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Abstract We consider the well-known Sprott A sys-
tem,whichdepends on a single real parametera and, for
a = 1, was shown to present a hidden chaotic attrac-
tor. We study the formation of hidden chaotic attrac-
tors as well as the formation of nested invariant tori
in this system, performing a bifurcation analysis by
varying the parameter a. We prove that, for a = 0, the
Sprott A system has a line of equilibria in the z-axis, the
phase space is foliated by concentric invariant spheres
with two equilibrium points located at the south and
north poles, and each one of these spheres is filled by
heteroclinic orbits of south pole–north pole type. For
a �= 0, the spheres are no longer invariant algebraic sur-
faces and the heteroclinic orbits are destroyed. We do a
detailed numerical study for a > 0 small, showing that
small nested invariant tori and a limit set, which encom-
passes these tori and is the α- and ω-limit set of almost
all orbits in the phase space, are formed in a neighbor-
hood of the origin. As the parameter a increases, this
limit set evolves into a hidden chaotic attractor, which
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coexists with the nested invariant tori. In particular, we
find hidden chaotic attractors for a < 1. Furthermore,
we make a global analysis of Sprott A system, includ-
ing the dynamics at infinity via the Poincaré compact-
ification, showing that for a > 0, the only orbit which
escapes to infinity is the one contained in the z-axis and
all other orbits are either homoclinic to a limit set (or
to a hidden chaotic attractor, depending on the value
of a), or contained on an invariant torus, depending on
the initial condition considered.

Keywords Sprott A system ·Hidden chaotic attractor ·
Invariant algebraic surfaces · Nested invariant tori ·
Homoclinic and heteroclinic orbits

1 Introduction

Chaotic systems have been intensively studied since
Lorenz found, in 1963, the first chaotic attractor in
a three-dimensional autonomous system [17,27], and
various chaotic systems have been reported in the last
years, as the Rössler system [24], the Chen system [1],
the Lü system [18], and many others.

Recently, there is a special interest in finding and
studying chaotic systemswith hidden attractors, which
are attractors whose basin of attraction does not inter-
sect with small neighborhoods of any equilibrium
point; for more details about this kind of attractors, see
[4,12] and references therein. Chaotic attractors in dif-
ferential systems without any equilibrium point [8,29],
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with only stable equilibria [10,11,20,30–33] or with
an infinite number of equilibrium points [5,7,14], are
hidden attractors. Here we call this kind of attractors
hidden chaotic attractors. Systemswith hidden chaotic
attractors are rarely found; then, only a few examples
have been reported in the literature, and there is little
knowledge about their formation, and also an analytic
proof of their existence is yet needed. In fact, while
the classical chaotic attractors, as the Lorenz and Chen
attractors, have some known routes to their formation,
as the bifurcation of homoclinic orbits (Shilnikov-like
theorems) or cascade of period doubling bifurcations,
as far as we know very little is reported in the literature
about the formation of hidden chaotic attractors. From
the point of view of applications, hidden attractors
are important in engineering applications because they
allow unexpected and potentially disastrous responses
to perturbation in a structure like a bridge or an airplane
wing, as cited in [7,9,20].Other recent applications and
implementations of differential systems having hidden
attractors can be found in [3,13,21,22,26,34].

In this paper, we consider the oldest and best-known
example of differential system with a hidden chaotic
attractor, given by

ẋ = y, ẏ = −x − yz, ż = y2 − a, (1)

wherea ∈ R and the dot denotes derivativewith respect
to the independent variable t , usually called the time.
System (1) is a special case of the Nosé–Hoover oscil-
lator [6] which describes many natural phenomena, as
shown in [23], having practical as well as theoretical
importance. In [28], Sprott listed system (1) as one of
the differential systemswithout equilibrium points pre-
senting chaotic behavior (case A), when a = 1. In this
way, system (1) is usually called Sprott A system. In
[9], the authors showed that there exist nested invariant
tori in the phase space of system (1) coexisting with
the hidden chaotic attractor found in [28].

Aiming to understand how hidden chaotic attractors
and invariant tori are formed in the Sprott A system, we
perform a bifurcation analysis of system (1) by varying
the parameter a. We prove that for a = 0, the spheres
x2 + y2 + z2 = r2, with r > 0, are invariant by the
flow of system (1), so we call them invariant spheres.
Hence, the phase space of system (1) with a = 0 is
foliated by invariant spheres and we prove that each of
them is filled by heteroclinic orbits of south pole–north
pole type. More precisely, the following result holds.

Theorem 1 For a = 0, the phase space of system (1) is
foliated by the invariant spheres x2+y2+z2 = r2, with
r > 0, and the z-axis is a line of equilibria. Hence, the
south pole P− and the north pole P+ of each invariant
sphere are equilibrium points of system (1) and the
following statements hold.

(i) If 0 < r < 2, then P− is an unstable focus and
P+ is a stable focus;

(ii) If r = 2, then P− is an unstable improper node
and P+ is a stable improper node;

(iii) If r > 2, then P− is an unstable node and P+ is
a stable node.

