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Abstract In this paper we study topological structural stability for a family of nonlinear
semigroups Th(·) on Banach space Xh depending on the parameter h. Our results shows the
robustness of the internal dynamics and characterization of global attractors for projected
Banach spaces, generalizing previous results for small perturbations of partial differen-
tial equations. We apply the results to an abstract semilinear equation with Dumbbell type
domains and to an abstract evolution problem discretized by the finite element method.
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1 Introduction

One of the main concepts in the modern theory of infinite-dimensional dynamical systems
is the global attractor. Indeed, dissipative dynamical systems and the study of attracting
compact invariant sets have shown very helpful to obtain essential information for a huge
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range of models of PDEs (see [9,20,26,33,37,41,45]). One of the main properties of the
global attractor is that it is robust under perturbation of the terms in the equations. Robustness
can be understood at the level of sets (upper semicontinuity [29,31], and lower semicontinuity,
[19,30,43]), but also on the internal dynamics in the attractors (topological [1,18,26] and
structural stability [32,38]). In recent years this kind of results have been generalized for
non-autonomous perturbations [11,12,18].

We will say that a dynamically gradient system (in the sense of Definition 11) is
topologically structurally stable if the system remains the same after a small perturbation
of terms in the equations, measured as the robustness of Morse decomposition or the exis-
tence of Lyapunov functions associated to the global attractors. Note that, in the literature
(see, for instance, [32,38]), structuctural stability is associated to the robustness of Morse
sets and connections among them, so that we get an homeomorphism on the structure of
attractors under perturbation as observed, for example, in Morse–Smale systems [14,15].

In the autonomous framework, i.e. for nonlinear semigroups acting on a fixed Banach
space X, the topological structural stability has been proved, for instance, in [17] or [1,18],
where the authors are able to prove the robustness of the characterization of attractors for
some evolution PDEs under singular [6] or regular [1] perturbations of the terms in the
equations.

On the other hand, the study of the (upper and lower) continuity of the attractors for PDEs
in dumbbell domains has been widely studied in [3–5]. Consider the evolution equation of
parabolic type of the form

⎧
⎨

⎩

uε
t (x, t) − Δuε(x, t) + uε(x, t) = f (uε(x, t)), x ∈ Ωε, t > 0,

∂uε(x, t)

∂n
= 0, x ∈ ∂Ωε,

(1.1)

where Ωε ⊂ RN , N ≥ 2, is a bounded smooth domain, ε ∈ (0, 1] is a parameter, ∂
∂n is

the outside normal derivative and f : R → R is twice continuously differentiable function
which is bounded and has bounded derivatives up to the second order. The domain Ωε is a
dumbbell type domain consisting of two disconnected domains, that we denote by Ω , joined
by a thin channel, Rε , which degenerates to a line segment as the parameters ε approaches
zero, see Fig. 1. Under standard dissipative assumption on the nonlinearity f of the type,

lim sup
|s|→+∞

f (s)

s
< 0,

Eq. (1.1) has an attractor Aε ⊂ H1(Ωε), for ε ∈ (0, 1].
Passing to the limit as ε → 0, the limit “domain” will consist of the domain Ω and a line

in between. We denote by P0 and P1 the points where the line segment touches Ω , see Fig.
2.

Fig. 1 Dumbbell domain

R
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Fig. 2 Limit domain

R 0

The limiting equation is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt (x, t) − Δw(x, t) + w(x, t) = f (w(x, t)), x ∈ Ω, t > 0,
∂w(x, t)

∂n
= 0, x ∈ ∂Ω,

vt (s, t) − Lv(s, t) + v(s, t) = f (v(s, t)), s ∈ R0,

v(0) = w(P0), v(1) = w(P1),

(1.2)

where w is a function in Ω and v lives in the line segment R0. Moreover, L is a differential
operator which depends on the geometry of the channel Rε , more exactly, on the way the
channel Rε collapses to the segment line R0. More specifically, Lv = 1

g (gvx )x where g will

be defined in Sect. 4. Again, this system has an attractorA0 in H1(Ω)×H1(R0) =: H1(Ω0).
Note that both Eqs. (1.1) and (1.2) are posed in different space domains, which produces

a drastic change in the nature of equations. Indeed, since (1.1) is in Ωε and (1.2) is defined
in Ω ∪ R0, we need to deal with solutions in these two different sets. This leads to the
comparison of semigroups {Tε(t) : t ≥ 0}ε∈(0,1],{T0(t) : t ≥ 0} and associated attractors
Aε,A0 on different Banach spaces H1(Ωε), H1(Ω0).Moreover, since the study of structural
stability of dynamical systems requires a deep understanding of the geometrical description
of the attractors and its behaviour under perturbation, we need to generalize the existing
theoretical results in the literature on topological structural stability (see [1,18]) for fixed
Banach spaces to the case of Banach spaces depending on parameters.

We also present another example given by discretization of an abstract Cauchy problem
using the finite element method. Consider the abstract evolution problem in the Hilbert space
X as

{
u̇ + Au = F(u), t > 0,

u(0) = u0 ∈ X1/2,
(AP)

where the operator A : D(A) ⊂ X → X is given by Au = −Lu for u ∈ D(A), L is the
operator in (4.9) and F : X1/2 → X is the Nemitskii’s operator associated to f . Under
certain conditions on the function f , the problem (AP) has an attractor A in X1/2.

In order to discretize problem (AP), we introduce the space X1/2
h (see Assumption 1 and

(4.19)) which has finite dimension. So that the problem (AP) can be approximated by
{
u̇h + Ahuh = Fh(uh)

uh(0) = u0h ∈ X1/2
h ,

(APh)

where Ah : X1/2
h → X1/2

h is given by (4.24), Fh := PhF : X1/2
h → X1/2

h , for all h ∈ (0, 1]
and Ph : X → X1/2

h is the projection operator (see (4.22)). Problem (APh) has an attractor
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Ah in X1/2
h for all h ∈ (0, 1]. Again, we deal with the comparison of semigroups {Th(t) :

t ≥ 0}h∈(0,1], {T (t) : t ≥ 0} and associated attractors Ah,A on different Banach spaces

X1/2
h , X1/2. We will show that under certain conditions the topological structural stability of

semigroups also holds in this case.
Thus, in this paper we show sufficient conditions for a dynamical system to be topological

structurally stable on projected Banach spaces, which is then well suited to apply for our
parabolic equations in dumbbell domains and an abstract evolution problem discretized via
the finite element method. The difficulties to deal with changing Banach spaces depending
on a parameter lead to introduce generalizations of all concepts and results already known in
the previous literature. Section 2 introduce several concepts and results on the existence and
characterization of attractors for dynamically gradient systems, as the important definition
of P-convergence on a family of paramatrized Banach spaces. In Sect. 3 we prove the
main result of this paper (see Theorem 8) on the topological structural stability on projected
Banach spaces, which is then used in Sect. 4 to prove the robustness of the characterization
and internal dynamics for the attractors of (1.1) and (1.2) and also for the attractors of (AP)
and (APh).

2 Basic Concepts and Results

We introduce the necessary basic notions and results on attractors and P-convergence on
Banach spaces.

2.1 Theory of Global Attractors

Firstly we recall the definition of a global attractor for a nonlinear semigroup {T (t) : t ≥ 0}
(see [9,20,26,37,41,45]).

Let X be a metric space with metric d : X × X → R+, whereR+ = [0,∞), and denote
by C (X) the set of continuous maps from X into X . Given a subset A of X and ε > 0, the
ε-neighborhood of A is the set Oε(A) := {x ∈ X : d(x, a) < ε for some a ∈ A}.

Now, we introduce the notion of semigroup in the metric space X .

Definition 1 A family {T (t) : t ≥ 0} ⊂ C (X) is a semigroup in X if

(i) T (0) = IX , IX is the identity map in X .
(ii) T (t + s) = T (t)T (s), for all t, s ≥ 0 and
(iii) (t, x) �→ T (t)x ∈ X is continuous fromR+ × X into X .

For simplicity, we will refer to “ T (·)” rather than “the semigroup {T (t) : t ≥ 0}”. A solution
of T (·) corresponding to the initial condition x(0) = x0 is the mapping t �→ T (t)x0 from
R+ into X .

We begin with the necessary definitions to define the global attractor for the semigroup.

Definition 2 A set A ⊂ X is invariant under T (·) if T (t)A = A for all t ≥ 0.

Remark 1 Let (Aλ)λ∈L be a family of invariants subsets of X under T (·), then the union
⋃

λ∈L Aλ is invariant under T (·). In fact, for any t ≥ 0, T (t)
(⋃

λ∈L Aλ

) = ⋃
λ∈L T (t)Aλ

and, by the assumption, T (t)Aλ = Aλ, for all λ ∈ L and t ≥ 0.

The notion of invariant set is intimately related to that of global solution.
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Definition 3 A global solution for T (·) is a continuous function ξ : R → X with the
property that T (t)ξ(s) = ξ(t + s) for all s ∈ R and for all t ∈ R+. We say that ξ : R → X
is a global solution through x ∈ X if it is a global solution with ξ(0) = x . The orbit of a
global solution is

γ (ξ) =
⋃

t∈R
{ξ(t)}.

The concepts of invariant set and global solution are connected by the following result.

Proposition 1 A subset A of X is invariant under T (·) if and only if it consists of a union of
orbits of global solutions.

Proof See Lemma 1.4 in [18]. 	


Next, we will introduce the notions of attraction and absorption. For that we recall the
definition of Hausdorff semidistance.

Definition 4 Given A and B nonempty subset of X , we define the Hausdorff semidistance
from A to B as

distX (A, B) := sup
a∈A

dX (a, B) = sup
a∈A

inf
b∈B d(a, b).

Remark 2 The Hausdorff semidistance fulfills the triangle inequality.
Note that, distX (A, B) = 0 implies only that A ⊆ B, where D denotes the closure of D

in X ; we only have distX (A, B) = 0 implying A ⊂ B provided that B is closed.

Definition 5 Given two subsets A, B of X we say that A attracts B under T (·) if

distX (T (t)B, A)
t→∞−→ 0 and we say that A absorbs B under T (·) if there is a tB > 0

such that T (t)B ⊂ A for all t ≥ tB .

Definition 6 T (·) is asymptotically compact if, for any sequence {tk}k∈N in [0,∞) with

tk
k→∞−→ ∞ and bounded sequence {xk}k∈N in X , the sequence {T (tk)xk}k∈N has a convergent

subsequence in X .

With this we are in a position to define global attractors.

Definition 7 A subset A of X is a global attractor for T (·) if it is compact, invariant under
T (·) and for every bounded subset B of X we have that A attracts B under T (·).

This definition in fact yields the minimal compact set that attracts each bounded subset of
X and the maximal closed and bounded invariant set (see [18,26]). The global attractor for
the semigroup is unique (see [20,41,45]).

Next, as a consequence of Proposition 1, the global attractor can be characterized as the
union of the orbits of all globally defined bounded solutions.

Theorem 1 If T (·) has a global attractor A, then

A = {y ∈ X : there is a bounded global solution ξ : R → X with ξ(0) = y}.
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2.2 Dynamically Gradient Semigroups

In this section we recall the notions of a dynamically gradient semigroup for a global attractor
(see [17,18]). We first define the concept of isolated invariant sets.

Definition 8 We say that S = {Ξ1, Ξ2, · · · , Ξn} is a family of isolated invariant sets (for
T (·)) if there exists a δ > 0 such that

Oδ(Ξi ) ∩ Oδ(Ξ j ) = ∅, 1 ≤ i < j ≤ n,

and Ξi is the maximal invariant subset (with respect to T (·)) of Oδ(Ξi ).

