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Abstract In this paper we study the existence of tran-
scritical and zero-Hopf bifurcations of the third-order
ordinary differential equation

...
x +aẍ+bẋ+cx−x2 =

0, called the Genesio equation, which has a unique
quadratic nonlinear term and three real parameters.
More precisely, writing this differential equation as
a first-order differential system in R

3 we prove: first
that the system exhibits a transcritical bifurcation at
the equilibrium point located at the origin of coordi-
nates when c = 0 and the parameters (a, b) are in the
set {(a, b) ∈ R

2 : b �= 0}\{(0, b) ∈ R
2 : b > 0},

and second that the system has a zero-Hopf bifurcation
also at the equilibrium point located at the origin when
a = c = 0 and b > 0.
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1 Introduction

In [4] Genesio and Tesi, inspired by the problem
of determining conditions under which a nonlinear
dynamical system presents chaotic behavior, intro-
duced the following third-order ordinary differential
Eq.

...
x + aẍ + bẋ + cx − x2 = 0, (1)

where a, b and c are parameters and the dot indicates
derivative with respect to the time t . If we define y = ẋ
and z = ẏ the differential Eq. (1) becomes the first-
order differential system

ẋ = y,
ẏ = z,
ż = −cx − by − az + x2,

(2)

which is commonly known as the Genesio system.
Based on the harmonic balance principle the authors
of [4] presented two practical methods for predicting
the existence and the location of chaotic motions. For
instance, system (2) exhibits chaotic dynamical behav-
iors when a = 1.2, b = 2.92 and c = 6.

We can find in the literature several articles concern-
ing system (2). For instance, issues on synchronization
of Genesio chaotic system have been studied in the
articles [3,9,10,15]. Already in [16] the authors stud-
ied the Hopf bifurcation and the existence of Silnikov
homoclinic orbit for this system. Stability analysis and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3259-2&domain=pdf
http://orcid.org/0000-0002-8723-8200


548 P. T. Cardin, J. Llibre

Hopf bifurcation of theGenesio systemwith distributed
delay feedback have been studied in [5].

In this paper we have two main objectives. The first
one is to show that system (2) exhibits a transcritical
bifurcation, i.e., there is an exchange of stability that
takes place at some equilibrium point of this system for
certain bifurcation values of the parameters of the sys-
tem. The analysis of transcritical bifurcation occurring
in the Genesio system will be carried out with respect
to the parameter c.

The second objective is to study the existence of the
zero-Hopf equilibria and of the zero-Hopf bifurcations
in the Genesio system (2). We recall that a zero-Hopf
equilibrium of a three-dimensional autonomous differ-
ential system is an isolated equilibrium point of the
system such that the linear part at this equilibrium has
a zero eigenvalue and a pair of purely imaginary eigen-
values.

Usually themain tool for studying a zero-Hopf bifur-
cation is to pass the system to the normal form of a
zero-Hopf bifurcation. However, our analysis of the
zero-Hopf bifurcation occurring in the Genesio system
will use the averaging theory, a summary of the results
of this theory that we need here is given in Sect. 2. The
averaging theory has already been used to study Hopf
and zero-Hopf bifurcations in some others differential
systems, see for instance [1,2,7,8].

As far as we know nobody has studied the existence
or nonexistence of transcritical bifurcations, zero-Hopf
equilibria, and zero-Hopf bifurcations in the Genesio
system (2).

Our main results are the following ones.

Theorem 1 Consider the Genesio system (2) and
assume that the parameters a and b vary in the set
K given by

K = {(a, b) ∈ R
2 : b �= 0} \ {(0, b) ∈ R

2 : b > 0}.
Then, system (2) exhibits a transcritical bifurcation at
the equilibrium point located at the origin of coordi-
nates when c = 0.

Next proposition characterizeswhen the equilibrium
points of system (2) are zero-Hopf equilibria.

Proposition 1 The Genesio system (2) has a unique
zero-Hopf equilibrium localized at the origin of coor-
dinates when a = c = 0 and b > 0.