Furthermore, P− and P+ are equilibrium points nor-
mally hyperbolic to the z-axis and for any orbit (differ-
ent for P− and P+) on any invariant sphere of system
(1), the α-limit set is the unstable equilibrium point P−
and the ω-limit set is the stable equilibrium point P+.
Therefore, each invariant sphere is filled by an infinite
set of heteroclinic orbits of south pole–north pole type,
as shown in Fig. 1.

Theorem 1 is proved in Sect. 2 and describes the
existence of a compact structure of the orbits in the
phase space of system (1) with a = 0, determined by
the existence of the concentric invariant spheres. This
compact structure plays an important role in the for-
mation of hidden chaotic attractors and invariant tori,
for a > 0 small enough. In fact when a �= 0, the het-
eroclinic orbits described in Theorem 1 are destroyed,
since system (1) has no equilibrium points for a �= 0,
and the spheres x2 + y2 + z2 = r2 are no longer invari-
ant algebraic surfaces. Furthermore, the z-axis becomes
invariant under the flow of system (1). Based on these
observations, we study the dynamical consequences of
these bifurcations in the phase space of system (1) by
varying the parameter a; in particular, we relate them
to the formation of hidden chaotic attractors and invari-
ant tori. We performed a detailed numerical analysis of
system (1) for a > 0 small. The main results obtained
are summarized in the following numerical result and
are presented with details in Sect. 3.

Numerical Result 2 For a > 0 small enough, there
exist small nested invariant tori in a neighborhood of
the origin in the phase space of system (1), as shown
in Fig. 2a, and the structure of invariant spheres is pre-
served, unless in a tubular neighborhood of the invari-
ant z-axis, as shown in Fig. 3. The orbits with initial
condition on these spherical structure are homoclinic
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0 < r < 2 r = 2 r > 2

Fig. 1 Flow of system (1) restricted to the invariant spheres x2 + y2 + z2 = r2 for 0 < r < 2, r = 2 and r > 2

Fig. 2 a Small nested
invariant tori of Sprott A
system, obtained taking
initial conditions
(0, 0.01, 0) (red) and
(0, 0.025, 0) (gray). b Orbit
with initial condition
(0, 1, 0) (blue) homoclinic
to a limit set (red). In both
cases, we take system (1)
with a = 10−4. (Color
figure online)

to a “limit set” which is formed in a neighborhood of
the origin, as drawn in Fig. 2b. This limit set encom-
passes the small nested invariant tori. Furthermore, as
the parameter a increases, the invariant tori and the
limit set expand and the limit set evolves into a hidden
chaotic attractor of system (1), as illustrated in Fig. 4.
The hidden chaotic attractor coexists with the nested
invariant tori, yet encompassing them (see Fig. 13 in
Sect. 3).

Here we say that an orbit is homoclinic to a limit
set when there exists a set which is the α- and the ω-
limit sets of the orbit, as the one described inNumerical
Result 2 and shown inFig. 2 b.Observe that the union of
these orbits with initial conditions on the same sphere
x2+ y2+ z2 = r2 forms a structure as the one drawn in
Fig. 5 which resembles an “apple” (see also Fig. 3a). In
Fig. 4 is shown the orbit with initial condition (0, 5, 0)

for different values of the parameter a, that is, a =
10−4, a = 10−2, a = 0.1, a = 0.25, and a = 0.4.
Note that for each a > 0 sufficiently small, this orbit is
homoclinic to a specific limit set. As the parameter a
increases, the limit set expands, and for a = 0.4, it can
be characterized as a hidden chaotic attractor, as shown
in Sect. 3 by calculating the Lyapunov exponents and
the Lyapunov dimension of this attractor. Hence, we
detected a hidden chaotic attractor for Sprott A system,
coexisting with nested invariant tori, even for a < 1.

Also, the numerical results obtained suggest that for
each small enough value of the parameter a, almost
all orbits in the phase space of system (1), except the
ones contained in the z-axis and in the nested invariant
tori, have a set which is their α- and ω-limit sets. This
set may be a hidden chaotic attractor, depending on the
parameter value. Hence, in order to confirm these asser-
tions and better understand the dynamics of system (1),
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Fig. 3 a Orbits with initial conditions on the spheres of radius
r = 0.03 (green), r = 0.04 (blue), and r = 0.05 (red). b Several
orbits with initial conditions on the sphere of radius r = 10. In
both cases, a = 10−4. The structure of the invariant spheres, for

“smal” radius a and “big” radius b, is preserved by continuity,
unless in a tubular neighborhood of the invariant z-axis. (Color
figure online)

we perform a global analysis of its orbits. By using the
Poincaré compactification, we study the dynamics of
system (1) on the sphere at infinity and in a neighbor-
hood of this sphere. The obtained results are described
in the next theorem.

Theorem 3 For all values of the parameter a ∈ R,
the phase portrait of system (1) on the Poincaré sphere
S
2 (at infinity) is as shown in Fig. 6: There exist a

great circle of equilibria and an infinite set of hete-
roclinic orbits connecting pairs of equilibrium points
of this circle. Furthermore, the only orbit of system
(1) which escapes to infinity is the one contained in the
invariant z-axis, and there exist orbits with large ampli-
tude, which are homoclinic to the limit set described in
Numerical Result 2.

