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Abstract In this paper, we propose a method to describe
the many-body problem of electrons in honeycomb mate-
rials via the introduction of random fields which are cou-
pled to the electrons and have a Gaussian distribution.
From a one-body approach to the problem, after integrat-
ing exactly the contribution of the random fields, one builds
a non-hermitian and dissipative effective Hamiltonian with
two-body interactions. Our approach introduces besides the
usual average over the electron field a second average over
the random fields. The interplay of two averages enables
the definition of various types of Green’s functions which
allow the investigation of fluctuation-dissipation character-
istics of the interactions that are a manifestation of the
many-body problem. In the current work, we study only
the dissipative term, through the perturbative analysis of the
dynamics associated the effective Hamiltonian generated by
two different kinds of couplings. For the cases analyzed, the
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eigenstates of the effective Hamiltonian are complex and,
therefore, some of the states have a finite life time. More-
over, we also investigate, in the mean field approximation,
the most general parity conserving coupling to the random
fields and compute the width of charge carriers � as a func-
tion of the Fermi energy EF . The theoretical prediction for
�(EF ) is compared to the available experimental data for
graphene. The good agreement between �theo and �exp sug-
gests that description of the many-body problem associated
to the electrons in honeycomb materials can indeed be done
via the introduction of random fields.

Keywords Graphene · Random fields · Many-body

1 Introduction and Motivation

In the dynamical description of a many-body problem, it
is common to approximate the full dynamics by one-body
Hamiltonians. Within the one-body approach, each con-
stituent experiences the mean field due to all the other
constituents particles. The original many-body system is
replaced, in first approximation, by a system of indepen-
dent particles whose wave function can be represented by
a Slater determinant for fermion systems. Such an approxi-
mation does not provide an explanation for all the properties
of the many-body problem and breaks down at some point.
One can find in the literature various techniques to incorpo-
rate further dynamical details of the many-body dynamics
in the description of such complex problems.

The nuclear shell model, the Hartree-Fock approxima-
tion used in the description of atomic, and nuclear systems
or the description of electrons in metals provide well-known
examples where one-body hamiltonians are used as start-
ing point to analyze the full system. In what concerns
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the electronic properties of graphene, typically and as a
first approximation, one relies in a independent particle
picture either by using a tight-binding model or the free
Dirac equation [1]. The full problem, however, is a complex
many-body problem even if one does not take into account
impurities and other sources of disorder [2–5].

From the technological point of view, the understand-
ing on how the electronic properties of graphene change
due to defects, impurities, sources of disorder, or defor-
mations is crucial—see, e.g., [6–8] and references therein.
In graphene, there are many possible sources of disorder
such as the presence of charged impurities of the substrate,
of resonant scatters, of structural defects, of strain fluctua-
tions just to name a few. The different types of disorder can
be translated into new electron interactions which, in prin-
ciple, lead to new spectroscopic and transport observable
phenomena. Disorder introduces, typically, some random
behavior which requires, from the point of view of the the-
oretical approach, an averaging over various realizations of
the associated random background interaction.

From the point of view of the one-body problem, the
sources of disorder can be viewed as local changes in the
single site energy or changes in the distance and/or angles
between the carbon pz orbitals. These can be translated
into local effective interactions to be added to the original
Hamiltonian. In graphene, the effects associated to a change
of the overlap of the carbon orbitals can be rewritten intro-
ducing extra fields in the Dirac equation, see Section IV
in [2], or can be modeled using the Dirac equation in curved
spaces, see e.g. [7] and references therein.