In what follows we shall study when the Genesio
system (2) having a zero-Hopf equilibrium point at

Fig. 1 The periodic orbit (3) for the values α = ω = 1, β = 0,
γ = 2 and ε = 1/100

the origin of coordinates have a zero-Hopf bifurca-
tion producing some periodic orbit. For doing this we
consider ε–perturbations of the values of the parame-
ters for which system (2) has a zero-Hopf equilibrium.
The small parameter ε is necessary in order to apply
the averaging theory, and the analysis of the zero-Hopf
bifurcation will be carried out with respect to it.

Theorem 2 Consider the Genesio system (2) with the
parameters a = εα, b = ω2 + εβ and c = εγ , with
ω > 0 and ε a sufficiently small parameter. Then, this
system exhibits a zero-Hopf bifurcation at the equilib-
rium point located at the origin of coordinates when
ε = 0 if γ 2 − α2ω4 > 0. Moreover, the periodic orbit
(x(t, ε), y(t, ε), z(t, ε)) bifurcating from this equilib-
rium point satisfies that (x(0, ε), y(0, ε), z(0, ε)) is

ε

(
γ − αω2

2
−

√
γ 2 − α2ω4

√
2

, 0,
ω2

√
γ 2 − α2ω4
√
2

)

+O(ε2), (3)

if ε > 0 is sufficiently small, see Fig. 1. If λ± =
(−αω2 ± √

3α2ω4 − 2γ 2)/ (2ω3), then this periodic
orbit is stable when Re(λ±) < 0, and unstable if
Re(λ+) > 0 or Re(λ−) > 0.

Theorem 1 is proved in Sect. 3, and Proposition 1
and Theorem 2 are proved in Sect. 4. The rest of the
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article is organized as follows. In Sect. 2, we present
the basic definitions and results necessary for proving
Theorems 1 and 2.

2 Preliminaries

2.1 Transcritical bifurcation

Consider the following differential equation in R
n

ẋ = f (x, μ) (4)

depending on a parameter μ ∈ R. We assume that f
is enough differentiable. The following theorem (see
[13]) states the necessary conditions in order that sys-
tem (4) exhibits a transcritical bifurcation. See also [6]
page 149, or [11] page 338. We will use Theorem 3 for
proving Theorem 1.

In the theorem below we use the notation Dx f to
denote the Jacobian matrix of the function f . We also
use the notation (∂ f/∂μ) to indicate the vector of partial
derivatives of the components of f with respect to μ ∈
R. AT will denote the transpose of the matrix A.

Theorem 3 Consider the one-parameter family (4)
and assume that there is x0 ∈ R

n such that f (x0, μ) =
0 for all μ, i.e., x0 is an equilibrium point of system (4)
for all parameter values. Furthermore, when μ = μ0

suppose that the following hypotheses hold.

(H1) The Jacobian matrix M = Dx f (x0, μ0) has a
simple eigenvalue λ = 0 with eigenvector v,
and MT has an eigenvector w corresponding
to the eigenvalue λ = 0.

(H2) M has k eigenvalues with negative real parts,
and n − k − 1 eigenvalues with positive real
parts.

(H3) wT
(
(∂ f/∂μ)(x0, μ0)

) = 0.
(H4) wT

(
Dx(∂ f/∂μ)(x0, μ0)v

) �= 0.
(H5) wT

(
D2
x f (x0, μ0)(v, v)

) �= 0.

Then, system (4) exhibits a transcritical bifurcation at
the equilibrium point x0 at the bifurcation value μ =
μ0.

2.2 Averaging theory

In this subsection we present some basic results on the
averaging theory, which will be used in the proof of

Theorem 2. For a general introduction to the averaging
theory see for instance the book of Sanders, Verhulst
and Murdock [12].

Consider the following initial value problem

ẋ = εF(t, x) + ε2G(t, x, ε), x(0) = x0, (5)

and the averaged differential equation

ẏ = ε f (y), y(0) = x0. (6)

In Eqs. (5) and (6), x, y ∈ D, where D ⊂ R
n is an open

set, t ∈ [0,∞) and ε is a small positive parameter. The
functions F : [0,∞) × D → R

n and G : [0,∞) ×
D×(0, ε0] → R

n are assumed to be periodic of period
T in the variable t , and f : D → R

n is given by

f (y) = 1

T

∫ T

0
F(t, y)dt. (7)

The next theoremestablishes that, under certain con-
ditions, the equilibrium points of the averaged Eq. (6)
correspond to T –periodic solutions of system (5). See
[14] for a proof.