Definition 9 Let T (·) be a semigroup and letS = {Ξ1, Ξ2, . . . , Ξn} be a family of isolated
invariant sets. A homoclinic structure inS is a non-empty subset {Ξ�1 , Ξ�2 , . . . , Ξ�k } ofS
(where k ≤ n), together with a set of global solutions {ξ j : R → X : 1 ≤ j ≤ k} such that

lim
t→−∞ distX (ξ j (t),Ξ� j ) = 0 and lim

t→∞ distX (ξ j (t),Ξ�( j+1) ) = 0,

where Ξ�k+1 := Ξ�1 and, if k = 1, the orbit γ (ξ1) is not contained in Ξ�1 .

Definition 10 The unstable set of an invariant (under T (·)) set Ξ is defined by

Wu(Ξ) := {x ∈ X : there is a global solution ξ : R → X

such that ξ(0) = x and limt→−∞ distX (ξ(t),Ξ) = 0}.
Given δ > 0, the local unstable set of Ξ associated to δ is the set

Wu,δ(Ξ) := {x ∈ Wu(Ξ) : distX (ξ(t),Ξ) < δ,∀ t ≤ 0}. (2.1)

We are now ready to define dynamically gradient semigroups (see [18, Sect. 5.1]).

Definition 11 A semigroup T (·) with a global attractor A is dynamically gradient with
respect to the familyS = {Ξ1, Ξ2, · · · , Ξn} of isolated invariant bounded sets, or dynami-
cally S -gradient, if it satisfies the following two properties:

(G1) Given a global solution ξ : R → X in A, there exist i, j ∈ {1, 2, . . . , n} such that
lim

t→−∞ distX (ξ(t),Ξi ) = 0 and lim
t→∞ distX (ξ(t),Ξ j ) = 0.

(G2) The collection S does not contains homoclinic structures.

Next, we introduce a class of semigroup which will be important to explain the purpose
of the results in this paper.

Definition 12 We say that a semigroup T (·)with a global attractorA and a family of isolated
invariant bounded sets S = {Ξ1, Ξ2, . . . , Ξn} is a gradient semigroup with respect to S ,
or an S -gradient semigroup, if there is a continuous function V : X → R such that

(i) The real function [0,∞) � t �−→ V (T (t)x) ∈ R is non-increasing for each x ∈ X ;
(ii) V is constant in each Ξi for each i = 1, . . . , n; and

(iii) V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
n⋃

i=1

Ξi .

A function V with these properties is called a generalized Lyapunov function for T (·)
with respect to S , or an S -Lyapunov function for T (·).
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The following result characterizes a gradient semigroup in terms of its dynamical prop-
erties: backwards and forwards convergence to isolated invariant sets and the absence of
homoclinic structures.

Theorem 2 Let T (·) be a semigroupwith a global attractorA, and letS be a finite collection
of isolated invariant bounded sets. Then T (·) is S -gradient if and only if it is dynamically
S -gradient.

Proof See Theorem 1.1 in [1] or Theorem 5.5 in [18]. 	

As an immediate consequence of this theorem we obtain the following characterization

of the attractor.

Corollary 3 Let T (·) be a gradient semigroup with respect to S = {Ξ1, Ξ2, . . . , Ξn} a
family of bounded isolated invariant sets. If T (·) has a global attractor A, then

A =
n⋃

j=1

Wu(Ξ j ). (2.2)

Proof We first note that, given y ∈ A and using Theorem 1, it follows that there is a bounded
global solution ξ : R → X with ξ(0) = y. Also, from Theorem 2, there exists a Ξ ∈ S so
that lim

t→−∞ distX (ξ(t),Ξ) = 0, then ξ(t) ∈ Wu(Ξ). Hence, A ⊂ ⋃n
j=1 W

u(Ξ j ).

Conversely, given x ∈ Wu(Ξ�), for some Ξ� ∈ S where � ∈ {1, . . . , n}, we have there is
a global solution ξ : R → X for T (·) with ξ(0) = x and lim

t→−∞ distX (ξ(t),Ξ�) = 0. Since

Ξ� is a bounded set, then {ξ(t) : t ≤ −τ } is bounded set for some τ ∈ R+. From Theorem
2, we know also that the set {ξ(t) : t ≥ τ0} is bounded for some τ0 ∈ R+. Thus, we see from
Theorem 1 that x ∈ A. 	

2.3 Perturbation of Global Attractors

Aperturbation of the semigroup T (·)on a space X produces a variation in its global attractorA
contained in X , which is a very natural fact in real phenomena. Perturbation of the semigroup
is reflected in dependence on a parameter h ∈ (0, 1], that is, Th(·), and similarly for the global
attractor Ah . The study of the behavior of this effect is given in two parts:

(a) The continuity of global attractors: This fact is given by the combination of

(a1) Upper semicontinuity of global attractors under perturbation (see [27,29,31,43]),
i.e., when it holds that

distX (Ah,A) → 0 as h → 0 and

(a2) Lower semicontinuity of global attractors under perturbation (see [19,30,41,43]),
written as

distX (A,Ah) → 0 as h → 0.

(b) Topological structural stability (see [17,18]): We call topological structural stability if
dynamically gradient semigroups (see [18, Definition 5.4] or (G1) and (G2) at Definition
11) are kept under perturbation. This means that the internal dynamics in global attractor
is robust under perturbation.

The next section is devoted to introduce the concept of discrete convergence, used for
comparing problems on different Banach spaces.
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2.4 P-convergence

P-convergence, also called discrete convergence, was proposed by Stummel (see [44,46–
48]), and it is specially well-suited for the analysis of comparison of solutions for
discretization of PDEs under, for instance, finite element methods. In the present section
we recall some fundamental notions and results concerning to the P-convergence of ele-
ments and operators. In the papers [3–5,19,46–49] a general scheme was studied that allows
to analyze convergence properties of numerical discretizations along with some applications
to the continuity of attractors for some evolution PDEs. We now collect some results that are
necessary for the development of the paper.

Let {Xh}h∈[0,1] be a family of Banach spaces and P = {Ph}h∈(0,1] a family with Ph :
X0 → Xh such that Ph ∈ L (X0, Xh) = {Th : X0 → Xh : Th is a bounded linear operator},
for h ∈ (0, 1], with the following property:

‖Phu0‖Xh

h→0−→ ‖u0‖X0 , ∀ u0 ∈ X0. (2.3)

Usually, in applications, the Xh are finite dimensional; but in the abstract theory this
assumption is not necessary.

Definition 13 A family {uh}h∈(0,1] with uh ∈ Xh P-converges to u0 ∈ X0 if

‖uh − Phu0‖Xh → 0 as h → 0.

We write this as uh
P−→ u0.

Similarly, the P-convergence of sequences is defined as: A sequence {uhn }n∈N with

uhn ∈ Xhn , such that hn
n→∞−→ 0, P-converges to u0 ∈ X0 if

‖uhn − Phnu0‖Xhn
→ 0 as n → ∞.

Lemma 4 Let Ph ∈ L (X0, Xh) be satisfying (2.3) for all h ∈ (0, 1], then there exist a
constant 1 ≤ M < ∞ and h0 ∈ (0, 1] such that

sup
h∈[0,h0]

‖Ph‖L (X0,Xh) ≤ M.

Proof Let Fn = {u0 ∈ X0 : ∃h̄ ∈ (0, 1] s.t. ‖Phu0‖Xh ≤ n,∀ h ∈ [0, h̄]} ⊂ X0. Then,
∪∞
n=1Fn ⊂ X0. We observe that Fn is closed set because Ph ∈ L (X0, Xh). From (2.3), we

know that, given ε > 0 and u0 ∈ X0, there exists an h1 ∈ (0, 1] such that

‖Phu0‖Xh ≤ | ‖Phu0‖Xh − ‖u0‖X0 | + ‖u0‖X0 < ε + ‖u0‖X0 ,∀ h ∈ [0, h1]. (2.4)

So that, ‖Phu0‖Xh ≤ ‖u0‖X0 ≤ n1, for some n1 ∈ N and for all h ∈ [0, h1]. Hence,
X0 =

∞⋃

n=1

Fn . Using the Baire Theorem, there is an n0 ∈ N such that int Fn0 �= ∅. Given
u0 ∈ X0 and r > 0 such that BX0(u0, r) ⊂ Fn0 . From this, there exists an h2 such that
‖Phu0‖Xh ≤ n0, for all h ∈ [0, h2]. Thus, taking u = u0 +r z for z ∈ BX0(0, 1), follows that
u ∈ BX0(u0, r). Hence, there is an h3 ∈ (0, 1] such that ‖Phu‖Xh ≤ n0, for all h ∈ [0, h3].
Then,

r‖Phz‖Xh ≤ ‖Phu‖Xh + ‖Phu0‖Xh ≤ 2n0.

Therefore, there exists an h0 = min{h2, h3} ∈ (0, 1] such that
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‖Ph‖L (X0,Xh) ≤ 2n0
r

=: M,

for all h ∈ [0, h0]. 	


Let us present some properties of P-convergence that follow immediately.

Proposition 2 The P-convergence has the following properties:

i) If uh
P−→ u0 and uh

P−→ v0, then u0 = v0.

ii) If uh
P−→ u0 and vh

P−→ v0, thenαuh+βvh
P−→ αu0+βv0, whereα, β ∈ K = C orR.

iii) If uh
P−→ u0, then ‖uh‖Xh

h→0−→ ‖u0‖X0 .

iv) uh
P−→ 0 if and only if ‖uh‖Xh

h→0−→ 0.

v) Given u0 ∈ X0, then Phu0
P−→ u0.

vi) If u0 ∈ X0, {u(h)} ⊂ X0 such that ‖u(h) − u0‖X0

h→0−→ 0, then Phu(h) P−→ u0.

Assume that {Yh}h∈[0,1] is a family of Banach spaces andQ = {Qh}h∈(0,1] a sequence of
bounded linear operators Qh : Y0 → Yh with the following property:

‖Qhv0‖Yh h→0−→ ‖v0‖Y0 , ∀ v0 ∈ Y0. (2.5)

Definition 14 A family {Ah}h∈(0,1] of operators Ah : Xh → Yh PQ-converges to an
operator A0 : X0 → Y0 as h → 0 if

Ahuh
Q−→ A0u0 whenever uh

P−→ u0.

We write Ah
PQ−→ A0 as h → 0.

The following result is very useful to show PQ-convergence of linear operators.

Proposition 3 Let Ah ∈ L (Xh, Yh), for all h ∈ (0, 1], A0 ∈ L (X0, Y0), the bounded
linear operators Ph : X0 → Xh and Qh : Y0 → Yh satisfying (2.3) and (2.5), respectively.
The following statements are equivalent:

(i) Ah
PQ−→ A0 as h → 0.

(ii) For any u0 ∈ X0, ‖Ah Phu0−Qh A0u0‖Yh h→0−→ 0 and lim suph→0 ‖Ah‖L (Xh ,Yh) < ∞.

(iii) For any v ∈ E, ‖Ah Phv − Qh A0v‖Yh h→0−→ 0 where E is dense in X0 and
lim suph→0 ‖Ah‖L (Xh ,Yh) < ∞.

Proof See Theorem 2.2.8 in [46] or Lema 4.1 in [49]. 	


Denote by U (Xh, Yh) the set of uniformly Lipschitz continuous maps from Xh into Yh ,
for h ∈ [0, 1]. In the following result observe that the operators are simply continuous.