For the particular case of the Dirac equation in curved
space, the effects of the deformation can be translated into
a redefinition of the electron Fermi velocity vF , which
becomes some kind of local field. That means that it is pos-
sible to define an effective Fermi velocity whose value is
point dependent. Another way of changing the Fermi veloc-
ity is doping the pristine material. If the curvature of the
graphene sheet together with disorder effects introduce ran-
dom fluctuations, this effect can be studied by replacing vF

by a random field whose mean value should reproduce the
usual value c/300. Impurities or disorder are not the only
mechanism that can modify the value of the Fermi velocity.
Indeed, vF can differ from its standard value c/300 due to
the many-body interactions [9]. In this sense, fluctuations of
the Fermi velocity can also be seen as a manifestation of the
complex many-body problem in the dynamics of a single
electron in a graphene sheet.

If the fluctuations of the Fermi velocity are a manifes-
tation of the many-body problem, this suggests that the
many-body problem itself can be mapped into a single par-
ticle equation via the introduction of random fields. In this
case, an average over the random fields is required in order
to produce meaningful results. Recall that in Condensed

Matter Physics, another way of taking into account various
forces in the dynamics of the electron is to replace its mass
by the effective mass tensor which can be viewed also as
another field to be taken into account.

In the present work, we aim to explore the possibility of
incorporating the dynamics of many-body problem through
the introduction of random fields that are coupled to the
electron field. Although, herein we focus in graphene, the
technique can be applied straightforwardly to any quantum
system.

The use of stochastic and random process to understand
a many-body problem has been explored, using a differ-
ent perspective, in different areas of physics ranging from
the study of the Dirac spectrum in QCD [14], to nuclear
reactions [15, 16], complex systems [17], or condensed
matter [18, 19] among others.

In what concerns the use of random fields to investi-
gate graphene properties, several examples can be found in
the literature. In [20], the electronic states for disordered
graphene dots of finite size in relation to quantum chaotic
behavior were investigated. In [21], the effects of disor-
dered ripples on the conductivity of a monolayer graphene
flake was studied. See also [13] for a study of Rippling
and crumpling in disordered free-standing graphene . These
papers deal with disorder arising from specific effects in
the sample. Statistical treatments are required to deal with
the effect of disorder. In the present paper, we use the
general principle that a simple mean field description of a
given many-body system, such as grapheme, with free Dirac
electrons carrying the charges, can be made more realis-
tic with an average account of the many-body effects, by
invoking an appropriate coupling of the quasiparticle to the
many-body degrees of freedom taken as a random bath. The
average over the random bath results in an effective the-
ory for a the mean field with the quasiparticles acquiring
widths. Such procedures are commonplace in many-body
physics. In Condensed Matter Physics, we can cite the case
of plasmon resonances in metal clusters where the simple
coherent particle-hole excitation picture of these resonances
is greatly enriched by coupling these to appropriately ran-
domly treated many-body configurations [11]. Several other
examples of cases using a similar procedure as ours can be
found in refs. [12, 22].

As a starting point to understand the electronic properties
of graphene, we use a continuum language. In this frame-
work, the spinor field associated to the electrons is a solution
of the Dirac equation. The inclusion of further details of
the many-body electronic problem is performed by intro-
ducing random scalar fields ϕ’s, which couple linearly to
fermion operators. Moreover, one assumes that ϕ have no
dynamics but their values are distributed accordingly to a
normal probability distribution. In principle, one could con-
sider different types of probability distributions, but for a
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system with a large number of constituents, invoking the
central limit theorem, the Gaussian distribution is a natural
choice. Furthermore, by employing a Gaussian distribution,
the new average associated with ϕ can be performed exactly.
Similarly to what was seen in Quantum Mechanics [22], the
integration over the random fields leads to a new effective
Hamiltonian Heff which contains only the original fermion
fields and new two-body interactions, i.e., the one-body
Hamiltonian defined before introducing the coupling to the
random field gives rise to a two-body Hamiltonian. The new
effective Hamiltonian is non-hermitian and to understand
the dynamics associated to Heff we look at different types
of coupling. The dynamical equation associated with Heff

is formally equivalent to a nonlinear Schrödinger equa-
tion [23]. This type of equation is used in many branches of
science as in hydrodynamical phenomena, nonlinear optics,
nonlinear acoustics, quantum condensates, heat pulses in
solids, quantum chaos, and various dissipative phenomena.

