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Using nonlinear jumps to estimate
cubic stiffness nonlinearity: An
experimental study
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Abstract

Attempts are being made to improve mechanical design by using nonlinearity rather than eliminating it, especially in the

area of vibration control and in energy harvesting. In such systems, there is a need to both predict the dynamic behavior

and to estimate the system properties from measurements. This paper concerns an experimental investigation of a

simple identification method, which is specific to systems in which the behavior is known to be similar to that of a

Duffing-type system. It involves the measurement of jump-down frequencies and the amplitudes of displacement at these

frequencies. The theoretical basis for the method is briefly described as, is an experimental investigation on a beam-

shaker system. The results are comparable with those determined by the restoring force surface method. The method

described in this article has the advantage that the data can be collected and processed more easily than the restoring

force surface method and can be potentially more suitable for the engineering community than existing identification

measures.
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Introduction

Many engineering structures behave as nonlinear
systems for high levels of excitation because of geo-
metric stiffness.1 Clamped–clamped beams, cable-wire
isolators, and micromachined resonators1–4 are exam-
ples of such structures, which have a restoring force
that is dependent upon the cube of the displacement
for relatively large amplitude motion—so-called
Duffing-type systems. Such systems may have jump-
up and jump-down frequencies depending upon the
level of damping.5 There is a need to validate theor-
etical models of nonlinear systems, which involves
experimental determination of the system properties.

There is extensive literature on nonlinear system
identification, and a comprehensive review on this
topic has been provided by Kerschen et al.2 System
identification generally involves excitation of the
structure and measuring the response; if possible the
excitation force is also measured. The Hilbert trans-
form can be used on the free vibration signal to deter-
mine some properties of the system, for example from
the backbone curve.6 There are several methods to
determine the system properties using data from
tests involving random excitation, such as the reverse
path method,7 consideration of the nonlinear forces as
feedback forces,8 nonlinear subspace identification,9

and use of the Volterra series.10 Recently, a global–
local nonlinear system identification method,11 a
frequency response function method,12,13 time- and
frequency-domain subspace methods,14 synchroniza-
tion-based method,15 and resonance decay method16

have been used to estimate strong nonlinearity in
single or multiple degree-of-freedom (MDOF) sys-
tems. There are many other methods, and the reader
is referred to Worden and Tomlinson17 and the refer-
ences therein for further details.

This article is concerned with experimental verifi-
cation of a simple frequency domain method of deter-
mining system parameters,18,19 which may be of
interest to practicing engineers. It falls into the same
category as the frequency domain methods discussed
by Carrella and Ewins12 and Arslan et al.13 These
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methods are distinctive in that they are relatively
simple to implement and can be related in some
sense to system identification of linear vibrating sys-
tems. Of course, because of their simplicity these
methods have some limitations. For example, the
method discussed by Carrella and Ewins12 is suitable
for single-degree-of-freedom (SDOF) systems with
weak nonlinearities such that jumps do not occur in
the system response. The basic principle of the first
method discussed by Arslan et al.13 is similar to that
discussed by Carrella and Ewins12, but can, in prin-
ciple, be applied to MDOF systems. The disadvantage
is that a controller is required in the experimental set-
up to control the output of the shakers so that the
structural response is the same at all frequencies. The
second method in Arslan et al.13 uses the first method
and then proposes a simple way of determining the
describing function (which is the stiffness of the
system in the case of a stiffness only nonlinearity).
In the methods described by Carrella and Ewins12

and Arslan et al.,13 multiple nonlinearities of both
stiffness and damping can be accommodated. In the
method described in this paper, a SDOF system with
cubic stiffness nonlinearity is addressed. Accordingly,
it is a grey-box approach, which is applicable when
the type of system nonlinearity is known a priori. The
advantage of the approach is that it is very simple,
based on clear physical principles so that it is easy to
visualize the way in which it works, and can be con-
ducted without the need for sophisticated test equip-
ment or computing power. This is contrary to many
of the methods described recently in the literature,
which tend to be methods that do not require know-
ledge of the physical behavior of the system (black
box), and can be used for multiple types of nonlinea-
rities. Accordingly, they tend to be complex, and the
ways in which they work in terms of the physics rather
than the mathematics is not very transparent.