Corollary 5 Let Ah ∈ U (Xh, Yh), for h ∈ (0, 1], the bounded linear operators Ph : X0 →
Xh and Qh : Y0 → Yh satisfying (2.3) and (2.5), respectively. Ah

PQ−→ A0 as h → 0 if and

only if ‖Ah Phu0 − Qh A0u0‖Yh h→0−→ 0, for all u0 ∈ X0.
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Proof The first implication is straightforward from Definition 14, since Phu0
P−→ u0 for all

u0 ∈ X0. Thus, Ah Phu0
Q−→ A0u0, for all u0 ∈ X0. Conversely, let uh

P−→ u0 as h → 0.
Since Ah ∈ U (Xh, Yh), then there is a positive constant α, which is independent of h, such
that

‖Ahuh − Qh A0u0‖Yh ≤ α‖uh − Phu0‖Xh + ‖Ah Phu0 − Qh A0u0‖Yh h→0−→ 0.

Therefore, Ah
PQ−→ A0. 	


2.5 Continuity of Attractors Under P-convergence

Now, we define the continuity of global attractors in the sense of P-convergence.

Definition 15 Let Ah ⊂ Xh , where Xh is a Banach space, for all h ∈ [0, 1].
(i) We say that the family of sets {Ah}h∈(0,1] is P-upper semicontinuous at h = 0 if

distXh (Ah, PhA0) := sup
uh∈Ah

inf
u∈A0

‖uh − Phu‖Xh

h→0−→ 0. (2.6)

(ii) We say that the family of sets {Ah}h∈(0,1] is P-lower semicontinuous at h = 0 if

distXh (PhA0,Ah) := sup
u∈A0

inf
uh∈Ah

‖uh − Phu‖Xh

h→0−→ 0. (2.7)

(ii) We say that the family of sets {Ah}h∈(0,1] is P-continuous at h = 0 if it is P-upper
semicontinuous and P-lower semicontinuous at h = 0.

Remark 6 TheP-upper andP-lower semicontinuity of sets have the following characteri-
zations (see [18,19]):

(1) If for each sequence hk → 0 and {xk}k∈N with xk ∈ Ahk there exists a subsequence
{hkl }l∈N such that {xkl }l∈N is P-convergent to some limit u0 belonging to A0, then
{Ah}h∈(0,1] is P-upper semicontinuous at h = 0.

(2-a) If A0 is compact and for any u0 ∈ A0 and hk → 0 there is a subsequence {hkl }l∈N
and a sequence {ul}l∈N with ul ∈ Ahkl

, which P-converges to u0, then {Ah}h∈(0,1]
is P-lower semicontinuous at h = 0.

(2-b) If {Ah}h∈(0,1] isP-lower semicontinuous at h = 0, given u0 ∈ A0 and hk → 0, there
is a subsequence {hkl }l∈N and a sequence {ul}l∈N with ul ∈ Ahkl

, whichP-converges
to u0.

Proof Just for completeness, let us proof item (2-b).
Indeed, since {Ah}h∈(0,1] isP-lower semicontinuous at h = 0 we have, in particular, that

lim
k→∞ distXhk

(PhkA0,Ahk ) = 0.

Then, given u0 ∈ A0 we get

lim
k→∞ dXhk

(Phk u0,Ahk ) = 0.

From that, we may take a subsequence {hkl }l∈N such that

dXhkl
(Phkl u0,Ahkl

) <
1

l
,
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and by definition of dX (·, ·) we can take a sequence {ul}l∈N with ul ∈ Ahkl
which satisfies

dXhkl
(Phkl u0, ul) <

1

l

and the proof is complete. 	


3 Topological Structural Stability of Global Attractors

In this section we develop the theory of topological structural stability for different Banach
spaces parameterized by h ∈ (0, 1], say Xh , which dimension may be finite (to apply for
discretizations ofPDEs) or infinite.With thiswegeneralize the theoryof topological structural
stability (see [1,18]) given on a fixed Banach space.

We begin with a definition that is a generalization of the concept of collectively asymptot-
ically compact (see [1, Definition 4.2] or [18, Definition 3.16]) for variable Banach spaces.

Again for simplicity, we will refer to {Th(·)}h∈[0,1] rather than the family of nonlinear
semigroups {Th(t) : t ≥ 0}h∈[0,1].
Definition 16 Let {Th(·)}h∈[0,1] be a family of semigroups in the Banach space Xh , for all
h ∈ [0, 1]. We say that {Th(·)}h∈(0,1] is P-collectively asymptotically compact at h = 0 if,

for any sequence {hk}k∈N in (0, 1] with hk
k→∞−→ 0, uniformly bounded sequence {xk}k∈N

with xk ∈ Xhk , sequence {tk}k∈N in (0,∞) with tk
k→∞−→ ∞ the sequence {Thk (tk)xk}k∈N

has a P-convergent subsequence to some element in X0.

Remark 7 In case Xh = X0 and Ph = IX0 , for all h ∈ (0, 1], {Th(·)}h∈[0,1] is collectively
asymptotically compact at h = 0 (see Definition 3.16 in [18]).

Definition 17 Let {Th(·)}h∈[0,1] be a family of nonlinear semigroups in Xh , for h ∈ [0, 1].
We say that Th(·) PP−→ T0(·) uniformly in compact subsets of R+ × X0 if for each τ > 0,
we have

lim
h→0

sup
t∈[0,τ ]

‖Th(t)uh − PhT0(t)u0‖Xh = 0

whenever

lim
h→0

‖uh − Phu0‖Xh = 0.

We are now ready to state the following theorem on the behavior of global attractors under
perturbation, which also implies perturbation of space. This result also shows the continuity
of global attractors in the sense of P-convergence.

Theorem 8 (Topological structural stability)Let {Th(·)}h∈[0,1] be a family of nonlinear semi-
groupsP-collectively asymptotically compact at h = 0 on a Banach space Xh, for h ∈ [0, 1]
and that Th(·) PP−→ T0(·) uniformly on compact subsets ofR+ × X0. Suppose that

(a) for each h ∈ [0, 1], the semigroup Th(·) has a global attractor Ah, with suph∈[0,1]
supxh∈Ah

‖xh‖Xh < ∞;
(b) there is a p ∈ N such that for any h ∈ [0, 1], the semigroup Th(·) has a disjoint

family of isolated invariant bounded sets Sh := {Ξ1,h, Ξ2,h, . . . , Ξp,h} that behave
P-continuously at h = 0, that is, for each i = 1, 2, . . . , p, we have

distXh (Ξi,h, PhΞi,0) + distXh (PhΞi,0, Ξi,h) → 0 as h → 0; (3.1)
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(c) T0(·) is a gradient semigroup with respect to S0 = {Ξ1,0, Ξ2,0, . . . , Ξp,0};
(d) the family of local unstable manifold of Ξi,h behaves P-continuously at h = 0, that is,

there exists a ρ > 0 such that

distXh

(
Wu,ρ

h (Ξi,h), PhW
u,ρ
0 (Ξi,0)

) + distXh (PhW
u,ρ
0

(
Ξi,0),W

u,ρ
h (Ξi,h)

) → 0

as h → 0; and
(e) There exists a δ0 > 0 such that, for all h ∈ [0, 1] and j = 1, · · · , p,Ξ j,h is the maximal

invariant set for the semigroup Th(·) inside Oδ0(PhΞ j,0). Besides, δ0 is such that the
δ0-neighborhoods of the PhΞ j,0’s are disjoints.

Then,

1. the family {Ah}h∈(0,1] is P-upper semicontinuous at h = 0 whenever (a) holds;
2. the family {Ah}h∈(0,1] is P-lower semicontinuous at h = 0 whenever (a), (b), (c) and

(d) hold; and
3. there exist an h0 ∈ (0, 1] such that, for al h ∈ [0, h0], {Th(·)}h∈(0,1] is a gradient

semigroup with respect to Sh = {Ξ1,h, Ξ2,h, . . . , Ξp,h} whenever (a), (b), (c) and (e)
hold. Consequently,

Ah =
p⋃

i=1

Wu(Ξi,h), ∀ h ∈ [0, h0].

Remark 9 It is important to note that hypothesis (e) does not follow from hypothesis (b)
along with thePP-convergence of the nonlinear semigroups, since hypothesis (e) assumes
that the δ0 must be uniform for every h ∈ [0, 1] and j = 1, . . . , p.

To be more precise, although for every h ∈ [0, 1] and j = 1, · · · , p, Ξ j,h is an isolated
invariant set, which means that for every h ∈ [0, 1] there exists δh > 0 such that Ξ j,h

is the maximal invariant set for Th(·) in Oδh (Ξ j,h), and there exists h0 > 0 such that
Ξ j,h ⊂ Oδ0(PhΞ j,0) for all h ∈ [0, h0] (due to hypothesis (b)), without (e) we do not get
that Ξ j,h is the maximal invariant set for Th(·) inside Oδ0(PhΞ j,0). Since the neighborhood
Oδh (Ξ j,h), for h small, might be lower thanOδ0(PhΞ j,0), so we could not say nothing about
an arbitrary invariant set Eh for Th(·)which is inside the differenceOδ0(PhΞ j,0)\Oδh (Ξ j,h).
By (e), we can conclude that Eh ⊂ Ξ j,h .

The following lemma is crucial for the development of the proof for our main result. It
shows the existence of a P-convergent subsequence of global solutions for semigroups in
variable Banach spaces to a global solution for a semigroup on a fixed Banach space.

Lemma 10 Let {Th(·)}h∈(0,1] be a family of semigroupsP-collectively asymptotically com-

pact at h = 0 on the Banach spaces Xh, for h ∈ [0, 1], such that Th(·) PP−→ T0(·) uniformly
on compact subsets ofR+ × X0.

Given {hk}k∈N in (0, 1] with hk
k→∞−→ 0 and a sequence {Jk}k∈N with Jk := [−tk,∞)

for some increasing sequence of positive numbers {tk}k∈N with tk
k→∞−→ ∞. Suppose that

{xk}k∈N is a uniformly bounded sequence with xk ∈ Xhk .
Defining for each natural number k, ξk : Jk → Xhk by ξk(t) = Thk (t + tk)xk, ∀ t ∈ Jk ,

there is a subsequence of (ξk)k∈N that P-converges to ξ0 uniformly on compact sets of R,
for some global solution ξ0 : R → X0 of T0(·).
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Proof Since the family {Th(·)}h∈(0,1] is P-collectively asymptotically compact, let N0 be
an infinite subset ofN such that the sequence {Thk (tk)xk}k∈N0 P-converges to z0 ∈ X0, that

is, lim
k→∞
k∈N0

‖Thk (tk)xk − Phk z0‖Xhk
= 0. Define ξ

(0)
0 : R+ → X0 by ξ

(0)
0 (t) = T0(t)z0.

Using the above argument, consider N1 an infinite subset of N0 such that tk > 1 for
all k ∈ N1 and the sequence {Thk (tk − 1)xk}k∈N1 P-converges to z1 ∈ X0. Define ξ

(1)
0 :

[−1, 0] → X0 by ξ
(1)
0 (t) = T0(t + 1)z1.

We note that if a sequenceP-converges then all its subsequencesP-converge to the same
limit. Now,

‖ξ (1)
0 (0) − ξ

(0)
0 (0)‖X0 = lim

k→∞
k∈N1

‖Phk T0(1)z1 − Phk z0‖Xhk

≤ lim
k→∞
k∈N1

‖Thk (1)Thk (tk − 1)xk − Phk T0(1)z1‖Xhk

+ lim
k→∞
k∈N1

‖Thk (tk)xk − Phk z0‖Xhk
= 0,

thus ξ
(1)
0 (0) = ξ

(0)
0 (0).

Analogously, let N2 be an infinite subset of N1 such that tk > 2 for all k ∈ N2 and the
subsequence {Thk (tk − 2)xk}k∈N2 P-converges to z2 ∈ X0.