In Sect. 4, we prove Theorem 3. Note that in the
Poincaré sphere S2 (at infinity), there is an infinite set
of heteroclinic orbits, which exists for all values of the
parameter a ∈ R and, consequently, even when system
(1) has chaotic behavior.

In the rest of this paper, we prove Theorems 1 and 3
and present the computational analysis summarized in
Numerical Result 2 and in the observations given in this
introduction. In this way, we intend to give a contri-
bution to the understanding of the complex dynamical
behavior of the Sprott A system, in particular on the for-
mation of hidden chaotic attractors and invariant tori.

2 Existence of a compact structure and the proof
of Theorem 1

Consider a = 0 into the Sprott A system (1). In this
case, system (1) has a line of equilibria given by the
z-axis. Moreover, it is easy to check that the ana-
lytic function f (x, y, z) = x2 + y2 + z2 is a first
integral of system (1), since 〈X,∇ f 〉 = 0, where
X = (

y,−x − yz, y2
)
is the vector field associated

with system (1) with a = 0. Hence, the spheres
x2 + y2 + z2 = r2, with r > 0, are invariant by the
flow of system (1).

The intersection points of the z-axis with the invari-
ant spheres x2 + y2 + z2 = r2 are P− = (0, 0,−r)
and P+ = (0, 0, r), that is the south pole and the north
pole, respectively, of each invariant sphere.

For each invariant sphere x2 + y2 + z2 = r2, the
eigenvalues of the linear part of system (1) at the equi-
librium points P± are

λ1 = ∓1

2
r + 1

2

√
r2 − 4,

λ2 = ∓1

2
r − 1

2

√
r2 − 4, λ3 = 0,

with corresponding eigenvectors

v1 =
(

2

∓r + √
r2 − 4

, 1, 0

)
,
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Fig. 4 Orbit with initial condition (0, 5, 0) for: a a = 10−4; b a = 10−2; c a = 0.1; d a = 0.25; and e a = 0.4. The limit set (red)
evolves into a hidden chaotic attractor. (Color figure online)

v2 =
(

2

∓r − √
r2 − 4

, 1, 0

)
, v3 = (0, 0, 1).

We have the following cases to consider:

1. If 0 < r < 2, then the eigenvalues λ1,2 are com-
plex with positive real part for P− and negative real
part for P+. Hence, the equilibrium point P− is an
unstable focus and the equilibrium point P+ is a

stable focus. Considering also the corresponding
eigenvectors, it is easy to see that the orbits locally
spiraling toward the equilibrium point P+, when
t → +∞, on a surface tangent to the plane spanned
by the eigenvectorsv1,2, hence in a direction normal
to the z-axis. The same is true for the equilibrium
point P− when t → −∞ (see Fig. 1, left).
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Fig. 5 “Apple” structure formed by orbits homoclinic to a limit
set and with initial conditions on the sphere x2 + y2 + z2 = 1,
for a = 10−4

2. If r = 2, then the eigenvalues λ1,2 are real and
λ1 = λ2 > 0 for P− and λ1 = λ2 < 0 for P+.
Hence, P− is an unstable improper node and P+ is a
stable improper node. Considering the eigenvectors
v1,2,we can conclude that P− and P+ are nodes nor-
mally hyperbolic to the z-axis (see Fig. 1, central).

3. If r > 2, then the eigenvalues λ1,2 are real and pos-
itive for P− and real and negative for P+. Hence,
P− is an unstable node and P+ is a stable node.
Taking into account the eigenvectors v1,2, we have
that the nodes P− and P+ are normally hyperbolic
to the z-axis (see Fig. 1, right).

Observe that the origin is a degenerate equilibrium
point of system (1) and the behavior of the orbits in a

neighborhood of it is determined considering the orbits
of case 1 when r → 0.

The type and stability of the equilibrium points P±
described above are only local. So, in order to prove
that each invariant sphere of system (1) is filled by
heteroclinic orbits of south pole–north pole type, we
should study the flow restricted to these spheres. For
this purpose, we consider the following local charts.

Assume that z > 0. Taking z = √
r2 − x2 − y2 into

system (1), we obtain the planar differential system

ẋ = y, ẏ = −x − y
√
r2 − x2 − y2. (2)

The origin is the only equilibrium point of system (2),
and the eigenvalues of the linear part of this system at
this point are

λ1,2 = −1

2
r ± 1

2

√
r2 − 4.

Hence, the origin is a stable focus if 0 < r < 2, a stable
improper node if r = 2 and a stable node if r > 2.Anal-
ogously, when z < 0 we take z = −√

r2 − x2 − y2

into system (1) and the only equilibrium point of the
obtained system is the origin which is an unstable focus
if 0 < r < 2, an unstable improper node if r = 2 and
an unstable node if r > 2. In Fig. 7 are drawn the
phase portraits of system (1) in the local charts z > 0
(up) and z < 0 (below) when 0 < r < 2, r = 2 and
r > 2.

