows 1995 Sonopress; Manaus,
Amazonas, Brazil).

3. Results
3.1. Qualitative Histologic Analysis

At 30 days post-operation, almost all specimens of the C group ex-
hibited absence of new bone formation at the edges of surgical defect
while some specimens exhibited discrete new bone formation (Fig. 1:
A(a)/(c)). The connective tissue presented thin and with rare fibroblasts
(Fig. 1: A(b)). In the LLLT group, we observed discrete new bone
formation at the edges of surgical defect (Fig. 1: B(a)/(b)). Inside it,
the collagen fibers of connective tissue presented more organized than
the C group and with small number of fibroblasts. Areas of osteoid ma-
trix with a large number of osteoblasts also were observed (Fig. 1: B(b)).
The BBG and BBG/LLLT groups exhibited extensive areas occupied by
implanted material (Fig. 1: C, D) encircled by a range of well-
vascularized fibrous and osteoid matrix with a large number of osteo-
blasts (Fig. 1: C(b), D(b)). In the BBG group also was observed discrete
new bone formation at the edges of surgical defect (Fig. 1: C(a)/(c))
and the presence of small spurs of new bone formation adjacent to im-
planted material in the interior of defect (Fig. 1: C(b)). In the BBG/LLLT
group was observed discrete new bone formation at the edges of surgi-
cal defect (Fig. 1: D(a)/(c)), however, higher than BBB and the LLLT
groups. The interior of defect presented connective tissue with moder-
ated number of fibroblasts and osteoid matrix with a large number of
osteoblasts adjacent to implanted material (Fig. 1: D(b)).

At 60 days post-operation, the histological characteristics were sim-
ilar to those previously described. All specimens of C group presented
similar characteristics in relation to connective tissue and arrangement
of collagen fibers, which exhibited a moderate number of fibroblasts
dispersed throughout the defect (Fig. 2: A(b)).In the LLLT group was ob-
served areas of new bone formation at the edges (Fig. 2: B(a)/(b)) and
inside the surgical defect (Fig. 2: B(b)). In BBG and BBG/LLLT groups,
the interior of defect was occupied by granules of implanted material
(Fig. 2: C, D), without an extensive inflammatory response (Fig. 2:
C(b), D(b)). With respect to bone formation, the histological character-
istics of the C, LLLT and BBG groups were very similar to 30 days post-

operation. The specimens of the BBG/LLLT group presented moderated
new bone formation at the edges of surgical defect (Fig. 2: D(a)/(c))
and e more quantity of new bone formation spurs adjacent to implanted
material (Fig. 2: D(c)) compared to C, LLLT and the BBG groups. The BBG
and BBG/LLLT groups presented specimens with granules of BBG
encircled by new bone formation and extensive areas of osteoid matrix
formation with large number of osteoblasts (Fig. 2: C(b), D(b)/(c)). No
CSD in any of the groups and time points studied were completely re-
generated with bone. At the end of the experimental period, the defect
in the BBG and BBG/LLLT groups was still filled by BBG and the area was
densely filled by collagen fibers.

3.2. Histometric Analyses

3.2.1. NFBA

The LLLT (5.82 + 2.05; 7.34 & 1.01) group presented significantly
greater NFBA when compared to the C group (1.61 4 0.30; 5.59 +
0.94) at 30 and 60 days post-operation (p < 0.05). The BBG/LLLT group
(7.39 + 1.45; 9.44 + 2.36) presented significantly greater NFBA when
compared to the BBG group (3.85 4+ 1.56; 8.02 £ 0.63) at 30 and
60 days post-operation (p < 0.05). Means and standard deviations of
NFBA for each group are presented in Table 1.

3.2.2. RPA

Comparison between periods within the same group showed that
solely BBG Group showed lower (p < 0,05) mean RPA percentage for
the implanted material following 60 post-operation days (22.72 +
10.23) when compared to 30 post-operation days (27.78 + 11.22).
BBG/LLLT Group did not present any statistically meaningful difference
in mean RPA percentage of implanted material in 30 (21.98 + 4.10)
and 60 (27.20 + 6.39) post-operation days. There was no statistically
meaningful difference at the mean RPA percentage of implanted mate-
rial between groups at the same period. Mean and standard deviations
of RPA, with inter and intra-groups comparisons, are presented at
Table 2.

4. Discussion

This study used the classical calvarial defect model [43] to evaluate,
from a histological and histometric point of view, the effect of LLLT on
bone healing processes of surgically created CSDs treated with BBG.
Considering previous findings about the action of LLLT on osteoblastic
[33] and osteoclastic activity [34], our hypotheses were: (1) LLLT
could improve bone formation process; (2) LLLT could accelerate the
particles resorption of BBG in the interior of the bone defects.