Define ξ
(2)
0 : [−2,−1] → X0 by ξ

(2)
0 (t) = T0(t + 2)z2.

As before, we obtain

‖ξ (2)
0 (−1) − ξ

(1)
0 (−1)‖X0

≤ lim
k→∞
k∈N2

‖Thk (1)Thk (tk − 2)xk − Phk T0(1)z2‖Xhk

+ lim
k→∞
k∈N2

‖Thk (tk − 1)xk − Phk z1‖Xhk
= 0,

then ξ
(2)
0 (−1) = ξ

(1)
0 (−1).

Repeating the same argument, we obtain a decreasing sequence of infinite subsets of N,
that is, N ⊃ N0 ⊃ N1 ⊃ · · · ⊃ Nn ⊃ · · · , so that for each n ∈ {0, 1, 2, . . . }; there exist
zn ∈ X0 and tk > n for all k ∈ Nn such that the sequence {Thk (tk −n)xk}k∈Nn P-converges
to zn .

Define ξ
(n)
0 : [−n, 1 − n] → X0 by ξ

(n)
0 (t) = T0(t + n)zn , and

‖ξ (n)
0 (1 − n) − ξ

(n−1)
0 (1 − n)‖X0 = lim

h→0
‖PhT0(1)zn − Phzn−1‖Xh

≤ lim
k→∞
k∈Nn

‖Thk (1)Thk (tk − n)xk − Phk T0(1)zn‖Xhk

+ lim
k→∞
k∈Nn−1

‖Thk (tk − n + 1)xk − Phk zn−1‖Xhk
= 0

Thus,
ξ

(n)
0 (1 − n) = ξ

(n−1)
0 (1 − n), ∀ n ∈ N. (3.2)

Finally put ξ0 : R → X0 by

ξ0(t) :=
{

ξ
(0)
0 (t), t ≥ 0

ξ
(n)
0 (t), t ∈ [−n, 1 − n], n ∈ N.

(3.3)
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We note that ξ0 : R → X0 is well defined by (3.2).
Now, we claim that ξ0 : R → X0 is a global solution for T0(·).
In fact, given t, s ≥ 0 along with the definition of ξ0, we have

T0(t)ξ0(s) = T0(t)T0(s)z0 = T0(t + s)z0 = ξ0(t + s),

since t + s ≥ 0.
We see that T0(n)zn = z0 due to

‖T0(n)zn − z0‖X0 = lim
h→0

‖PhT0(n)zn − Phz0‖Xh

≤ lim
k→∞
k∈Nn

‖Thk (n)Thk (tk − n)xk − Phk T0(n)zn‖Xhk

+ lim
k→∞
k∈Nn−1

‖Thk (tk)xk − Phk z0‖Xhk
= 0.

If s < 0, we choose n ∈ N such that s ∈ [−n, 1 − n], therefore ξ0(s) = T0(s + n)zn .
For t + s ≥ 0, we have

T0(t)ξ0(s) = T0(t)T0(s + n)zn = T0(t + s)T0(n)zn = T0(t + s)z0 = ξ0(t + s).

For s + t < 0, there is a m ∈ N such that m ≤ n and s + t ∈ [−m, 1 − m]. Thus
T0(t)ξ0(s) = T0(t)T0(s + n)zn = T0([t + s + m] + [n − m])zn

= T0(t + s + m)T0(n − m)zn

= T0(t + s + m)zm = ξ
(m)
0 (t + s) = ξ0(t + s),

for T0(n − m)zn = zm . Then, ξ0 : R → X0 is global solution for T0(·).
On the other hand, define the setN∗ so that its n-th element is the n-th element ofNn , in

increasing order of the natural numbers; note thatN∗ is an infinite set.
Moreover, considering the restriction {ξk}k∈N∗ , it follows that {ξk}k∈N∗ is a subsequence

of {ξk}k∈N that P-converges to ξ0 uniformly on compact sets ofR.

In fact, let a, b ∈ R be such that 0 ≤ a < b. It follows from Th(·) PP−→ T0(·) uniformly
on compact subsets ofR+ × X0 that

lim
k→∞
k∈N0

sup
t∈[a,b]

‖ξk(t) − Phk ξ0(t)‖Xhk

= lim
k→∞
k∈N0

sup
t∈[a,b]

‖Thk (t + tk)xk − Phk T0(t)z0‖Xhk

= lim
k→∞
k∈N0

sup
t∈[a,b]

‖Thk (t)Thk (tk)xk − Phk T0(t)z0‖Xhk
= 0.

For any fixed n ∈ N, k ∈ Nn and t ∈ [−n, 1 − n], we obtain
lim
k→∞
k∈Nn

sup
t∈[−n,1−n]

‖ξk(t) − Phk ξ0(t)‖Xhk

= lim
k→∞
k∈Nn

sup
t∈[−n,1−n]

‖Thk (t + tk)xk − Phk T0(t + n)zn‖Xhk

= lim
k→∞
k∈Nn

sup
t∈[−n,1−n]

‖Thk (t + n)Thk (tk − n)xk − Phk T0(t + n)zn‖Xhk
= 0.

Finally, the general case follows from the fact that every compact set K ⊂ R is contained in
a finite union of intervals of the kind considered above, and so the proof is complete. 	
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3.1 Proof of Theorem 8

(1) We will use the part (1) of Remark 6. For that, we take sequences hk → 0 and {xk}k∈N
with xk ∈ Ahk . Then, for each k there is a bounded global solution ξk : R → Xhk for Thk (·)
with ξk(0) = xk .

By Lemma 10, we get a subsequence (ξkl )l∈N of (ξk)k∈N and a bounded (this by the
hypothesis (a)) global solution ξ0 : R → X0 for T0(·) such that (ξkl )l∈N P-converges to ξ0
uniformly on compact sets ofR.

In particular, ξkl (0) = xkl P-converges to ξ0(0) =: x0 and being x0 a point ofA0, we get
the P-upper semicontinuity at h = 0 of the family of attractors {Ah}h∈[0,1].

(2) By part (2-a) of Remark 6, since A0 is compact, to show this result we just need to
see that, given u0 ∈ A0 and hk → 0 there is a subsequence {hkl }l∈N and a sequence {ul}l∈N
with ul ∈ Ahkl

, which P-converges to u0.
Indeed, since u0 ∈ A0 there exists a � ∈ {1, 2, . . . , p} such that u0 ∈ Wu

0 (Ξ�,0).
That is why there is a global solution ξ0 : R −→ X0 for T0(·) with ξ0(0) = u0 and
limt→−∞dX0(ξ0(t),Ξ�,0) = 0.

Now, let ρ > 0 such that, by hypothesis (d), the family of local unstable set of Ξi,h

behaves P-continuously at h = 0 and take t0 < 0 such that dX0(ξ0(t),Ξ�,0) < ρ for every
t ≤ t0, then is easy to see that ξ0(t0) ∈ Wu,ρ

0 (Ξ�,0).
Being

(
Wu,ρ

h (Ξ�,h)
)

h∈[0,1] P-lower semicontinuous at h = 0, by part (2-b) of Remark

6, there exists subsequence {hkl }l∈N and a sequence {yl}l∈N with yl ∈ Wu,ρ
hkl

(Ξ�,hkl
), which

P-converges to ξ0(t0).

Finally, by Th(·) PP−→ T0(·) uniformly on compact subsets of R+ × X0 follows that
Ahkl

� Thkl (−t0)yl P-converges to T0(−t0)ξ0(t0) = ξ0(0) = u0, as we wish.
(3) First, by Theorem 2 it suffices to show that Th(·) is dynamically Sh-gradient.
We begin by proving that (G1) is stable under perturbation, that is, there is an h1 ∈ (0, 1]

such that Th(·) satisfies (G1) with respect to Sh for all h ∈ [0, h1].
In fact, we remark that by assumption (e) we may take δ ∈ (0, δ0) and, for this, if

h ∈ (0, 1], ξh : R −→ Xh is a global solution for Th(·) that lies in Ah and there exists
t0 ∈ R satisfying

dXh (ξh(t), PhΞ j,0) ≤ δ for all t ∈ [t0,∞), for some Ξ j,0 ∈ S0. (3.4)

Then, if ωh(ξh) indicates the omega limite set of the solution ξh with respect to the
semigroup Th(·), we get that ωh(ξh) ⊂ Oδ(PhΞ j,0) ⊂ Oδ0(PhΞ j,0) and, by the hypothesis
(e), we must have ωh(ξh) ⊂ Ξ j,h what clearly means that

lim
t→∞ distXh (ξh(t),Ξ j,h) = 0. (3.5)

Let us now show that there exists h1 ∈ (0, 1] such that the condition give in (3.4) is valid
for every h ∈ [0, h1].

Indeed, arguing by contradiction we suppose there are sequence (hk)k∈N in (0, 1] with
hk

k→∞−→ 0 and, for each natural k, a global solution ξk : R → Xhk for Thk (·) that lies inAhk ,
such that

sup
t≥t0

dXhk

⎛

⎝ξk(t),
p⋃

j=1

PhkΞ j,0

⎞

⎠ > δ, for all k ∈ N and t0 ∈ R. (3.6)
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We can use Lemma 10 to suppose the existence of a subsequence (which we relabel) such
that ξk(t) P-converges to ξ (0)(t) uniformly for t on compacts of R, where ξ (0) : R → X0

is a global solution for T0(·) that lies in A0, this for the hyphotesis (a).
Since T0(·) is dynamicallyS0-gradient, it follows that there is an isolated invariantΞi0,0 ∈

S0 such that limt→∞ dX0(ξ
(0)(t),Ξi0,0) = 0. Thus, by Lemma 4, we obtain, for every real

t ,

dXhk
(ξk(t), PhkΞi0,0) ≤ ‖ξk(t) − Phk ξ

(0)(t)‖Xhk
+ dXhk

(Phk ξ
(0)(t), PhkΞi0,0)

≤ ‖ξk(t) − Phk ξ
(0)(t)‖Xhk

+ MdX0(ξ
(0)(t),Ξi0,0)

k→∞−→ 0.

Then, given r ∈ N (with 1
r < δ) there exist kr ∈ N and tr ∈ R such that

dXhk
(ξk(tr ), PhkΞi0,0) <

1

r
whenever k ≥ kr . (3.7)

Also, from (3.6) it follows the existence of t ′r > tr such that

dXhkr
(ξkr (t), Phkr Ξi0,0) < δ for all t ∈ [tr , t ′r )

and

dXhkr

(
ξkr (t

′
r ), Phkr Ξi0,0

) = δ.

We can see that t ′r − tr → ∞ as r → ∞. In fact, for otherwise, we may assume that

t ′r − tr
r→∞−→ τ̄ , for some τ̄ ≥ 0. Then, by (3.7) and ξkr (t

′
r ) = Thkr (t

′
r − tr )ξkr (tr ), we get the

existence of a point in Ξi0,0 distanced δ > 0 to Ξi0,0, but this is a contradiction.
Use Lemma 10 again to take a subsequence such that ξ

(1)
r (t) P-converges to ξ (1)(t)

uniformly for t on compact sets ofR, where ξ
(1)
r (t) := ξkr (t + t ′r ) for all t ∈ [−(t ′r − tr ),∞)

and ξ (1) : R → X0 a global solution for T0(·) that lies in A0. We see that

dX0(ξ
(1)(t),Ξi0,0) = lim

h→0
dXh

(
Phξ

(1)(t), PhΞi0,0

)

≤ lim
r→∞ ‖Phkr ξ (1)(t) − ξ (1)

r (t)‖Xhkr

+ lim
r→∞ dXhkr

(
ξ (1)
r (t), Phkr Ξi0,0

)
≤ δ, (3.8)

for all t ≤ 0, and the property (G1) of T0(·) implies that

lim
t→−∞ dX0(ξ

(1)(t),Ξi0,0) = 0.