The method described in this paper is based on the
estimation of the mass of the system from low-level
random excitation, and then the determination of the
linear and nonlinear stiffness parameters by exciting
the system at discrete frequencies so that the jump-
down frequency can be identified for a several levels of
excitation. The linear and nonlinear stiffness param-
eters are then estimated from this data and compared
with those determined using the restoring force sur-
face (RFS) method.17

Parameter estimation

If the vibration modes of a structure are well-sepa-
rated, then the first mode of vibration can be con-
sidered as a SDOF system. An example of such a
system, which is of interest here, is a uniform straight
beam, which is constrained at the ends and is subject to
various levels of excitation. For low levels of vibration
the dominant stiffness is from bending, and the system
behaves as a linear structure, but for higher levels of

vibration the in-plane stretching of the beam contrib-
utes to the stiffness, which results in a nonlinear stiff-
ness.1 The first mode of this system can be described as
a Duffing-type SDOF system whose equation of
motion, for harmonic excitation, is given by

m €xþ c _xþ k1xþ k3x
3 ¼ F cosð!tÞ ð1aÞ

where m is the mass, c is the damping coefficient, k1
and k3 are the linear and nonlinear stiffness coeffi-
cients respectively, and F is the amplitude of the har-
monic excitation force; the overdots represent
differentiation with respect to time. Introducing the
non-dimensional parameters
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Equation (1a) can be written as

y00 þ 2�y0 þ yþ �y3 ¼ F̂ cosð��Þ ð1bÞ

where �ð Þ0 denotes differentiation with respect to �,
and the static displacement x0 of the system due to
its own weight is used to nondimensionalize the dis-
placement. Applying the harmonic balance method
(HBM) and assuming a solution of the form
y ¼ Y cosð�� þ �Þ results in the frequency–amplitude
relationship given by5
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For a lightly-damped system in which �2 � 1, the
relationship between the jump-up �u, and jump-down
�d frequency and the nonlinear stiffness are respect-
ively given by5
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From equation (2), the jump-down frequency is
also related to the nonlinear stiffness by

�2
d � 1� 2�2 þ

3

4
�Y2

d ð3cÞ
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From equations (3a) to (3c) the nonlinear param-
eter can be estimated by
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Note that if equation (4a) is used then the jump-up
frequency and the nondimensional excitation force
need to be known. If equation (4b) is used then the
jump-down frequency, the nondimensional excitation
force and the damping ratio need to be known.
If equation (4c) is used then the jump-down fre-
quency, the amplitude of the response at the jump-
down frequency and the damping ratio need to be
known. If the damping is light and the nonlinearity
strong enough so that �2

d � 1� 2�2 then damping
can be neglected in equation (4c).

An issue with using equations (4a) to (4c) is the
sensitivity of the nonlinear stiffness estimate to
errors that occur in the measurement of the jump
frequencies. The percentage error in the estimation
of the nondimensional stiffness parameter is plotted
as a function of the nondimensional jump-up fre-
quency in Figure 1(a) and the corresponding percent-
age errors as a function of the jump-down frequencies,
estimated using equations (4b) and (4c), are shown in
Figure 1(b) and (c), respectively. Errors in the esti-
mate of the jump frequency from 1% to 5% are con-
sidered and damping in equation (4c) is neglected. It is
clear from Figure 1(a) to (c) that in all cases the error
in the estimate of the nonlinear stiffness using jump
frequencies is potentially large.

To minimize the potential error from a single meas-
urement, several measurements are made for different
levels of excitation, and equation (3c) is used to give
an estimate of the nonlinearity. In equation (3c), it is
clear if �2

d is plotted for a corresponding value of Y2
d

for each excitation level, then provided that the
system under test behaves as a Duffing oscillator
with linear viscous damping, the resulting data
points should lie on a straight line, with the slope of
this line being 3�=4. Note that equation (3c) is valid
even if the excitation is not high enough for a jump-
down frequency to occur. In this case the points of
interest are the resonance frequency and the displace-
ment amplitude at this frequency. The intersection of
the line with the �2

d axis should coincide with the
nondimensional resonance frequency of the underly-
ing linear system. In practice, the points will not lie

perfectly on straight line, so a straight-line, least-
squares fit to the data points is necessary. The inter-
sect of this line with the y axis gives the damped
natural frequency of the underlying linear system,
which can be used to determine the linear stiffness.