In the present study, in both experimental periods, the LLLT group
presented greater new bone formation when compared to C (control)
group, and the BBG/LLLT group presented greater new bone formation
when compared to BBG group, suggesting that LLLT can increase the
bone formation and accelerate the bone healing process in CSDs treated
or not with BBG. These results are in agreement with previous studies
that support the positive effect of laser on bone formation both when
used alone or associated with bone graft [16,23]. The literature reports
that bone healing process triggered by injury results in a local inflam-
matory immune reaction whose development is thought to highly influ-
ence the outcome of such process [44,45,46]. The inflammatory events
contribute to the local production/release of growth factors classically
associated with bone neoformation, as well with the promotion of che-
motaxis of cells associated with the repair process [46,47,48,49,50,51]. It

Fig. 2. Panoramic views of the surgical defects and detailed histological appearance of the edges and center of the surgical defect at 60 postoperative days. Photomicrographs showing the
NFB close to the edges of the surgical defect; remnants of granules of BBG and formation areas of osteoid matrix in (A) C; (B) LLLT; (C) BBG and (D) BBG/LLLT. NFB restricted to areas close to
the edges of the surgical defect in C; LLLT; BBG and BBG/LLLT- A(a)/(c), B(a)/(c), C(a)/(c) and D(a)/(c). Range of well-vascularized fibrous CT in C - A(b). NFB adjacent to area of osteoid
matrix with osteoblasts in LLLT - B(b). Granules of BBG, distant from edges of the surgical defect, encircled by spurs of NFB and areas of osteoid matrix with a large number of osteoblasts
(asterisk) in BBG and BBG/LLLT - C(b) and D(b). (Hematoxylin and eosin staining; original magnification x50 in A, B, C and D; original magnification x 100 in A(a)/(b)/(c), B(a)/(b)/(c),
C(a)/(b)/(c) and D(a)/(b)/(c). Abbreviations: NFB, newly formed bone; BBG, bovine bone graft; CT, conjunctive tissue.



AF. Bosco et al. / Journal of Photochemistry & Photobiology, B: Biology 163 (2016) 303-310



Image of Fig. 2

308 AF. Bosco et al. / Journal of Photochemistry & Photobiology, B: Biology 163 (2016) 303-310

Table 1
Mean percentage (%) and standard deviations (M 4 SD) of NFBA within the surgically cre-
ated defects with comparison among groups.

Periods
Groups n 30 days 60 days
C (control) 16 1.61 £ 0.30 5.59 + 0.94
LLLT 16 5.82 + 2.05" 734 £ 1.017
BBG 16 3.85 + 156" 8.02 + 0.63"
BBG/LLLT 16 7.39 4+ 1.45°# 9.44 + 2.36"#
n 64 32 32

Comparison inter-groups.
* Significant difference with C group (ANOVA, Tukey's test) (p < 0.05).
# Significant difference with BBG group (ANOVA, Tukey's test) (p < 0.05).

was reported that the LLLT can increase vascularization and early onset
of the inflammatory response, which is resolved more rapidly. This
event allows that the proliferation phase of healing begins earlier [52].
In addition, the bone defect healing depends on the availability of pre-
cursor cells in the surrounding bone or soft tissue, and also the ability
of these cells to invade the defect and to differentiate into fibroblasts
and osteoblasts [23]. It is not clear whether the LLLT biomodulation of
bone formation is a consequence of mesenchymal cells stimulation
[53] or direct stimulation of osteoblastos [54], but may be that it results
from an increased release of fibroblast growth factor, which is found in
bone tissue and acts on differentiated cells, increasing cell proliferation
and secretion of bone matrix components [55].

The collagen fibers are organic precursors of extracellular matrix and
act as a scaffold for ions deposition on bone mineralization process [56].
In the present study, the qualitative histological analysis demonstrated
that collagen fibers of connective tissue presented more organized in
LLLT than the C group, suggesting a biostimulatory effect of LLLT in the
collagen production. Similar results were also previously reported [57,
58,59]. Ultimately, the literature also showed that the LLLT can improve
the capability of mature osteoblasts to release calcium hydroxyapatite
[60]. During early stages of healing, the osteoblastic activity was chiefly
proliferative and deposition started later, which resulted in the forma-
tion of immature bone, still poor in hydroxyapatite crystals [60]. The hy-
droxyapatite crystals are found on collagen fibers, within them, and in
the matrix around and the deposition of this mineral represents bone
maturation [60]. The LLLT combined with bone graft and guided bone
regeneration increases calcium hydroxyapatite concentrations improv-
ing defects bone healing than using bone graft only [59,60]. These re-
sults are in agreement with those obtained in the present study since
it was observed greater new bone formation in the specimens of the
BBG/LLLT group in comparison to the BBG group. Despite of this finding,
the literature presents controversial results [55].