We claim that there is no periodic orbits of sys-
tem (1) on the invariant spheres. Indeed, considering

Fig. 6 Phase portrait of
system (1) on the sphere at
infinity: great circle of
equilibria (red) and
heteroclinic orbits
connecting pairs of these
equilibria. (Color figure
online)
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Fig. 7 Phase portraits of system (1) restricted to the invariant spheres, on the local charts z > 0 (up) and z < 0 (below), for 0 < r < 2,
r = 2 and r > 2

the flow in the local charts z > 0 and z < 0 studied
above, the only possibility for the existence of a peri-
odic orbit is on the equator of the invariant spheres.
However, ż > 0 for z = 0. Then, the flow of sys-
tem (1) on the equator of each invariant sphere is
increasing; hence, there is no periodic orbit contained
there.

As on each invariant sphere, the south pole P− and
the north pole P+ are the only equilibrium points and
there is no periodic orbits, by the Poincaré–Bendixson
Theorem, the α-limit set of all orbits on each invariant
sphere is the unstable equilibrium point P− and the ω-
limit set of them is the stable equilibrium point P+. In
other words, all orbits on each invariant sphere (except
P− and P+) tend toward the south pole P− when t →
−∞ and they tend toward the north pole P+ when t →
+∞, forming an infinite set of heteroclinic orbits of
south pole–north pole type. This proves Theorem 1.

3 Numerical study of Sprott A system for a > 0
small

In [28], Sprott found a hidden chaotic attractor for sys-
tem (1) with a = 1 and taking the initial condition
(0, 5, 0). Based on the results obtained in the previ-
ous section, one can say that the existence of a com-
pact structure in the phase space of system (1) with
a = 0, given by the existence of invariant spheres and
heteroclinic orbits contained on them, plays an impor-
tant role in the formation of hidden chaotic attractors
and invariant tori. Thus, in this section we perform a
detailed numerical study of system (1) for a > 0 small,
when the spheres are no longer invariant algebraic sur-
faces and the heteroclinic orbits are destroyed, describ-
ing the dynamical consequences of these bifurcations
and relating them to the formation of hidden chaotic
attractors and invariant tori.
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Fig. 8 Orbit with initial
condition (0.001, 0, 0.5)
when a = 10−6 and for the
time t negative (left) and
positive (right)

3.1 Persistence of the compact structure

As we proved in Sect. 2, when a = 0 the z-axis is a line
of equilibria of system (1) and there are infinitely many
heteroclinic orbits of south pole–north pole type con-
tained on invariant spheres. For a > 0, system (1) has
no equilibrium points and the z-axis becomes invari-
ant by the flow of this system. Indeed, if x = y = 0,
then ż = −a < 0. Hence, the orbits with initial con-
dition on the z-axis are entirely contained there and
theymove toward its negative direction. However, for a
small enough, the compact structure of the phase space
given by the invariant spheres is preserved, far from
a tubular neighborhood of the z-axis, in the following
sense: given a point inR3 far from the z-axis, it belongs
to one of the spheres x2+ y2+z2 = r2, r > 0, which,
by continuity, preserve its invariancewith a small defor-
mation, outside a tubular neighborhood of the z-axis,
where there are no equilibrium points. The orbit pass-
ing by this point turn around the deformed sphere until
it reaches the tubular neighborhood of the z-axis, in the
future and in the past time (see Fig. 3); then the orbits
oscillate around the z-axis toward a neighborhood of
the origin, for negative and for positive times, as shown
in Fig. 8. This dynamical behavior of the orbits leads
to the formation of invariant tori and orbits homoclinic
to a limit set (or to a hidden chaotic attractor), as we
describe in the next subsection.

3.2 Formation of nested invariant tori around the
origin

Consider a small invariant sphere of system (1), which
exists for a = 0, and take an initial condition on it. The
orbit passing by this initial condition tends, in the future
and in the past, toward equilibrium points in the z-axis,
forming an heteroclinic orbit (see Fig. 9 a). Now, taking
a > 0 small enough, consider the same initial condi-
tion. Following the orbit passing by this initial con-
dition, taking into account the assertions of Sect. 3.1,
observe that it turns around a (deformed) sphere and
then oscillates around the z-axis toward the origin,
in negative and in positive time, but now forming an
invariant torus, as we can see in Fig. 9b, c. A detailed
numerical analysis performed suggests that there are a
family of small nested invariant tori around the origin
in the phase space, and themost external one is unstable
in the following sense: an orbit with initial condition
in an external neighborhood of this most external torus
tends to a limit set which encompasses the family of
nested invariant tori. In synthesis, a set of small con-
centric spheres, existing for a = 0, turn into a set of
small nested invariant tori, for a > 0 small enough. On
the other hand, the orbits contained in bigger spheres,
roughly speaking, become homoclinic to a limit set, as
explained ahead.
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(a) (b) (c)

Fig. 9 Orbit with initial condition (0.04, 0, 0) for a a = 0, b a = 10−6 and c a = 10−2 when the time t is negative (blue) and positive
(red). (Color figure online)

(a) (b) (c)

Fig. 10 Orbit with initial condition (0, 5, 0) for a a = 0 and b a = 10−2. cOrbits with initial conditions (0, 3, 0), (0, 5, 0) and (0, 7, 0)
for a = 10−2