Theorem 4 Consider the initial value problems (5)
and (6) and suppose that F, its Jacobian DxF, its
Hessian DxxF, G and its Jacobian DxG are contin-
uous and bounded by a constant independent of ε in
[0,∞) × D and ε ∈ (0, ε0]. Further we assume that
F and G are T –periodic in t , with T independent of ε.
Then, the following statements hold.

(a) For t ∈ [0, 1/ε] we have x(t) − y(t) = O(ε) as
ε → 0.

(b) If p is an equilibrium point of system (6) such that

det Dy f (p) �= 0, (8)

then there exists a periodic solutionx(t, ε)of period
T of system (5) such that x(0, ε) − p = O(ε) as
ε → 0.

(c) If all the real parts of the eigenvalues of the matrix
Dy f (p) are negative, then the periodic solution
x(t, ε) is stable. If some real part of the eigenval-
ues is positive, then the periodic solution x(t, ε) is
unstable.
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3 Proof of Theorem 1

We recall that the analysis of transcritical bifurcation
occurring in theGenesio systemwill be carried outwith
respect to the parameter c. So using the notation of Sect.
2.1, we have μ = c and the vector field f associated
with the Genesio system (2) is given by

f (x, c) = (y, z,−cx − by − az + x2),

where x = (x, y, z) ∈ R
3. Note that, in order to sim-

plify the notation, we are using (x, y, z) instead of
(x1, x2, x3).

The vector field f has two equilibrium points x0 =
(0, 0, 0) and xc = (c, 0, 0) which collide at the origin
when c = 0. Moreover, when c = 0 we have that the
matrix

M = Dx f (x0, 0) =
⎛
⎝0 1 0
0 0 1
0 −b −a

⎞
⎠

has a simple eigenvalueλ = 0. In fact, the characteristic
polynomial of M is given by

p(λ) = −λ3 − aλ2 − bλ,

whose roots are

λ = 0, λ± = −a ± √
a2 − 4b

2
.

Since by hypothesis the parameters a and b belong to
the set K = {(a, b) ∈ R

2 : b �= 0}\{(0, b) ∈ R
2 : b >

0}, then both eigenvalues λ± have nonzero real part.
The transcritical bifurcation is characterized by the

exchange of stability of the equilibrium point xc =
(c, 0, 0)when the parameter c passes through the bifur-
cation value c = 0.Note that it is a difficult task to study
the stability of the equilibrium point xc, for c �= 0,
by analyzing the roots of the characteristic polyno-
mial of the matrix Dx f (xc, c), that is the polynomial
q(λ) = −λ3 − aλ2 − bλ + c. Thus, we will use Theo-
rem 3 to show that the system (2) exhibits a transcritical
bifurcation.

Note that the vectors v = (1, 0, 0) andw = (b, a, 1)
are eigenvectors of the matrices M and MT , respec-
tively, corresponding to the eigenvalue λ = 0. Further-
more, we have that

wT (
(∂ f/∂c)(x0, 0)

) = (
b a 1

)
⎛
⎝0
0
0

⎞
⎠ = 0,

wT (
Dx(∂ f/∂c)(x0, 0)v

) = (
b a 1

)
⎛
⎝ 0 0 0

0 0 0
−1 0 0

⎞
⎠

⎛
⎝ 1
0
0

⎞
⎠ = −1 �= 0,

wT (
D2
x f (x0, 0)(v, v)

) = (
b a 1

) ⎛
⎝0
0
2

⎞
⎠ = 2 �= 0.

Thus, all the hypotheses of Theorem 3 are satisfied.
Therefore, the system (2) exhibits a transcritical bifur-
cation at the equilibrium point at the origin at the bifur-
cation value c = 0. This completes the proof of Theo-
rem 1.