The different doses, application protocols and experimental models
complicate comparisons between the studies. Many variables may af-
fect the LLLT biostimulatory effects (such as, laser wavelength, energy,
exposition time, power, and the biologic state of the cell). Most studies
have evaluated the effect of infrared laser light on bone healing [59,61,
62,63,64] because of its tissues deeper penetration. However, recent
studies of Garcia et al. [38,41] have demonstrated that visible laser
light (660 nm wavelength) also presents biomodulatory effect on

Table 2
Mean percentage (%) and standard deviations (M =4 SD) of RPA within the surgically cre-
ated defects with comparison among groups.

Periods
Groups n 30 days 60 days
BBG 16 27.78 £ 1.12 22.72 + 1.02"
BBG/LLLT 16 21.98 £+ 4.10 27.20 4+ 6.39
n 32 16 16

* Significant difference with BBG group in the same period (ANOVA, Tukey's test)
(p £0.05).

bone healing, when used transoperatively at the borders of surgical de-
fect, in contact with bone tissue, and also in a central point of the CSD
[38,41]. On the contrary, Jakse et al. [65] did not confirm the positive
LLLT effect on bone healing in cancellous sinus graft, because of it inad-
equate irradiation power (<4 J/cm?) and absorption of most irradiated
light by thick sinus cortical bone and deep sinus of the sheep. In both
studies of Garcia et al. [38,41], the CSD was irradiated only during the
surgery procedure. As in the mentioned studies, in the present, the
CSD also was irradiated with visible laser light (660 nm of wavelength,
30.85 J/cm? of dose), only during the surgical procedure at the borders
of wound, in contact with bone tissue, and also in a central point of
the surgical defect.

Although the use of LLLT on the biostimulation of bone repair has
been growing steadily, and several studies have demonstrated positive
results on the healing of bone tissue, there are few previous reports on
the association of LLLT and bone grafts or biomaterials [55,66]. Some
preclinical studies have demonstrated the effects of LLLT on implanted
biomaterials in order to improve bone healing process in different
models of study with bone augmentation procedures. Among the
models used are: calvarial CSDs [16,23,38,62], surgical defects created
in femur [59,67], tibiae fractures [68], mandibular trauma [69] and tita-
nium implants associated to biomaterial on tibiae of rats [60,68].

The calvarial bone defect model is appropriate for the examination
of maxillary bone regeneration because its several similarities to the
maxillofacial area [70,71]. Anatomically, the calvarium consists of two
cortical sheets separated by reticulated bone, like the mandible; physi-
ologically, the healing pattern is also similar to that of the maxillae
[72]. In terms of morphology and embryology, the calvarium develops
from a precursor membrane, like the bones of the face, including
the maxilla and the mandible [73,74]. This process is called
intramembranous bone formation because it occurs in the interiors of
the membranes of loose connective tissue and not on a cartilaginous
mold, which characterizes endochondral ossification [75]. Once the
graft is placed within the calvarial surgical defect, the particles of mate-
rial are engulfed by a blood clot. This supplies the necessary proteins/
growth factors needed to begin the cell adhesion process and ultimately
the reconstruction and repairing of bone [6].

The qualitative histological analysis demonstrated that, excepting
for some specimens of control group at 30 days post-operation, new
bone formation was observed close to the borders of the surgical defect.
In the groups treated with BBG, it was possible to observe particles
encircled by immature bone trabeculae or collagen fibers with no
signs of an extensive inflammatory response, suggesting that the
grafting material placed in the defects was biocompatible and, at the
same time, osteoconductive. However, either in the BBG or BBG/LLLT
group, the particles remained within the defect. This observation is im-
portant because of the reports that LLLT can accelerate the resorption of
these particles in the interior of bone defects [16]. In the present study,
the quantitative histological analysis showed that while in the BBG
group there was a decrease in the mean percentage of implanted mate-
rial particles over the time, in the BBG/LLLT group it didn't occurred. It
was also observed that there was no significant difference in the mean
percentage of particles between these two groups in both experimental
periods studied. These results suggest that, on the contrary reported by
Cunha et al. [16] LLLT is not able to accelerate particles resorption of
BBG. Despite these findings, these materials have been used successfully
in numerous clinical and preclinical studies, including guided bone re-
generation [76,77], sinus augmentation [78,79] and socket augmenta-
tion [80,81]. Considering that little is known about the effects of LLLT
on xenogenics BBG and the high rate in medical and dental clinics of
theses material in bone reconstruction procedures, we believe that the
present study has important implications in the clinical setting.

Within the limits of the present study, it can be concluded that LLLT
can improve bone formation process in CSD filled or not with BBG in rat
calvaria, but it is not able to accelerate particles resorption of this mate-
rial in the interior of bone defect.
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