3.3 Formation of a limit set

Consider now a big invariant sphere which exists for
a = 0 and take an initial condition on it. Again, the
orbit passing by this initial condition tends in the future
and in the past toward equilibrium points in the z-axis,
forming a heteroclinic orbit (see Fig. 10a). However,
taking a > 0 small enough, considering the same initial
condition and following the orbit passing by this initial
condition in the future and in the past, we observe that

it turns around a (deformed) sphere and then oscillates
around the z-axis toward the origin, tending to a limit
set as t → ±∞ (see Fig. 10b, where the limit set is
drawn in red). The same happens for any sufficiently
large sphere considered. In this way, we have numer-
ical evidences that all the orbits in the phase space,
unless the one contained in the z-axis and the ones
on the nested invariant tori described in Sect. 3.2, are
homoclinic to a limit set (which is fixed, for each fixed
a), see Fig. 10c. We observe from the numerical analy-
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(a) (b)

Fig. 11 a Orbits with initial conditions on the spheres of radius
r = 10 (red), r = 20 (blue), and r = 30 (green) for a = 0.4.
They are homoclinic to the hidden chaotic attractor. The compact

spherical structure is preserved by continuity, far from the z-axis,
as shown in b. (Color figure online)

sis performed that this limit set encompasses the nested
invariant tori described in Sect. 3.2.Moreover, the limit
set evolves into a hidden chaotic attractor as the value
of parameter a increases, as we shall describe in the
next subsection.

3.4 Formation of a hidden chaotic attractor

As the value of parameter a increases, the nested invari-
ant tori described in Sect. 3.2 and the limit set described
in Sect. 3.3 expand. We observe that, by varying the
parameter a, the limit set turn into a hidden chaotic
attractor, as shown in Fig. 4, and the orbits become
homoclinic to the hidden chaotic attractor, as shown
in Figs. 4e and 11. Indeed, we find a hidden chaotic
attractor for a = 0.4, encompassing the nested invari-
ant tori (see Fig. 13). In this way, we show that there
exists a hidden chaotic attractor in the Sprott A sys-
tem for a < 1. In fact, the orbit with initial condi-
tion (0, 5, 0), the same taken by Sprott in [28], is a
heteroclinic orbit connecting two nodes when a = 0,
and, for a > 0 small, it becomes an orbit homoclinic
to a limit set. The bifurcation of this limit set as the
parameter value a increases is shown in Fig. 4, and
for a = 0.4, it is possible to observe the existence

of the hidden chaotic attractor, since LE1 = 0.0219,
LE2 ≈ 0, LE3 = −0.0219 and DL = 2.9908, where
LEi are the Lyapunov exponents and DL is the Lya-
punov dimension of this attractor. Here these quantities
were calculated with the algorithm described in [25].
In Fig. 12 are drawn the x-coordinates of two solutions
of system (1) for a = 0.4, with initial conditions very
close, given by (0, 5, 0) and (0, 5.0001, 0). Observe
that they have an exponential divergence as the time
t increases, which confirms the chaotic behavior. We
can also find chaotic behavior in system (1) to other
parameter values of a between 0.4 and 1, for example
when a = 0.55. Moreover, there are nested invariant
tori in the phase space of system (1) with a = 0.4, that
is, even when it has chaotic behavior, as can be seen in
Fig. 13. Other example of nested invariant tori coexist-
ing with a hidden chaotic attractor in system (1) with
a = 1 was reported in [9] .

4 Dynamics of system (1) at infinity: the proof of
Theorem 3

As any polynomial differential system, the Sprott A
system (1) can be extended to an analytic system
defined on a closed ball D3 of radius one, whose inte-
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Fig. 12 The x-coordinates
of two solutions of the
Sprott A system (1) for
a = 0.4, with initial
conditions (0, 5, 0) (red)
and (0, 5.0001, 0) (blue),
showing the sensitive
dependence on the initial
conditions. (Color figure
online)

Fig. 13 a Orbits of the Sprott A system (1) with a = 0.4 and initial conditions (0, 1, 0) (blue - an invariant torus) and (0, 5, 0) (red -
hidden chaotic attractor). b Their projections on the plane-xy. (Color figure online)

rior is diffeomorphic to R
3 and its invariant bound-

ary, the two-dimensional sphere S
2 = {(x, y, z) :

x2 + y2 + z2 = 1}, plays the role of the infinity.
This closed ball is known as Poincaré ball, since the
technique for doing such an extension is precisely the
Poincaré compactification for a polynomial differen-
tial system in R3, which is described in detail in [2]. A
summary of this compactification technique and some
applications of it can be found in [15,16,19]. When we
perform the Poincaré compactification of system (1),
we obtain six polynomial vector fields defined on the
local charts Ui and Vi , i = 1, 2, 3, with coordinates
(z1, z2, z3) which cover the sphere as a differentiable

manifold. All the points on the invariant sphere at infin-
ity in the coordinates of any local chartsUi and Vi have
z3 = 0. The points in the interior of the Poincaré ball,
which is diffeomorphic to R

3, are given in the local
chartsUi by z3 > 0 and in the local charts Vi by z3 < 0.
See Fig. 14 for an illustration of the sphere S2 at infinity
and the local chartsUi and Vi with their orientation.We
use this compactification technique to study the phase
portrait of system (1) near and at infinity and to prove
Theorem 3.