(c)

(b)

(a)

Figure 1. Percentage error in the estimate of the nondi-

mensional nonlinear stiffness parameter as a function of the

jump frequency. (a) Using equation (4a), (b, c) using equations

(4b) and (4c) respectively. Errors in the measurement of the

jump frequency, thick solid line 1%, dashed line 2%, dotted line

3%, dashed-dotted line 4%, and thin solid line 5%.
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Either before or after � has been estimated, the
mass and damping can be determined. This can be
done by measuring the receptance using low-level
random excitation, so that the nonlinear stiffness
will have a negligible effect compared to the linear
stiffness. If the damping is light �5 0:1ð Þ, the damping
ratio can be estimated by measuring the half-power
bandwidth of the mode, �!,20 and then the damping
ratio can be determined by � � �!= 2!nð Þ. Now, the
dynamic stiffness of the system is the reciprocal of the
receptance and is given by k1 � !

2mþ j!c. If
the real part of this is plotted as a function of the
square of the excitation frequency, then the slope of
this line is �m. Once the mass and damping ratio
has been determined, the linear stiffness k1 can be
estimated using the damped natural frequency.
Finally, the nonlinear stiffness can be determined
from k3 ¼ �k1=x

2
0 ¼�!

6
nm=g

2.

Experimental work

The test-rig used in this work is shown in Figure 2. It
consists of a compressed clamped-clamped aluminum
beam to give a structure with a hardening nonlinear
cubic stiffness, a TIRA shaker, and a DYTRAN
accelerometer. The beam has a width of 20mm, a
thickness of 1.8mm, and a length of 460mm. The
mass of the beam is 50 g. The exact details of the
structure are relatively unimportant, the main point
being that the combined beam-shaker system acted as
an SDOF oscillator over a limited frequency range.
For all the tests, the voltage signal to the amplifier
driving the shaker was used as the reference source.
This was done as it was relatively easy to keep the

current supplied to the shaker constant over a range
of frequencies (using the amplifier in current mode),
which was not the case for the force applied to the
beam.

A compressive axial force was applied to the beam
using a screw at the top of the test-rig. It was applied
gradually until the beam buckled and then the screw
was rotated in an anti-clockwise direction until the
beam was just on the point of buckling. As shown
in Kovacic and Brennan,1 the compression force has
the effect of reducing the linear stiffness of the beam
so that the nonlinear hardening stiffness has a more
pronounced effect compared to the linear stiffness.

Before conducting experiments on the test-rig, the
relationship between the source voltage supplied to the
amplifier and the blocked force generated by the
shaker was determined by dynamic calibration of
the shaker. It was found to be 9.9N/V. Following
the calibration of the shaker, the beam-shaker system
was excited by low-level random noise so that it
behaved as a linear system. The estimated mass and
damping ratio of the underlying linear system were
estimated using the method described in ‘‘Parameter
estimation’’ section and are given in Table 1.

Tests to determine the nonlinear stiffness were then
conducted using stepped-sine excitation. The excitation
frequency was increased from 20 Hz to 50Hz in 1Hz
steps, and seven different levels of excitation were used.
In each case, the source signal to the amplifier was kept
constant and hence the force applied to the beam-
shaker system, was kept constant. The data was col-
lected using an mþp VibPilot data acquisition system.

The frequency response curves (FRCs) for the
centre of the beam for different levels of excitation

(a) (b)

Figure 2. Experimental setup for the measurement of the beam-shaker system.
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are shown in Figure 3. The jump-down points are
indicated on the figure, together with the point of
maximum amplitude for low level of excitation
when no jump occurred.

Estimation of the nonlinear stiffness

To determine the nonlinear cubic stiffness, equation
(3c) can be written in dimensional form as

f 2d � f 2r þ
3

16�2
k3
m

X2
d ð5Þ

where fr ¼ fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
is the frequency at which the

peak occurs in the displacement response of a damped
linear oscillator, fn ¼ !n= 2�ð Þ and Xd is the displace-
ment amplitude of the response at either the approxi-
mated jump-down frequency (or the maximum
response when a jump does not occur). To determine
k3 from the slope of the graph of f 2d as a function of
X2

d only the mass needs to be known, which was deter-
mined previously.