Since T0(·) satisfies (G1) and (G2),
we must have that limt→∞ dX0(ξ

(1)(t),Ξi1,0) = 0, for some isolated invariant setΞi1,0 ∈
S0 with i1 �= i0, because if it was i1 = i0, since dX0(ξ

(1)(0),Ξi0,0) = δ, ξ (1) would be an
homoclinic solution, what cannot be.

Now, from the fact that ξ (1)
r (t) P-converges to ξ (1)(t) uniformly for t on compact sets of

R, it follows that (analogously as in (3.1)) for each m ∈ N (with 1
m < δ) there are rm ∈ N

and tm ∈ R such that

dXhkr

(
ξ (1)
r (tm), Phkr Ξi1,0

)
<

1

m
whenever r ≥ rm .

Again, by (3.6) we have there is a t ′m > tm so that

dXhkrm

(
ξ (1)
rm (t), Phkrm Ξi1,0

)
< δ for all t ∈ [tm, t ′m)
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and

dXhkrm

(
ξ (1)
rm (t ′m), Phkrm Ξi1,0

)
= δ.

Similar to what we did in the previous case, we obtain that t ′m − tm → ∞ as m → ∞ and

there exists a global solution ξ (2) : R → X0 for T0(·) such that ξ (2)
m (t)P-converges to ξ (2)(t)

uniformly for t on compact sets ofR, where ξ
(2)
m (t) := ξrm (t+t ′m) for all t ∈ [−(t ′m−tm),∞).

Following the argument in (3.8), we must have dX0(ξ
(2)(t),Ξi1,0) ≤ δ for all t ≤ 0, and

along with the property (G1) of T0(·) implies that limt→−∞ dX0(ξ
(2)(t),Ξi1,0) = 0.

Again, since T0(·) satisfies (G1) follows that limt→∞ dX0(ξ
(2)(t),Ξi2,0) = 0, for some

isolated invariant set Ξi2,0 ∈ S0. Since T0(·) also satisfies (G2), it must be that i2 /∈ {i0, i1},
for otherwise there would be a homoclinic structure for T0(·) associated to S0.

Then we can repeat the previous argument, which should stop after a finite number of
steps, as the setS0 is finite and, as we saw in the last step will be forced to find a homoclinic
structure in the attractor A0 which is a contradiction. Then our initial assumption (3.4) is
true.

One can prove that there is an h2 ∈ (0, h1] along with the counterpart of (3.5) as t → −∞
by a similar argument.

Finally, we will prove that there is an h0 ∈ (0, h2] such that Th(·) satisfies (G2) for all
h ∈ [0, h0]. To show this, we again argue by contradiction. Suppose there exists a sequence
hk → 0 for which there exist (S ′

k)k∈N of sets with S ′
k := {Ξ�1,hk , Ξ�2,hk , . . . , Ξ�m ,hk } ⊂

Shk , and a sequence of global solutions {ξk, j : R → Xhk : 1 ≤ j ≤ m}k∈N such that ξk, j is
a global solution for Thk (·) that lie in Ahk , satisfying

lim
t→−∞ dXhk

(ξk, j (t),Ξ� j ,hk ) = 0 and lim
t→∞ dXhk

(ξk, j (t),Ξ�( j+1),hk ) = 0,

where Ξ�(m+1),hk := Ξ�1,hk .
With this, we get for all t ∈ R,

dXhk
(ξk, j (t), PhkΞ� j ,0) ≤ dXhk

(ξk, j (t),Ξ� j ,hk ) + distXhk
(Ξ� j ,hk , PhkΞ� j ,0)

k→∞−→ 0.

Changing to a subsequence if necessary, we can assume that for each k ∈ N and every
j = 1, 2, . . . ,m − 1 there is a real t ( j+1)

k such that

dXhk

(
ξk, j (t

( j+1)
k ), PhkΞ� j ,0

)
<

1

k

and note that for all k and j , we see that there is also t ( j+1)′
k > t ( j+1)

k such that

dXhk
(ξk, j (t), PhkΞ� j ,0) < δ, for all t ∈ [t ( j+1)

k , t ( j+1)′
k )

and

dXhk

(
ξk, j

(
t ( j+1)′
k

)
, PhkΞ� j ,0

)
= δ.

Because, otherwise,we should havedXhk
(ξk, j (t), PhkΞ� j ,0) < δ < δ0 for all t ∈ R therefore,

by maximality ofΞ j,hk inOδ0(PhkΞl j ,0) given by the hypothesis (e), we get ξk, j (t) ∈ Ξ� j ,hk
for all real t , what is in contradiction to the fact that (S ′

k)k∈N with {ξk, j : R → Xhk : 1 ≤
j ≤ m}k∈N define an homoclinic structure.

In this way, we have created all necessary conditions for using the same argument we have
used to conclude the stability of (G1) and thus the theorem is proved. 	
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Remark 3 TheFundamental Theorem ofDynamical Systems [39] states that every dynamical
system on a compact metric space (in our case, the one defined on a global attractor) has
a geometrical structure described by a (finite or countable) number of sets {Ξi }i∈I with
an intrinsic recurrent dynamics and gradient-like dynamics outside them. In other words,
the global attractor can be always described by a (finite or countable) number of invariants
and connections between them. Thus, our theory would include the case of periodic orbits,
homoclinic structures joining a set of equilibria, or even invariants inside the attractor with a
chaotic behaviour. In applications, the problem with all of this kind of invariant structures is
how to prove their robustness under perturbation. Hyperbolicity of equilibria has been show
to be robust under autonomous and non-autonomous perturbation (see [16,33]) and normally
hyperbolic periodic orbits are stable under autonomous perturbation (see, for example, [28]).
But even in this last case the proof of the persistence of associated stable and unstable
manifolds (needed for any result on, for instance, lower semicontinuity of attractors), is
something, although expected, to be done in full development. In this work we will apply our
main results to the case where the attractor is made of a finite set of hyperbolic equilibria, for
which a perturbation leads to some projected spaces (see Sect. 4). Application of our results
to more general attractors, as the ones described in [39] or [21] in finite dimensions, or as in
[40,42] for infinite dimensional dynamical systems, would be very welcome, but out of the
aims of the present paper.

4 Applications

In this section we study the application of our abstract results to parabolic equations in
dumbbell domains and an abstract PDE with discretization by the finite element method.

4.1 Parabolic Equations in Dumbbell Domains

We consider the evolution equation of parabolic (see [3–5]) type of the form

{
uε
t (x, t) − Δuε(x, t) + uε(x, t) = f (uε(x, t)), x ∈ Ωε, t > 0,

∂uε (x,t)
∂n = 0, x ∈ ∂Ωε,

(4.1)

where Ωε ⊂ RN , N ≥ 2, is a bounded smooth domain, ε ∈ (0, 1] is a parameter, ∂
∂n is

the outside normal derivative and f : R → R is twice continuously differentiable function
which is bounded and has bounded derivatives up to the second order.

The domain Ωε is a dumbbell type domain (see Fig. 1) consisting of two disconnected
domains, that we denote by Ω , joined by a thin channel, Rε . Under standard dissipative
assumption on the nonlinearity f of the type,

lim sup
|s|→+∞

f (s)

s
< 0,

Eq. (4.1) has an attractor Aε ⊂ H1(Ωε), for ε ∈ (0, 1].
On the other hand, the limit domain consist of the domain Ω and a line in between. We

denote by P0 and P1 the points where the line segment touches Ω , see Fig. 2.
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The limiting equation is
⎧
⎪⎪⎨

⎪⎪⎩

wt (x, t) − Δw(x, t) + w(x, t) = f (w(x, t)), x ∈ Ω, t > 0,
∂w(x,t)

∂n = 0, x ∈ ∂Ω,

vt (s, t) − Lv(s, t) + v(s, t) = f (v(s, t)), s ∈ R0,

v(0) = w(P0), v(1) = w(P1),

(4.2)

where w is a function that lives in Ω and v lives in the line segment R0. Moreover, L is a
differential operator depending on the way the channel Rε collapses to the segment line R0,
i.e., Lv = 1

g (gvx )x where g will be defined below. Again, this system has an attractorA0 in

H1(Ω) × H1(R0) =: H1(Ω0).

Definition 18 A dumbbell domainΩε consists of a fixed domainΩ attached to a thin handle
Rε that approaches a line segment as the parameter ε approaches zero; that is,Ωε = Ω ∩ Rε .
More precisely, let RN , with N ≥ 2, Let Ω ⊂ RN, N ≥ 2, be a fixed open bounded and
smooth domain such that there is an l > 0 satisfying

Ω ∩ {
(s, x ′) : s2 + |x ′|2 < l2

} = {
(s, x ′) : s2 + |x ′|2 < l2, s < 0

}
,

Ω ∩ {
(s, x ′) : (s − 1)2 + |x ′|2 < l2

} = {
(s, x ′) : (s − 1)2 + |x ′|2 < l2, s > 1

}
,

Ω ∩ {
(s, x ′) : 0 < s < 1, |x ′| < l

} = ∅,

with
{
(0, x ′) : |x ′| < l

} ∪ {
(1, x ′) : |x ′| < l

} ⊂ ∂Ω . We are using the standard notation
RN � x = (s, x ′), with s ∈ R, x ′ = (x2, . . . , xN ) ∈ RN−1.

The channel that we consider will be defined as Rε = {(s, εx ′) : (s, x ′) ∈ R1} and R1 is
a smooth domain given by R1 = {(s, x ′) : 0 ≤ s ≤ 1, x ′ ∈ Γ s

1 } and for all s ∈ [0, 1], Γ s
1

is diffeomorphic to the unit ball in RN−1. That is, we assume that for each s ∈ [0, 1], there
exists a C1 dipheomorphism Ls : B(0, 1) → Γ s

1 . Moreover, if we define

L : (0, 1) × B(0, 1) → R1

(s, z) → (s, Ls(z)) (4.3)

then L is a C1 dipheomorphism.

The function [0, 1] � s �→ g(s) := |Γ s
1 | ∈ R, where |Γ s

1 | denotes the (N − 1)-
dimensional Lebesgue measure of the set Γ s

1 . From the smoothness of R1, we may assume
that g is a smooth function defined in [0, 1]. In particular, there exist d0, d1 > 0 such that
d0 ≤ g(s) ≤ d1 for all s ∈ [0, 1]. Moreover, fixed ε > 0, g(s) = ε1−N |Γ s

ε |, for all s ∈ [0, 1]
and the channel Rε collapses to the line segment R0 = {(s, 0) : 0 ≤ s ≤ 1}.
Remark 11 A very important class of channels will be those whose transversal sections Γ s

1
are disks centered at the origin of radius r(s), that is

R1 = {(s, x ′), |x ′| < r(s), 0 ≤ s ≤ 1}.
For this channel, g(s) = ωN−1r(s)N−1 where ωN−1 is the Lebesgue measure of the unit ball
in RN−1.

The dumbbell domain will be the domain Ωε = Ω ∪ Rε for ε ∈ (0, 1]. Observe that
we did not specify any connectedness property for Ω . Therefore we can have the situation
described in Fig. 1 or, for instance, as in Fig. 3. Now, we define appropriate spaces U p

ε , for
1 < p < ∞ and ε ∈ [0, 1] as follows, U p

ε := L p(Ωε), for ε ∈ (0, 1] with norm

‖ · ‖U p
ε

:= ‖ · ‖L p(Ω) + ε
1−N
p ‖ · ‖L p(Rε )
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Fig. 3 Dumbbell domain with a
connected Ω

R

and U p
0 = L p(Ω) ⊕ L p(R0) with norm

‖(w, v)‖U p
0

:= ‖w‖L p(Ω) + ‖v‖L p
g (0,1),

where L p
g (0, 1) is the space L p(0, 1) with the norm

‖v‖L p
g (0,1) :=

( ∫ 1

0
g(s)|v(s)|pds

) 1
p

.