The expression of system (1) in the local chartU1 is

ż1 = −z21 z3 − z1 z2 − z3,
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Fig. 14 Local charts Ui ,
i = 1, 2, 3, used to draw the
phase portrait of the Sprott
A system (1) on the sphere
S
2 at infinity. The charts Vi ,

i = 1, 2, 3, are
diametrically opposed to Ui

ż2 = −z1 z2 z3 + z21 − a z23,

ż3 = −z23 z1. (3)

System (3) restricted to the invariant plane z3 = 0,
which corresponds to the points on the sphere at infinity
S
2, is given by

ż1 = −z1 z2, ż2 = z21. (4)

The z2-axis is a line of equilibria of system (4), and the
eigenvalues of the linear part of the systemat these equi-
librium points are −z2 and 0. Considering the change
in coordinates z1 = ρ cos(θ), z2 = ρ sin(θ), we can
write system (4) as

ρ̇ = 0, θ̇ = ρ cos(θ).

Hence, the flow of system (4) is constant in the radial
direction, the orbits rotate in counter clockwise direc-
tion for −π/2 < θ < π/2, and the orbits rotate in
clockwise direction for −π/2 < θ < −3π/2. The
phase portrait of system (4) can be seen in Fig. 15a.

The flow in the local chart V1 restricted to z3 = 0
is the same as the flow in the local chart U1 reversing
the time, because the compactified vector field in V1
coincides with the vector field inU1 multiplied by −1.
Hence, the phase portrait on the chart V1 is the same
as shown in Fig. 15a, reversing appropriately the time
direction.

The expression of system (1) in the local chartU2 is
given by

ż1 = z21 z3 + z1 z2 + z3,

ż2 = z1 z2 z3 + z22 − a z23 + 1,

ż3 = z3 (z1 z3 + z2). (5)

Consider system (5) restricted to the invariant plane
z3 = 0. The restricted system has no equilibrium
points. Note that ż1 > 0 for z1 > 0, z2 > 0 and z1 < 0,
z2 < 0; ż1 = 0 on the z1- and z2-axis; and ż1 < 0 for
z1 < 0, z2 > 0 and z1 > 0, z2 < 0. Hence, the flow
of the restricted system in the direction of z1-axis is
increasing in the quadrants I and III, constant on the
z1- and z2-axis and decreasing in the quadrants II and
IV. Moreover, ż2 > 0, then the flow is always increas-
ing in the direction of z2-axis. The phase portrait of
system (5) restricted to the invariant plane z3 = 0 is
shown in Fig. 15b.

The flow in the local chart V2 restricted to z3 = 0
is the same as the flow in the local chart U2 reversing
appropriately the time direction.

The expression of system (1) in the local chartU3 is
given by

ż1 = −z1 z
2
2 + a z1 z

2
3 + z2 z3, ż2 = −z32 + a z2 z

2
3

−z1 z3 − z2, ż3 = z3 (−z22 + a z23). (6)

Consider system (6) restricted to the invariant plane
z3 = 0. The z1-axis is a line of equilibria of the
restricted system, and the eigenvalues of the linear part
of the system at these equilibrium points are −1 and
0. Note that ż1 > 0 for z1 < 0; ż1 = 0 on the z2-
axis; and ż1 < 0 for z1 > 0. Hence, the flow of the
restricted system in the direction of z1-axis is increas-
ing for z1 < 0, constant on the z2-axis and decreasing
for z1 > 0. Moreover, ż2 > 0 for z2 < 0 and ż2 < 0
for z2 > 0. Then, the flow in the direction of z2-axis is
increasing for z2 < 0 and decreasing for z2 > 0, and
the orbits tend toward the z1-axis as t → +∞, which
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Fig. 15 Phase portraits in the local charts U1, U2 and U3 restricted to the invariant plane z3 = 0

Fig. 16 Flow of system (1)
in an inside a neighborhood
of the sphere S2 at infinity,
in the local charts U3 a and
V3 b

(a) (b)

is the line of equilibria. The phase portrait of system
(6) restricted to the invariant plane z3 = 0 is shown in
Fig. 15c.

The flow in the local chart V3 restricted to z3 = 0
is the same as the flow in the local chart U3 reversing
appropriately the time direction.

Considering the analysis made in the local charts
Ui and Vi , i = 1, 2, 3, restricted to the invariant plane
z3 = 0, we have a global picture of the dynamical
behavior of system (1) on the sphere at infinity S

2,
which is given in Fig. 6 of Introduction. There exist a
(great) circle of equilibria on the sphere at infinity and
an infinite set of heteroclinic orbits connecting pairs
of these equilibrium points. These heteroclinic orbits
exist at infinity for all values of the parameter a ∈ R,
even when system (1) has chaotic behavior.