The results are plotted in Figure 4. Two results are
shown as the jump-down frequency is not known
exactly. This is because although the jump occurs at
a specific frequency in the test, it may, in principle,
occur at some point between that frequency and the
next frequency step. The circles denote the measured
amplitudes at the jump-down frequencies, while the

diamonds denote the measured amplitudes with the
jump-down frequencies increased by 1 Hz from the
measured jump frequencies. As shown in Figure 3,
the solid marker in Figure 4 denotes the peak in the
response and the hollow markers denote the jump-
down points. As acceleration was measured, the amp-
litude of the displacement at the jump-down fre-
quency was determined by dividing the value of the
acceleration at the jump-down frequency by 2�fdð Þ

2.
Once the gradients of the lines were calculated, the
values of the nonlinear stiffness could be determined.
They were found to be 4.65� 108Nm�3 (dashed line)
and 4.90� 108Nm�3 (dashed-dotted line), which
results in an average nonlinear stiffness of
4.78� 108Nm�3.

To check the nonlinear stiffness estimate it is com-
pared with the estimate from the RFS method.17 The
system was excited with a swept-sine signal, and the
excitation force and acceleration of the center of the
beam were measured. To apply the RFS method
equation (1a) is rearranged to give

c _xþ k1xþ k3x
3 ¼ f tð Þ �m €x ð6Þ

The right-hand side of equation (6) is known, as
the acceleration and mass are measured, as is the exci-
tation force f tð Þ. The velocity and the displacement
are determined by time-domain integration of the
acceleration signal. A three-dimensional surface
ðx, _x, f tð Þ �m €xÞ can then be plotted using the data at
each measured time instant. A section through the
surface is then extracted between the values of
�0:005m=s5 _x5 0:005m=s. This is plotted in
Figure 5 as the restoring force. A polynomial is
subsequently fitted to the data to give the linear and
nonlinear stiffness which are k1 ¼ 7237N=m and
k3 ¼ 3:93� 108 N=m3.

Figure 3. Measured displacement of the middle point of the

beam and the locus of the points from either the peak or the

jump point; *, jump-down point; �, peak point.

Table 1. Estimated parameters.

Mass (kg)

Damping

ratio k1 (N/m) k3 (N/m3)

0.141 0.0187 Current method 6830 4.78� 108

RFS method 7237 3.93� 108

RFS: restoring force surface.

Figure 4. Plot used to determine the nonlinear stiffness k3

from experimental data. * is the jump-down point, s and ¨
denote the jump-down and peak points with the jump fre-

quency incremented by 1 Hz. The straight lines are fitted to the

data in a least-squares sense.
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The estimated parameters are given in Table 1.
Comparing the stiffness results obtained using the cur-
rent and RFS methods, it can be seen that the differ-
ence between linear stiffness is about 6%, while the
difference between the nonlinear stiffness is about
20%. Although there are some differences between
the estimated parameters, the two estimated restoring
force curves are very similar when they are plotted
together, as can be seen in Figure 5. A summary of
the two methodologies is compared in Table 2. It can
be seen that the two methods are both simple and
physical. If possible, both methods are suggested to
be used to estimate the nonlinearity and compared
with each other.

Conclusions

This article has described an experimental investiga-
tion into a method to estimate the cubic stiffness non-
linearity in a Duffing-like system. The method is based

on exciting the system over a range of amplitudes and
frequencies and measuring the jump-down frequencies
and corresponding amplitude at these frequencies.
It has been shown that whilst in principle the non-
linear stiffness can be estimated from a single meas-
urement, the error from this measurement can
potentially be large. It is, therefore, preferable to
excite the system over a range of amplitudes. The
stepped-sine excitation method was used to estimate
the jump-down points at different excitation ampli-
tudes. The estimated linear and nonlinear stiffness of
the system are compared with those determined from
the RFS method (which compare reasonably well).
The advantage of the approach is that it is simple,
based on clear physical principles so that it is easy
to visualize the way in which it works, and can be
conducted easily without the need for sophisticated
test equipment or computing power.
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