We will also consider the spaces H1
ε = H1(Ω) ⊕ H1(Rε) with the norm

‖ · ‖H1
ε

= ‖ · ‖H1(Ω) + ε
1−N
2 ‖ · ‖H1(Rε )

and H1
0 = H1(Ω) ⊕ H1(R0).

Since both Eqs. (4.1) and (4.2) are posed in different space domains, the first one in Ωε

and the second one in Ω ∪ R0, we need to devise a tool to compare functions defined in these
two different sets. A tool given in [2,3] is to define the extension operator Eε : U p

0 → U p
ε

as follows

Eε(w, v)(x) :=
{

w(x), x ∈ Ω,

v(s), x = (s, y) ∈ Rε .

With this, problem (4.1) can be written as a semilinear abstract equation of form
{
uε
t + Aεuε = Fε(uε), t > 0

uε(0) = uε
0 ∈ U p

ε
(4.4)

for family of spaces U p
ε , where Aε : D(Aε) ⊂ U p

ε → U p
ε , for ε ∈ (0, 1]. Also, problem

(4.2) can also be written as
{
ut + A0u = F0(u), t > 0
u(0) = u0 ∈ U p

0
(4.5)

in space U p
0 , where A0 : D(A0) ⊂ U p

0 → U p
0 . The nonlinearity Fε : Uε → Uε is the

Nemitskı̆i operator generated by f , that is Fε(uε)(x) = f (uε(x)).

Proposition 4 ([3]) For ε ∈ (0, 1], Eε : U p
0 → U p

ε is a bounded linear operator and

‖Eε(w, v)‖U p
ε

= ‖(w, v)‖U p
0

for all (w, v) ∈ U p
0 .
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We also define the projection operator Mε : U p
ε → U p

0 given by Mε(ψε) = (wε, vε)with
wε(x) = ψε(x), x ∈ Ω and vε(s) = T s

ε ψε , s ∈ (0, 1), where

T s
ε ψε(x) = 1

|Γ s
ε |

∫

Γ s
ε

ψε(s, y)dy, Γ s
ε = {y : (s, y) ∈ Rε}.

Proposition 5 ([3]) For ε ∈ (0, 1], Mε ∈ L (U p
ε ,U p

0 ) and ‖Mε(w, v)‖L (U p
ε ,U p

0 ) ≤ 1.
Moreover, Mε ◦ Eε = IU p

0
.

We can see that the family of linear operators Eε : U p
0 → U p

ε satisfy the property

‖Eεu‖U p
ε

ε→0−→ ‖u‖U p
0
, for all u ∈ U p

0 , (4.6)

by using of Proposition 4.

Definition 19 We say that a sequence {uε}ε∈(0,1], uε ∈ U p
ε , E-converges to u0 ∈ U p

0 if

‖uε − Eεu‖U p
ε

ε→0−→ 0. We write this as uε
E−→ u0.

With all of this, the continuity of attractors for (4.1) and (4.2) has been studied in [3–5].
On the other hand, by the theory in [2], the authors obtained (see [2, Theorem 8.4]) a general
result on the rate of convergence of local unstable manifolds and attractors. These results
apply to our dumbbell domain model, as shown in the next theorem.

Theorem 12 Let Tε(·) the solution operator associated to (4.1) and (4.2) and Aε be its
global attractor, ε ∈ [0, 1]. Then, there are ε0 > 0, L > 0, β > 0, γ ∈ (0, 1) and C > 0
such that

(a)

‖Tε(t)uε − EεT0(t)Mεvε‖L p(Ωε) ≤ Ceβt t−γ
(
‖uε − vε‖U p

ε
+ ε

θN
p

)
,

‖Tε(t)uε − EεT0(t)Mεvε‖U p
ε

≤ Ceβt t−γ
(
‖uε − vε‖U p

ε
+ ε

θ
p

)
,

for each p > N, θ ∈ (1/2, 2p/(N + 2p)), for all t > 0.
(b) If all equilibrium points E0 = {u1,0∗ , . . . , un,0∗ } of (4.2) are hyperbolic (hence there

are only a finitely many of them), the semigroup {Tε(t) : t ≥ 0} has a set of
exactly n equilibria, Eε = {u1,ε∗ , . . . , un,ε∗ }, all of them hyperbolic, for p > N,

‖ui,ε∗ − Eεu
i,0∗ ‖L p(Ωε) ≤ Cε

N
p and ‖ui,ε∗ − Eεu

i,0∗ ‖U p
ε

≤ Cε
1
p , 1 ≤ i ≤ n.

(c) There is a ρ > 0 such that, if Wu
ρ (ui,ε∗ ) = Wu(ui,ε∗ ) ∩ BL p(Ωε)

ρ (ui,ε∗ ) (or Wu
ρ (ui,ε∗ ) =

Wu(ui,ε∗ ) ∩ BU p
ε

ρ (ui,ε∗ )), there is a Cθ > 0 such that

dist L
p(Ωε)

(
Wu

ρ

(
ui,ε∗

)
, EεW

u
ρ

(
ui,0∗

))
+ dist L

p(Ωε)
(
EεW

u
ρ

(
ui,0∗

)
,Wu

ρ

(
ui,ε∗

))
≤ Cθ ε

θN
p ,

(
or distU

p
ε

(
Wu

ρ

(
ui,ε∗

)
, EεW

u
ρ

(
ui,0∗

))
+ distU

p
ε

(
EεW

u
ρ

(
ui,0∗

)
,Wu

ρ

(
ui,ε∗

))
≤ Cθ ε

θ
p

)
,

where dist X (A, B) := supa∈A infb∈B ‖a−b‖X is the Hausdorff semi-distance between
the subsets A and B of the Banach space X.

We now present the main result of this section.
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Theorem 13 Under the same conditions of Theorem 12. Suppose that T0(·) is a gradient
nonlinear semigroup in U p

0 with respect to E0 = {u1,0∗ , . . . , un,0∗ }, then there is an ε0 > 0
such that the family {Tε(·)}ε∈[0,1] of nonlinear semigroups in U p

ε is gradient with respect to
Eε = {u1,ε∗ , . . . , un,ε∗ }, for all ε ∈ [0, ε0]. Consequently,

Aε =
n⋃

i=1

W u(ui,ε∗ ), ∀ ε ∈ [0, ε0].

Proof We need to prove the hypotheses of Theorem 8.
EE-convergence of Tε(·) to T0(·) on compact subsets ofR+ ×U p

0 , follows directly from
the item (a) of Theorem 12 by writing vε = Eεu0, where uε E-converges to u0.

Now, let us prove the E-collectively asymptotically compactness at ε = 0. We know that
the nonlinear semigroup T0(t) : U p

0 → U p
0 is compact for t > 0 (see [4, p. 198]), so that for

every bounded sequence in U p
0 , say {uk}k∈N in B0 with B0 ⊂ U p

0 bounded, it follows that
there are a subsequence of {T0(t)uk}k∈N (denoted by the same) and some u0 ∈ U p

0 such that
‖T0(t)uk − u0‖U p

0
→ 0 as k → ∞. From item (a) of Theorem 12 and [5, Remark 4.5], that

is, β < 0, we obtain

‖Tε(t)vε − Eεu
0‖U p

ε
≤ Ceβt t−γ ε

θ
p + ‖EεT0(t)Mεvε − Eεu

0‖U p
ε

≤ Ceβt t−γ ε
θ
p + ‖T0(t)Mεvε − u0‖U p

0
.

Thus, given sequences εk → 0, tk → ∞ as k → ∞ and {vεk }k∈N in Bεk a bounded subset of
U p

εk , the compact asymptotic E-collectivity at ε = 0 follows by taking uk = Mεkvεk along
with Proposition 5.

The existence of global attractor Aε ⊂ U p
ε for Tε(·), ε ∈ [0, 1], was shown in [4,5]. In

general, the attractorsAε lie in more regular spaces. In particular, they lie inU∞
ε , ε ∈ [0, 1].

With this, the condition (a) of Theorem 8 holds.
Clearly, item (b) of Theorem 8 is valid due to item (b) of Theorem 12 (for more details

see [3]).
From item (c) of Theorem 12 follows condition (d) of Theorem 8.
To see hypothesis (e) of Theorem 8 observe that, by Theorem 12, all of the equilibrium

points Eε = {u1,ε∗ , . . . , un,ε∗ }, for the semigroup Tε(·) in U p
ε are hyperbolic, and by estimate

‖ui,ε∗ − Eεu
i,0∗ ‖U p

ε
≤ Cε

1
p , 1 ≤ i ≤ n, we can see that ui,ε∗ is the maximal invariant set in

Oδ0(Eεu
i,0∗ ) for δ0 > 0 small enough. Because in this neighborhood ui,ε∗ is the only global

solution for Tε(·), if Dε is an invariant set for Tε(·) inside Oδ0(Eεu
i,0∗ ), it is an union of

global solutions ξε : R −→ U p
ε for Tε(·) (by using Proposition 1), therefore each one of

these solutions ξε must be equal to ui,ε∗ , consequently Dε = {ui,ε∗ } and (e) is satisfied. Thus,
conditions of Theorem 8 are satisfied, then the result follows. 	

4.2 Discretization by the Finite Element Method

In this sectionwe consider the application of Theorem8 to certain approximation schemes via
finite element for abstract semilinear parabolic problems (see [10,19,24,25,35]). Consider
the boundary value problem (BVP)

⎧
⎪⎨

⎪⎩

ut = Lu + f (u), t > 0, x ∈ Ω

u = 0, t > 0, x ∈ ∂Ω,

u(x, 0) = u0(x).

(4.7)
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Here Ω ⊂ Rn , n ≥ 2, is a bounded smooth domain, u0 ∈ H1
0 (Ω), L is a second order

elliptic operator

Lu =
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂u

∂x j

)
−

n∑

j=1

b j (x)
∂u

∂x j
− (c(x) + λ)u, (4.8)

with smooth coefficients ai j , b j , c and a dissipative nonlinearity f . The parameter λ will be
specified below. We assume that L is a uniformly strongly elliptic operator, that is, there is a
constant ϑ > 0, such that

n∑

i, j=1

ai j (x)ξiξ j ≥ ϑ

(
n∑

k=1

ξ2k

)

, ∀ x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ R
n . (4.9)

As usual, problem (4.7) can be written as an abstract evolution equation in the Hilbert space
X = L2(Ω) given by

{
u̇ + Au = F(u), t > 0,

u(0) = u0 ∈ X1/2,
(AP)

where the operator A : D(A) ⊂ X → X is given by Au = −Lu for all u ∈ D(A) =
H2(Ω)∩H1

0 (Ω) andNemitskii’s operator F : X1/2 → X associated to f , that is, F(u(t))x =
f (u(t, x)). We know that A is a sectorial operator in X , then −A generates an analytic and
compact C0-semigroup {e−At : t ≥ 0}. Assume that λ is chosen such that the spectrum of
A is located to the right of the imaginary axis with Re σ(A) > 0. Then, we can define the
fractional powers Aα of A and the corresponding fractional power spaces Xα := D(Aα)

endowed with the graph norm, α ∈ [0,∞). It is well know that X1 = D(A), X0 = L2(Ω)

and X1/2 = H1
0 (Ω).