4 Proof of Proposition 1 and Theorem 2

Proof of Proposition 1 We saw that the characteristic
polynomial of the linear part of system (2) at the equi-
librium point xc = (c, 0, 0) is q(λ) = −λ3 − aλ2 −
bλ+ c. We want to find the parameter values for which
the polynomial q has a zero eigenvalue and a pair of
purely imaginary eigenvalues, that is the parameter
values for which q is of the form −λ(λ2 + B) with
B > 0. In order to simplify the expressions, we will
put B = ω2, with ω > 0. Thus, imposing the condition
q(λ) = −λ(λ2 + ω2), we obtain that a = c = 0 and
b = ω2. Hence, when a = c = 0 and b > 0 there is
a unique zero-Hopf equilibrium point at the origin of
coordinates. Moreover, if we put b = ω2, with ω > 0,
then the eigenvalues are 0 and±iω. This completes the
proof of Proposition 1. �	
Proof of Theorem 2 We shall use the averaging theory
of first order described in Sect. 2.2 (see Theorem 4) in
order to study if from the zero-Hopf equilibrium point
located at the origin of coordinates, it bifurcates some
periodic orbit by moving the parameters a, b and c of
system (2). Thus, let the parameters a, b and c of system
(2) be given by a = εα, b = ω2 + εβ and c = εγ ,
with ε > 0 a sufficiently small parameter. Then, the
Genesio system (2) becomes

ẋ = y,

ẏ = z, (9)
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ż = −εγ x − (ω2 + εβ)y − εαz + x2.

Thefirst step in order towrite our differential system (9)
in the normal form for applying the averaging theory is
to write the linear part at the origin of system (9) when
ε = 0 into its real Jordan normal form, that is into the
form⎛
⎝ 0 −ω 0

ω 0 0
0 0 0

⎞
⎠ .

To do this, we apply the linear change of variables
(x, y, z) → (X,Y, Z), where

x = Z − ωX

ω2 , y = Y, z = ωX. (10)

In the new variables (X,Y, Z), system (9) becomes

Ẋ = Z2 − 2ωX Z + ω2X2 − ω6Y

ω5

+ ε
(γ − αω2)ωX − βω2Y − γ Z

ω3 ,

Ẏ = ωX,

Ż = (ωX − Z)2

ω4 + ε
(γ − αω2)ωX − βω2Y − γ Z

ω2 .

(11)

Now we re-scale the variables (X,Y, Z) as follows
(X,Y, Z) → (εu, εv, εw). Then, system (11) becomes
u̇ = −ωv

+ ε
(γ − αω2)ω3u − βω4v − γω2w + ω2u2 − 2ωuw + w2

ω5
,

v̇ = ωu,

ẇ = ε
(γ − αω2)ω3u − βω4v − γω2w + ω2u2 − 2ωuw + w2

ω4 .

(12)

Now we pass the differential system (12) to cylindrical
coordinates (r, θ, w) defined by u = r cos θ and v =
r sin θ , and we obtain

ṙ = ε

ω5

[
(w − γω2)w − ωr(2w − γω2 + αω4) cos θ

+ω2r2 cos2 θ − βω4r sin θ
]
cos θ,

θ̇ = ω + ε

ω5r

[
(γω2 − w)w

+ωr(2w − γω2 + αω4) cos θ

−ω2r2 cos2 θ + βω4r sin θ
]
sin θ,

ẇ = ε

ω4

[
(w−γω2)w−ωr(2w−γω2+αω4) cos θ

+ω2r2 cos2 θ − βω4r sin θ
]
. (13)

In system (13) we take θ as the new independent vari-
able, and we get

dr

dθ
= εF1(θ, r, w) + O(ε2),

dw

dθ
= εF2(θ, r, w) + O(ε2), (14)

where

F1(θ, r, w) = 1

ω6

[
(w − γω2)w

− ωr(2w − γω2 + αω4) cos θ

+ ω2r2 cos2 θ − βω4r sin θ
]
cos θ,

F2(θ, r, w) = 1

ω5

[
(w − γω2)w

− ωr(2w − γω2 + αω4) cos θ + ω2r2 cos2 θ

− βω4r sin θ
]
.