The fluctuations due to the random fields enable the def-
inition of various types of correlation functions where the
combined role of the fluctuations and dissipation can be
investigated simultaneously. Although, we write all the nec-
essary formalism to analyze the contributions coming from
the fluctuations to any correlation function, herein we focus
only on the dissipative part. We find that, for graphene,
our theoretical approach enables to compute the charge
carriers width that is consistent with the recently measure
results [24].

Though the system discussed in the current work is tar-
geted to graphene using the Dirac equation as a starting
point, the approach is sufficiently general and can be applied
to other problems. Natural candidates where the proper-
ties derived below are those materials which can also be
described, in first approximation, by a Dirac equation such
as silicene or germanene.

Our approach is based on techniques commonly used
in field theory. We remind the reader that the use of field
theoretic methods in Condensed Matter Theory is a com-
mon practice and has been quite successful. One particular
widely cited reference that comes to our mind is that of
Efetov [10], who introduced the method of Supersymme-
try and Grassmann variables to deal with the motion of
electrons in disordered metals.

The paper is organized as follows. In Section 2, we intro-
duce the random fields and describe how one can integrate
them exactly to arrive into a quantum problem involving
only the original fermion fields. In Section 3, we explore the
interplay between the various possible averages in connec-
tion to the dissipation-fluctuation points of view associated
to a complex many-body problem. In Section 4, we look
at the dissipation aspects of the interaction and build per-
turbative solutions for two different types of couplings. In
Section 5, a general parity conserving type of coupling to

the random fields is considered and the quantum field prob-
lem is solved in the Hartree approximation. We identify the
corresponding charge carrier theoretical widths and com-
pare our prediction with the recent available experimental
data. Finally, in Section 6, we resume and conclude.

2 Random Fields and Effective Actions

The continuum approach to the electronic properties of
graphene relies on the massless Dirac equation and assumes
a particle independent model. The Dirac equation for the
electron field reads

i �
∂ψ

∂t
= −i � vF �α · ∇ψ , (1)

where vF is the Fermi velocity. For a system of units where
� = 1 and vF = 1, the corresponding Lagrangian density is
given by

L = ψ i γ μ∂μ ψ . (2)

Let us assume that ψ is a quantum field and that the
Fermi velocity fluctuates around its usual quoted value
vF ≈ c/300. The fluctuations of vF can be attributed to
disorder/defects of the pristine material and/or many-body
interactions not taken into account in (1). Let us intro-
duce the dimensionless random field ϕ to simulate this
fluctuations and replace the Lagrangian density (2) by

L = ψ
{
i γ 0∂0 + i (1 + ϕ) �γ · ∇

}
ψ . (3)

If the system is described by the lagrangian density (3), the
definition to the corresponding quantum field theory needs
to build the Green’s generating functional Z and, therefore,
the average over the random field ϕ has to be defined. For
fluctuations of the Gaussian type, it follows

Zeff = 〈Zϕ〉
=

∫
Dϕ Zϕ exp

{
− 1

2

∫
d3x d3y ϕ(x)M(x, y) ϕ(y)

}

=
∫

Dϕ Dψ Dψ exp

{
i

∫
d3x

[
ψ

{
i γ 0∂0+

i (1 + ϕ) �γ · ∇ }ψ

]
+

−1

2

∫
d3x d3y ϕ(x) M(x, y) ϕ(y)

}
(4)

where M is a symmetric invertible matrix with dimensions
of mass to the power six. It turns out that the matrix M has
to satisfy further constraints in order to arrive at a properly
causal quantum field theory.
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The effective action appearing in Zeff ,