We claim that, for a �= 0 small, the only orbit which
escapes to infinity as t → ±∞ is the one contained
in the invariant z-axis and, consequently, there exist
orbits homoclinic to the limit set near of the origin
with large amplitude. Indeed, considering the flow of
system (1) in the local chart U3, given by system (6),
the z1-axis is a line of equilibria of system (6) and all
orbits on the invariant plane z3 = 0 tend to the equi-

librium points of the z1-axis, as shown in Fig. 15c.
Moreover, the z3-axis (which corresponds to the z-
axis in R

3) is invariant by the flow of the compacti-
fied system at the local chart U3 and the orbits with
initial conditions in it go toward its positive direction
(negative direction of the z-axis, see Fig. 14), because
ż3 = a z33 > 0, since we are considering a > 0 and
z3 > 0 (which correspond to the points in the interior
of the Poincaré ball, that is, in R

3). Hence, from the
numerical study developed in Sect. 3 and considering
the continuity of the flow, the orbits in a neighborhood
z3 = ε > 0 of the invariant plane z3 = 0 go toward
the z3-axis, and in a tubular neighborhood of it, they
oscillate around this axis toward its positive direction,
as drawn in Fig. 16a. The same is true in the local
chart V3 reversing appropriately the time direction (see
Fig. 16b). Furthermore, there is no orbit, unless the one
in the invariant z3-axis, which tends to infinity, because
of the persistence of the compact structure, described in
Sect. 3.1. Therefore, the only orbit of system (1) which
tends to infinity is the one in the invariant z-axis. Also,
in a neighborhood of the sphere S

2 at infinity, there
exist orbits homoclinic to the limit set near the ori-
gin, which can be obtained connecting the orbits in the
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Fig. 17 Global dynamics of the Sprott A system (1) for a > 0
small: far from the origin, almost all orbits are homoclinic to a
limit set (red), including the ones in a neighborhood of the sphere
at infinity S2. (Color figure online)

local charts U3 and V3, over the deformed invariant
sphere.

5 Concluding remarks

In this paper, we study the formation of hidden chaotic
attractors and nested invariant tori in the Sprott A sys-
tem (1), considering bifurcations obtained by varying
the parameter a. For a = 0, this system has a com-
pact structure determined by invariant spheres, which
are filled by heteroclinic orbits of south pole–north pole
type. By a detailed numerical study of system (1) when
a > 0 small, we show that the heteroclinic orbits are
destroyed and the spheres are no longer invariant alge-
braic surfaces of system (1). However, this compact
structure although deformed is preserved, unless in a
tubular neighborhood of the z-axis, and it occurs the
formation of nested invariant tori in a neighborhood of
the origin and a limit set encompassing them, which
attracts almost all orbits of the Sprott A system in the
future and in the past, as shown in the schematic Fig. 17.
As the parameter value a increases, the invariant tori
and the limit set expand.Moreover, the limit set evolves
into a hidden chaotic attractor for suitable choices of the
parameter value a. This hidden chaotic attractor coex-
ists with the nested invariant tori, also encompassing
them, as shown in Fig. 13. From a global analysis of
system (1), including its dynamics at infinity, we show
that, for a > 0 small, the only orbit which escapes to

infinity is the one contained in the invariant z-axis, so
we observe the existence of orbits with large amplitude
(near the Poicaré sphere at infinity) which are homo-
clinic to the limit set or to a hidden chaotic attractor
around the origin, as illustrated in Fig. 17. We can con-
clude that the bifurcation of the heteroclinic orbits con-
tained on the invariant spheres, leading to the creation
of a global homoclinic structure in the phase space, has
a crucial role in the formation of nested invariant tori
and hidden chaotic attractors. In [19], the author also
studied the creation of chaotic attractors in the Lorenz
system due to the bifurcation of orbits heteroclinic to a
line of equilibria.

Finally, we observe that in [8], the authors gave
the equations of seventeen differential systems, NE1

to NE17, having no equilibria, but presenting chaotic
dynamics (the Sprott A system studied here corre-
sponds to the case NE1). After a numerical study of
these systems, we can say that the mechanism of for-
mation of hidden attractors in systems NE6,NE8 and
NE9 is similar to the one described here for Sprott A
system. However, these systems do not present spheres
(or other compact algebraic surfaces) as invariant alge-
braic surfaces, whichmakes their studies farmore com-
plicated. The other systems given in [8] have different
mechanisms of formation of hidden attractors, which
are being studied by us, and will be presented in forth-
coming works.

Acknowledgements The first author is supported by FAPESP
Process number 2013/24541-0, by CNPqGrant Number 308315/
2012-0 and by CAPES Grant Number 88881.030454/2013 from
the program CSF–PVE . The second author is supported by
FAPESP Process Number 2013/26602-7.

References

1. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J.
Bifurcat. Chaos 9, 1465–1466 (1999)

2. Cima, A., Llibre, J.: Bounded polynomial vector fields.
Trans. Am. Math. Soc. 318, 557–579 (1990)

3. Danca, M.F.: Hidden transient chaotic attractors of
Rabinovich-Fabrikant system. Nonlinear Dyn. 86, 1263–
1270 (2016)

4. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.,
Leonov, G.A., Prasad, A.: Hidden attractors in dynamical
systems. Phys. Rep. 637, 1–50 (2016)

5. Gotthans, T., Petržela, J.: New class of chaotic systems with
circular equilibrium. Nonlinear Dyn. 73, 429–436 (2015)

6. Hoover, W.G.: Remark on ‘Some simple chaotic flows’.
Phys. Rev. E 51, 759–760 (1995)

123



On the formation of hidden chaotic attractors and nested... 821

7. Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equi-
librium. Chaos Solitons Fractals 57, 79–84 (2013)

8. Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary
quadratic chaotic flowswith no equilibria. Phys. Lett. A 377,
699–702 (2013)

9. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples
of hidden attractors. Eur. Phys. J. Special Top. 224, 1469–
1476 (2015)

10. Kingni, S.T., Jafari, S., Simo, H., Woafo, P.: Three-
dimensional chaotic autonomous system with only one sta-
ble equilibrium: analysis, circuit design, parameter estima-
tion, control, synchronization and its fractional-order form.
Eur. Phys. J. Plus 129, 76 (2014)

11. Lao, S.K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost func-
tion based on Gaussian mixture model for parameter esti-
mation of a chaotic circuit with a hidden attractor. Int. J.
Bifurcat. Chaos 24, 1450010 (11 pages) (2014)

12. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in
dynamical systems: from hidden oscillations in Hilbert-
Kolmogorov, Aizerman and Kalman problems to hidden
chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 23,
1330002 (69 pages) (2013)

13. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic
orbits, and self-excited and hidden attractors in a Lorenz-
like system describing convective fluid motion. Eur. Phys.
J. Special Top. 224, 1421–1458 (2015)

14. Li,C., Sprott, J.C.:Coexisting hidden attractors in a 4-D sim-
plified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034
(12 pages) (2014)

15. Llibre, J., Messias, M.: Global dynamics of the Rikitake
system. Phys. D 238, 241–252 (2009)

16. Llibre, J., Messias, M., da Silva, P.R.: Global dynamics in
the Poincaré ball of the Chen system having invariant alge-
braic surfaces. Int. J. Bifurcat. Chaos 22, 1250154 (17 pages)
(2012)

17. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci.
20, 130–141 (1963)

18. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J.
Bifurcat. Chaos 12, 659–661 (2002)

19. Messias, M.: Dynamics at infinity and the existence of sin-
gularly degenerate heteroclinic cycles in the Lorenz system.
J. Phys. A Math. Theor. 42, 115101 (18 pages) (2009)

20. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.:
Simple chaotic flows with one stable equilibrium. Int. J.
Bifurcat. Chaos 23, 1350188 (7 pages) (2013)

21. Pham,V.T., Jafari, S., Vaidyanathan, S., Volos, C.,Wang,X.:
A novel memristive neural network with hidden attractors
and its circuitry implementation. Sci. China Tech. Sci. 59,
1–6 (2016)

22. Pham, V.T., Volos, C., Jafari, S., Vaidyanathan, S., Kapita-
niak, T., Wang, X.: A chaotic system with different families
of hidden attractors. Int. J. Bifurcat. Chaos 8, 1650139 (9
pages) (2016)

23. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynam-
ics of the Nosé oscillator: stability, order, and chaos. Phys.
Rev. A 33, 4253–4265 (1986)

24. Rössler, O.: An equation for continuous chaos. Phys. Lett.
A 57, 397–398 (1976)

25. Sandri, M.: Numerical calculation of Lyapunov exponents.
Math. J. 6, 79–84 (1996)

26. Shahzad, M., Pham, V.T., Ahmad, M.A., Jafari, S.,
Hadaeghi, F.: Synchronization and circuit design of a chaotic
system with coexisting hidden attractors. Eur. Phys. J. Spe-
cial Top. 224, 1637–1652 (2015)

27. Sparrow,C.: TheLorenzEquations: Bifurcations, Chaos and
Strange Attractors. Springer, New York (1982)

28. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50,
R647–R650 (1994)

29. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic
system without equilibrium. Nonlinear Dyn. 69, 531–537
(2012)

30. Wang, X., Chen, G.: A chaotic system with only one stable
equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17,
1264–1272 (2012)

31. Wei, Z., Pehlivan, I.: Chaos, coexisting attractors, and circuit
design of the generalized Sprott C system with only two
stable equilibria.Optoelectron.Adv.Mater. RapidCommun.
6, 742–745 (2012)

32. Wei, Z., Yang, Q.: Dynamical analysis of a new autonomous
3-D chaotic system only with stable equilibria. Nonlinear
Anal. Real World Appl. 12, 106–118 (2011)

33. Wei, Z., Zhang,W.:Hidden hyperchaotic attractors in amod-
ified Lorenz-Stenflo system with only one stable equilib-
rium. Int. J. Bifurcat. Chaos 24, 1450127 (14 pages) (2014)

34. Wei, Z., Zhang, W., Wang, Z., Yao, M.: Hidden attractors
and dynamical behaviors in an extended Rikitake system.
Int. J. Bifurcat. Chaos 25, 1550028 (11 pages) (2015)

123


	On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system
	Abstract
	1 Introduction
	2 Existence of a compact structure and the proof of Theorem 1
	3 Numerical study of Sprott A system for a>0 small
	3.1 Persistence of the compact structure
	3.2 Formation of nested invariant tori around the origin
	3.3 Formation of a limit set
	3.4 Formation of a hidden chaotic attractor

	4 Dynamics of system (1) at infinity: the proof of Theorem 3
	5 Concluding remarks
	Acknowledgements
	References