Using the notation of Sect. 2.2,we have t = θ , T = 2π ,
x = (r, w)T and

F(θ, r, w) =
(
F1(θ, r, w)

F2(θ, r, w)

)
and

f (r, w) =
(

f1(r, w)

f2(r, w)

)
.

It is immediate to check that system (14) satisfies all
the assumptions of Theorem 4.

Now we compute the integrals (7). We obtain that

f1(r, w) = 1

2π

∫ 2π

0
F1(θ, r, w) dθ

= r(γω2 − αω4 − 2w)

2ω5
,

f2(r, w) = 1

2π

∫ 2π

0
F2(θ, r, w) dθ

= 2w2 − 2γω2w + ω2r2

2ω5
.

The system f1(r, w) = f2(r, w) = 0 has a unique
solution (r∗, w∗) with r∗ > 0, namely

r∗ = ω
√

γ 2 − α2ω4
√
2

, w∗ = ω2(γ − αω2)

2
.

The Jacobian (8) at (r∗, w∗) takes the value

det
∂( f1, f2)

∂(r, w)

∣∣∣∣
(r,w)=(r∗,w∗)

= γ 2 − α2ω4

2ω6 ,

which is nonzero by hypothesis. Moreover, the eigen-
values of the Jacobian matrix
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∂( f1, f2)

∂(r, w)

∣∣∣∣
(r,w)=(r∗,w∗)

are given by

−αω2 ± √
3α2ω4 − 2γ 2

2ω3 .

The rest of the proof of Theorem 2 follows immedi-
ately from Theorem 4 if we show that the periodic
solution corresponding to (r∗, w∗) provides a periodic
orbit bifurcating from the origin of coordinates of the
differential system (9) at ε = 0.

Theorem 4 guarantees for ε > 0 sufficiently small
the existence of a periodic solution (r(θ, ε), w(θ, ε))

of system (14) such that

(r(0, ε), w(0, ε))

→
(

ω
√

γ 2 − α2ω4
√
2

,
ω2(γ − αω2)

2

)
,

when ε → 0. From the second equation of system (13)
we obtain that θ(t, ε) = ωt+O(ε). Moreover, we have
that (r(t, ε), θ(t, ε), w(t, ε)) is a periodic solution of
system (13) such that

(r(0, ε), θ(0, ε), w(0, ε))

→
(

ω
√

γ 2 − α2ω4
√
2

, 0,
ω2(γ − αω2)

2

)
,

when ε → 0. So for ε > 0 sufficiently small system
(12) has the periodic solution

(u(t, ε), v(t, ε), w(t, ε)) = (r(t, ε) cos θ(t, ε),

r(t, ε) sin θ(t, ε), w(t, ε)),

such that

(u(0, ε), v(0, ε), w(0, ε))

→
(

ω
√

γ 2 − α2ω4
√
2

, 0,
ω2(γ − αω2)

2

)
,

when ε → 0. This periodic solution in the differen-
tial system (11) writes as (X (t, ε), Y (t, ε), Z(t, ε)) =
(εu(t, ε), εv(t, ε), εw(t, ε)), and it satisfies that

(X (0, ε),Y (0, ε), Z(0, ε))

→
(

εω
√

γ 2 − α2ω4
√
2

, 0,
εω2(γ − αω2)

2

)
,

when ε → 0. Finally, we have that system (9) has
the periodic solution (x(t, ε), y(t, ε), z(t, ε)) obtained
from solution (X (t, ε),Y (t, ε), Z(t, ε)) through the

change of variables (10). It satisfies that (x(0, ε),
y(0, ε), z(0, ε)) is

ε

(
γ − αω2

2
−

√
γ 2 − α2ω4

√
2

, 0,
ω2

√
γ 2 − α2ω4
√
2

)

+O(ε2),

if ε is sufficiently small. Thus, (x(0, ε), y(0, ε),
z(0, ε)) → (0, 0, 0) when ε → 0. Therefore, it is a
periodic solution starting at the zero-Hopf equilibrium
point located at the origin of coordinates when ε = 0.
This completes the proof of Theorem 2. �	
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