Define u∗ a equilibrium point of (AP) if u∗ ∈ D(A) such that u∗ is a solution of

Au∗ = F(u∗). (4.10)

Denote by E the set of solutions of (4.10).
We assume that f : R → R is a C2(R) function and

| f ′(s)| ≤ C(1 + |s|γ−1), (C)

for all s ∈ R where 1 ≤ γ < n+2
n−2 if n ≥ 3 and γ ≥ 1 if n = 2.

Under this growth condition the problem (AP) is locally well posed in X1/2 and F is
locally Lipschitz continuous and Frechet differentiable (see [8,23,36]). Following the ideas
in [23,36], one can show that

‖F(u) − F(v)‖X ≤ C(R)‖u − v‖X1/2 , (4.11)

and
‖F ′(u) − F ′(v)‖L (X1/2,X) ≤ C(R)‖u − v‖X1/2 (4.12)

for any u, v ∈ BR := {z ∈ X1/2 : ‖z‖X1/2 ≤ R}.
If in addition we assume that

lim sup
|u|→∞

f (u)

u
≤ 0 (D)
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then, all solutions of (AP) are globally defined (see [20]). In this case we have, for each
u0 ∈ X1/2, a globally defined solution t �→ u(t, u0) ∈ X1/2, t ≥ 0, which defines the
compact nonlinear semigroup {T (t) : t ≥ 0} where T (t)u0 = u(t, u0), t ≥ 0.

Under the above hypotheses (see [7,20]) the nonlinear semigroup {T (t) : t ≥ 0} associated
to (AP) has a global attractor A in X1/2 and the attractor A satisfies

sup
u∈A

‖u‖L∞(Ω) < ∞. (4.13)

This bound enables us to cut off the nonlinearity f in such a way that it becomes bounded
with bounded derivatives up to second order. Now, as the operator A is sectorial, it can be
associated with a sesquilinear form σ(·, ·) : X1/2 × X1/2 → C such that

σ(u, v) = 〈Au, v〉X , u ∈ D(A), v ∈ X1/2, (4.14)

|σ(u, v)| ≤ c1‖u‖X1/2‖v‖X1/2 , u, v ∈ X1/2 (4.15)

Re σ(u, u) ≥ c2‖u‖2X1/2 , u ∈ X1/2, (4.16)

where the constants c1, c2 = ϑ/2 are positive. Also, there are constants θ1 ∈ (0, π/2) and
M1 > 0 such that

S0,θ1 = {z ∈ C : θ1 ≤ | arg(z)| ≤ π, z �= 0} ⊂ ρ(A) and (4.17)

‖(z − A)−1‖L (X) ≤ M1

|z| , ∀ z ∈ S0,θ1 . (4.18)

With the following hypotheses (see [24,Assumption 3.1])we can nowmake the discretization
to problem (AP):

Assumption 1 Let Ω ⊂ Rn be a polyhedral domain with n ≥ 2 which has {T h}h∈(0,1] a
quasi-uniform family of subdivisions with positive constant ρ. Let (K ,P,N ) be a reference
element of class C0, satisfying K is star-shaped with respect to some ball, P1 ⊆ P ⊆
W 2,∞(K ) and N ⊆ (

C(K )
)′.

From this assumption, we obtain that the space

X1/2
h := {Ihυ : υ ∈ C(Ω), υ

∣
∣
∂Ω

= 0} ⊂ X1/2 ∩ C(Ω), (4.19)

has finite dimension, where Ih is the interpolation operator. Moreover, there exists positive
constants C and Ĉ (see [13, Theorems 4.4.20 and 4.5.11]) such that

‖v − Ihv‖X + h‖v − Ihv‖X1/2 ≤ Ch2‖v‖X1 , ∀ v ∈ X1 and (4.20)

‖vh‖X1/2 ≤ Ĉh−1‖vh‖L2(Ω), ∀ vh ∈ X1/2
h . (4.21)

We define the orthogonal projection Ph : X → X1/2
h by

〈Phu, φh〉X = 〈u, φh〉X , ∀ φh ∈ X1/2
h . (4.22)

The operator Ph is bounded (uniformly in h) with respect to the X -norm and the X1/2-norm
(see [24, Lemmata 2 and 5]).

Lemma 14 If (4.15) and (4.16) hold, then there is a positive constant C such that

‖Phv − v‖Xs ≤ Ch2−2s‖v‖X1(Ω),∀ v ∈ X and s = 0, 1/2. (4.23)

Proof See [24, Lemma 3]. 	
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Definition 20 We say that a sequence {uh}h∈(0,1], uh ∈ X1/2
h , P-converges to u ∈ X if

‖uh − Phu‖X h→0−→ 0. We write this as uh
P−→ u.

In this framework, the finite element approximation Ah : X1/2
h → X1/2

h of the operator A
is given by

〈Ahφh, ψh〉X = σ(φh, ψh), φh, ψh ∈ X1/2
h . (4.24)

That is, the operator Ah is associatedwith the sesquilinear formσh(·, ·)which is the restriction
of σ(·, ·) to X1/2

h × X1/2
h . Then the problem (AP) can be discretized in the following form

{
u̇h + Ahuh = Fh(uh)

uh(0) = u0h ∈ X1/2
h ,

(APh)

where Fh := PhF : X1/2
h → X1/2

h , for all h ∈ (0, 1] (for instance, see [25, §5]).
Let Ah : D(Ah) ⊆ X1/2

h → R(Ah) ⊆ X1/2
h be the approximation operator of the operator

A in the space X1/2
h for h ∈ (0, 1], defined by (4.24).

The family of equilibrium points {u∗
h}h∈(0,1] of the discrete problem (APh) is given for

uh ∈ X1/2
h satisfying

Ahu
∗
h = Fh(u

∗
h), ∀ h ∈ (0, 1]. (4.25)

As before, denote by Eh the set of solutions of (4.25) in X1/2
h .

We denote Nh := dim(X1/2
h ) < ∞. We can see that Ker(Ah) = {0} by using (4.16).

Then, from Rank-Nullity Theorem (see [34, p. 17]), we have that D(Ah) = X1/2
h = R(Ah).

Hence Ah : X1/2
h → X1/2

h is a linear bijection.

Theorem 15 The linear operator Ah is sectorial in X1/2
h , for all h ∈ (0, 1].

Proof From the construction of space X1/2
h , the sesquilinear form σ satisfies (4.15) and (4.16)

for elements in X1/2
h . Thus, by [50, Theorem 2.1] the result follows.

On the other hand, we need other orthogonal projection P̃h : X1/2 → X1/2
h , which

associates each function v ∈ X1/2 with a function P̃hv ∈ X1/2
h , so that the difference

P̃hv − v on the finite element space X1/2
h is perpendicular with respect to the X1/2-inner

product. For this reason, we introduce aRitz or elliptic projection operator P̃h : X1/2 → X1/2
h

with respect to X1/2-inner product given by

σ(P̃hu, φh) = σ(u, φh), ∀ φh ∈ X1/2
h . (4.26)

The operator P̃h is bounded (uniformly in h) with respect to the X1/2-norm (see [24,
Lemma 4]).

Theorem 16 If Assumption 1 holds, then there exists a constant C > 0 such that

‖u − P̃hu‖X ≤ Ch‖u‖X1/2 , u ∈ X1/2, (4.27)

‖u − P̃hu‖X1/2 ≤ Ch‖u‖X1 , u ∈ X1, (4.28)

‖u − P̃hu‖X ≤ Ch2‖u‖X1 , u ∈ X1. (4.29)

Proof See [24, Theorem 4]. 	
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Definition 21 We say that a sequence {uh}h∈(0,1], uh ∈ X1/2
h , P̃-converges to u ∈ X1/2 if

‖uh − P̃hu‖X1/2
h→0−→ 0. We write this as uh

P̃−→ u.

With relation to the resolvent operators of A and Ah the following result holds.

Theorem 17 Under Assumption 1, there exist a positive constant C and an acute angle θ1
such that for any f ∈ X and z ∈ S0,θ1 we have

‖(z − A)−1 f − (z − Ah)
−1Ph f ‖X1/2 ≤ Ch‖ f ‖X , (4.30)

‖(z − A)−1 f − (z − Ah)
−1Ph f ‖X ≤ Ch2‖ f ‖X , (4.31)

‖(z − A)−1 f − (z − Ah)
−1Ph f ‖X ≤ Ch|z|−1/2‖ f ‖X , (4.32)

where (z − A)−1 and (z − Ah)
−1 are the resolvent operators of A and Ah, respectively.

Proof See [24, Theorem 1]. 	

Lemma 18 (Discrete local solution) Under the growing hypothesis (C), there exists a con-
stant h0 > 0 such that the problem (APh) has a local solution in X1/2

h , for all h ∈ (0, h0].
Proof We know that Re σ(A) > 0, by using [22, Corollary 4.7] and [3, Theorem 4.10(i)]
there exists an h0 > 0 such that Re σ(Ah) > 0 for all h ∈ (0, h0]. For other hand, for each
uh, vh ∈ Bh

R = {wh ∈ X1/2
h : ‖wh‖X1/2 ≤ R}, we have

‖Fh(uh) − Fh(vh)‖X = ‖Ph(F(uh) − F(vh))‖X ≤ C(R)‖uh − vh‖X1/2 ,

where we have used (4.11). Therefore, using [20, Theorem 2.1.1] the result follows. 	


Lemma 19 Let uh = uh(t, u0h) ∈ X1/2
h be a local solution of the problem (APh) with

u0h ∈ X1/2
h and t ∈ [0, τ0) and h ∈ [0, h0] (τ0 and h0 are given by Lemma 18). Suppose that

(D) holds, so that for any ε > 0, there exists a positive constant m := m(ε) independent of
h such that for every s ∈ R,

s f (s) ≤ εs2 + m. (4.33)

Then,

sup
t∈[0,τ0)

‖uh(t, u0h)‖L∞(Ω) ≤ C0 max
{
max{‖u0h‖X ,m|Ω|}, 1

}
, (4.34)

where C0 = C0(n,m, |Ω|, ‖u0h‖L∞(Ω)) is a positive constant independent of h.

Proof Multiplying the equation (APh) by u2
k−1

h , k = 1, 2, . . . , and integrating over Ω , we
obtain 〈

u̇h, u
2k−1
h

〉

X
=

〈
−Ahuh, u

2k−1
h

〉

X
+

〈
PhF(uh), u

2k−1
h

〉

X
. (4.35)

Now, using (4.22), we get

1

2k
d

dt

∫

Ω

u2
k

h dx =
〈
Luh, u

2k−1
h

〉

X
+

〈
F(uh), u

2k−1
h

〉

X
. (4.36)

In the same way as in [23, Lemma 5] or [20, Lemma 9.3.1], we show

sup
t∈[0,τ0)

‖uh(t, u0h)‖L∞(Ω) ≤ C0 max
{

sup
t∈[0,τ0)

‖uh(t, u0h)‖X , 1
}
, (4.37)
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where C0 = C0(n,m, |Ω|, ‖u0h‖L∞(Ω)) is a positive constant. Similarly as we did above, we
multiply the equation (APh) by uh and integrating over Ω , we get

sup
t∈[0,τ0)

‖uh(t, u0h)‖X ≤ max{‖u0h‖X ,m|Ω|}, (4.38)

by using the estimates (4.9) and (4.33). Therefore, the inequality (4.34) follows using (4.37)
and (4.38). 	

Theorem 20 (Discrete global solution) Assume that (C) and (D) holds, then the solution
uh = uh(t, u0h) ∈ X1/2

h of problem (APh) with u0h ∈ X1/2
h is globally defined for h ∈ [0, h0].

Furthermore, given R > 0, there are positive constants K∞ and K1 such that

lim sup
t→∞

‖uh(t, u0h)‖L∞(Ω) ≤ K∞ (4.39)

and
lim sup
t→∞

‖uh(t, u0h)‖H1
0 (Ω) ≤ K1, (4.40)

for all h ∈ [0, h0].
Proof Using Lemma 19, we obtain that uh ∈ L∞(Ω), for t ∈ [0, τ0) (where τ > 0 comes
from Lemma 18). Hence, there is a positive constant C = C(‖uh‖L∞(Ω)) > 0 such that

‖F(uh)‖X ≤ |Ω|1/2 sup
{y∈R:|y|≤‖uh‖L∞(Ω)}

| f (y)| =: C(‖uh‖L∞(Ω)). (4.41)

From Lemma 18, we know that uh is a local solution of (APh) in X1/2
h which satisfy

Th(t)u
0
h = e−t Ah u0h +

∫ t

0
e−(t−s)Ah Fh(Th(s)u

0
h)ds, ∀ t ≥ (0, τ0]. (4.42)

Since Ah is sectorial and Re σ(Ah) > β > 0 for h ∈ [0, h0] (by using [3, Theorem
4.10(i)] and [22, Corollary 4.7]).

With all of this, we obtain

‖e−Ahtv‖X ≤ Ce−βt‖v‖X , ∀ v ∈ X, h ∈ [0, h0]. (4.43)

Now, using (4.16), (4.43) and [33, Theorem 1.3.4], we get

‖e−Ahtv‖2X1/2 ≤ 1

c2
Re σ(e−Ahtv, e−Ahtv) ≤ 1

c2

∣
∣
∣

〈
Ahe

−Ahtv, e−Ahtv
〉

X

∣
∣
∣

≤ 1

c2
‖Ahe

−Ahtv‖X‖e−Ahtv‖X ≤ Ct−1e−2βt‖v‖2X ,

for all v ∈ X . From this, it follows that there exists a constant C̄ > 0 independent of h such
that

‖e−Ahtv‖X1/2 ≤ C̄t−1/2e−βt‖v‖X , ∀ v ∈ X, h ∈ [0, h0]. (4.44)

From (4.44) and (4.22), we have

‖uh(t, u0h)‖X1/2 ≤ ‖e−Aht u0h‖X1/2 +
∫ t

0
‖e−Ah(t−s)Fh(uh(s, u

0
h))‖X1/2ds

≤ Ce−βt‖u0h‖X1/2 + C(‖uh‖L∞(Ω))

∫ t

0
C̄(t − s)−1/2e−β(t−s)ds

= C‖u0h‖X1/2 + C̄C(‖uh‖L∞(Ω))β
−1/2√π =: c(‖u0h‖X1/2). (4.45)
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Using the property (4.22), we obtain

‖Fh(uh)‖X = ‖PhF(uh)‖X ≤ ‖F(uh)‖X ≤ g(‖uh‖X1/2). (4.46)

Thus, by [20, Theorem 3.1.1] we get that the solution uh(t, u0h) is globally defined. Thanks
to inequality (4.37), we have

sup
t≥0

‖uh(t, u0h)‖L∞(Ω) ≤ C0 max{1, sup
t≥0

‖uh(t, u0h)‖X }. (4.47)

On the other hand, from inequality (33) in [23, Lemma 5] and [20, Lemma 1.2.4], we get

lim sup
t→∞

‖uh(t, u0h)‖X ≤ (mε0 |Ω|)1/2, for some ε0 > 0.

Hence, we obtain

lim sup
t→∞

‖uh(t, u0h)‖L∞(Ω) ≤ C0 max{1, (mε0 |Ω|)1/2} = K∞,

which proves (4.39).
Lastly, using (4.42) for t ≥ t0 > 0 where t0 is large enough such that ‖uh(s, u0h)‖L∞(Ω) ≤

K∞ + η for s ≥ t0 and η > 0 along with (4.44), we obtain

‖uh(t, u0h)‖X1/2 ≤ ‖e−t Ah uh(t0, u
0
h)‖X1/2 +

∫ t

t0
‖e−(t−s)Ah Ph F(uh(s, u

0
h))‖X1/2ds

≤ C̄(t − t0)
−1/2e−β(t−t0)‖uh(t0, u0h)‖X +

∫ t

t0
‖e−(t−s)Ah F(uh(s, u

0
h))‖X1/2ds

≤ C̄(t − t0)
−1/2e−β(t−t0)‖uh(t0, u0h)‖L∞(Ω) + C̄C(K∞)

∫ t

t0
(t − s)−1/2e−β(t−s)ds.

Therefore,

lim sup
t→∞

‖u(t, u0)‖X1/2 ≤ C̄C(K∞)

∫ ∞

0
r−1/2e−βr dr = C̄C(K∞)

√
πβ−1/2 =: K1.

	


As a consequence of Theorem 20, we can define the family of nonlinear semigroups
{Th(t) : t ≥ 0}h∈(0,h0], with Th(t) ∈ C(X1/2

h ), given by Th(t)u0h = uh(t, u0h) for all t ≥ 0.

From [20, Remark 3.1.1] it follows that {Th(t) : t ≥ 0} is a C0-semigroup in X1/2
h for all

h ∈ (0, h0]. Due to [20, Theorem 3.1.1], {Th(t) : t > 0} is a compact operator, for all
h ∈ (0, h0].

From Theorem 20 and following the ideas in the proof of [20, Theorem 4.1.1], we have

Corollary 21 Under the hypothesis of Theorem 20, we have that there exists an h0 > 0 such
that the family of nonlinear semigroup {Th(t) : t ≥ 0}h∈(0,h0] is point dissipative in X1/2

h .

The following result shows the existence of attractor for (APh) for h sufficiently small.

Theorem 22 Under the hypothesis of Theorem 20, there exists a positive constant h0 such
that the nonlinear semigroup Th(·) associated to (APh) has an global attractor Ah in X1/2

h ,
for all h ∈ (0, h0].
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Proof From Lemma 18 we have that [20, Assumption 2.1.1] is satisfied. We also know that,
for all t > 0, Th(·) is a compact operator in X1/2

h , for all h ∈ (0, h0]. The family {A−1
h }h∈(0,1]

consists of compact linear operators since all of them have finite rank. Thus, Ah has a compact
resolvent in X1/2

h . Finally, using Corollary 21 and [20, Corollary 1.1.6] we have the result. 	

As a consequence of Lemma 19, we have

Theorem 23 Let f : R → R be a C2(R)-function satisfying (C) and (D), then there exist
positive constants K0 and h0 such that

sup
h∈(0,h0]

sup
vh∈Ah

‖vh‖L∞(Ω) ≤ K0. (4.48)

Proof Suppose that for any r > 0, there is � ≥ 1 such that for h small enough we have
that Bh

r (0) ⊂ V h
�R0

= {vh ∈ X1/2
h : |vh(x)| ≤ �R0,∀ x ∈ Ω} with � = C0 and R0 :=

max{1,max{r, (mε0 |Ω|)1/2}}. Now, from inequalities (4.47), (33) in [23, Lemma 5], [20,
Lemma 1.2.4] and Theorem 20, for each h ∈ (0, h0], we get

sup
t≥0

‖uh(t, u0h)‖L∞(Ω) ≤ C0 max
{
1,max{‖u0h‖X , (mε0 |Ω|)1/2}

}
≤ �R0,

for all u0h ∈ Bh
r (0) ⊂ V h

�R0
. Hence, uh(t, u0h) ∈ V h

�R0
. Furthermore, using (4.45) we have that

‖uh(t, u0h)‖X1/2 ≤ c(u0h), for all u
0
h ∈ V h

�R0
. Also, for all u0h ∈ V�R0 , the assumptions on f

imply (4.46). The requirements (A2) for u0h ∈ V h
�R0

in [20, Section 3.1.1] hold. Thus, from

[20, Corollary 3.1.2] and [20, Theorem 4.2.1] and the uniqueness of the attractor on V h
�R0

, it

follows that Ah ⊂ V h
�R0

. Therefore, the result follows assuming K0 := �R0. 	

The existence of attractors and stationary points for approximation schemes has been well

studied in [19] and [10]. We now present the main result of this section.

Theorem 24 Suppose that T (·) is a gradient nonlinear semigroup in X1/2 with respect toE =
{u∗

1, . . . , u
∗
p} (all hyperbolic points), then there is an h0 > 0 such that the family {Th(·)}h∈[0,1]

of nonlinear semigroups in X1/2
h is gradient with respect to Eh = {u∗

h,1, . . . , u
∗
h,p}, for all

h ∈ [0, h0]. Consequently,

Ah =
p⋃

i=1

W u(u∗
i,h), ∀ h ∈ [0, h0].

Moreover, if the family of local unstable manifold of u∗
h,i ∈ Eh behaves P̃-continuously at

h = 0, that is, there exists a ρ > 0 such that

distX1/2

(
Wu,ρ

h (u∗
h,i ), P̃hW

u,ρ(u∗
i )

)
+ distX1/2

(
P̃hW

u,ρ(u∗
i ),W

u,ρ
h (u∗

h,i )
)

h→0−→ 0,

then the family {Ah}h∈(0,1] is P̃-continuous at h = 0.

Proof Following the ideas of Theorem 13, we will prove hypotheses of Theorem 8.
First, let us show that Th(·) is a semigroup gradient, for h enough small.
Theorem 17 shows the P-convergence with uniform convergence of resolvents. On the

other hand, due that (z− A)−1 is compact for some z, then the inequality (4.31) yields (where
μ(·) is measure of noncompactness)

μ((z − Ah)
−1uh) ≤ μ((z − A)−1uh) + lim

h→0
‖(z − A)−1uh − (z − Ah)

−1uh‖X = 0
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and therefore the resolvents converge compactly as h → 0. Then Δcc �= ∅. Now, suppose
that uh

P̃−→ u, then

‖Fh(uh) − PhF(u)‖X ≤ ‖F(uh) − F(u)‖X
≤ ‖F(uh) − F(P̃hu)‖X + ‖F(P̃hu) − F(u)‖X
≤ C(R)(‖uh − P̃hu‖X1/2 + ‖P̃hu − u‖X1/2) → 0 as h → 0,

where we have (4.11) and (4.28). Hence, Fh(uh)
P−→ F(u).

With the above results, we can see that the conditions [A1] in [19] holds. Consequently,
Th(·) is P̃-collectively asymptotically compactness at h = 0 and P̃P̃-convergence of Th(·)
to T (·) on compact subsets ofR+ × X1/2 by using of Theorems 4.3 and 4.7 in [19].

The hypothesis (a) of Theorem 8 follows directly of Theorems 22 and 23.
By other hand, using [22, Theorem 2.9] where P̃h ≡ Rh , we have the hypothesis (b) of

Theorem 8.
To show the hypothesis (e) of Theorem 8 observe that, by [22, Theorem 2.9], all the

equilibrium points Eh = {u∗
h,1, . . . , u

∗
h,p}, for the semigroup Th(·) in X1/2

h are hyperbolic

and there is η > 0 such that ‖u∗
h,i − P̃hu∗

i ‖X1/2 ≤ η, 1 ≤ i ≤ p. Arguing as was done in

Theorem 13, we have that u∗
h,i is the maximal invariant set in Oη0(P̃hu

∗
i ) for η0 ∈ (0, η).

Therefore, the conditions of the Theorem 8, item (3), are satisfied, then the result follows.
Finally, from Theorem 8, items (1) and (2), we obtain that the family {Ah}h∈(0,1] is

P̃-continuous at h = 0. 	


Remark 25 We can see that, if b j = 0 for all j = 1, . . . , n, in the operator L given by (4.8),
then the semigroup T (·) is gradient (see [26, p. 78] and [33, p. 124]). Therefore, the results
of Theorem 24 are valid.
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