S[ψ, ψ, ϕ] =
∫

d3x

[
ψ

{
i γ 0∂0 + i (1 + ϕ) �γ · ∇

}
ψ

]
+

+ i

2

∫
d3x d3y ϕ(x)M(x, y) ϕ(y) , (5)

is nonlocal and has a pure imaginary term. Given that the
action is quadratic in ϕ, one can integrate over ϕ and recover
a generating functional which is a functional of the fermion
degrees of freedom only

Zeff =
∫

Dψ Dψ exp

{
i

∫
d3x

[
ψ i γ μ∂μψ

]
+

+1

2

∫
d3xd3y

[
ψ(x) �γ · ∇ψ(x)

]

M−1(x, y)
[
ψ(y) �γ · ∇ψ(y)

] }
. (6)

The new effective fermionic action is given by

Seff [ψ, ψ] =
∫

d3x

[
ψ i γ μ∂μψ

]
+

− i

2

∫
d3xd3y

[
ψ(x) �γ · ∇ψ(x)

]

M−1(x, y)
[
ψ(y) �γ · ∇ψ(y)

]
. (7)

The integration over the fluctuations generates a non-
local dissipative two-body interaction. The non-local inter-
action should not violate causality. A way out to avoid
causality problems is to take M proportional to a Dirac delta
function. In this case, M−1 is also proportional to a Dirac
delta function and the effective action (7) is reduced to a
local theory. Certainly, this is not the only possible solution
to ensure that the theory (7) is a causal theory.

The introduction of new random fields coupled to new
fermionic operators generates new higher many-body effec-
tive interactions. In general, fluctuations of an n-body
operator gives rise to an effective 2n-body iteration.

The method can be extended to the case where the cou-
pling of ϕ to the quantum system is quadratic. The introduc-
tion of a quadratic coupling is equivalent to a redefinition of
the matrix M . For example, for a quadratic coupling to the
operator A(x) given by

ϕ2(x)A(x) , (8)

M(x, y) should be replaced by

M(x, y) − 2 i
A(x) + A(y)

2
δ(x − y) . (9)

The price to pay being that the computation of M−1 is not
so simple but, at least formally, the integration over ϕ can
be performed. The new interactions have now terms of type
1/A(x), which possibly are not likely for a perturbative
approach to the corresponding theory.

3 Higher Order Statistical Fluctuations

In the previous section, the integration over the random field
ϕ was discussed. This integration generated an effective
interaction involving only the original fermion degrees of
freedom and the corresponding Green’s function generating
functional Z was built. For any realization of the random
field ϕ, one can associate a generating functional

Zϕ[η, η] =
∫

Dψ Dψ exp

{
i

∫
d3x L(ϕ;ψ,ψ)

+i

∫
d3x

[
ψ(x)η(x) + η(x)ψ(x)

] }

(10)

where η and η are Grassmann sources that couple to ψ and
ψ , respectively. Recall that the coupling of the random field
with the fermions is implicitly given in the Lagrangian den-
sity. Following the procedure devised in Section 2, one can
define

Zeff [η, η] = 〈Zϕ[η, η]〉
=

∫
Dϕ Zϕ[η, η] exp

{
− 1

2

∫
d3x d3y ϕ(x)M(x, y) ϕ(y)

}

=
∫

Dψ Dψ exp

{
i Seff [ψ, ψ] + i

∫
d3x

[
ψ(x)η(x) + η(x)ψ(x)

] }
,

(11)

where Seff [ψ, ψ] depends on the coupling to ϕ through
L. In this way, one builds a formal solution of the
quantum field theory associated to a given Lagrangian
density and taking into account the statistical average
associated to ϕ. Note that we are considering two dif-
ferent averages: a quantum average associated to the

functional integration over the fermion fields and a sta-
tistical average in connection with the random field.
The functional Zeff contains dissipative terms and from
Seff one can identify a dissipative effective Hamilto-
nian. This particular case will be explored in the next
sections.
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For the computation of a given correlation function, let
us say a propagator 〈0|T ψ(x)ψ(y) |0〉, depending on how
the quantum and statistical averages are performed, differ-
ent types of Green’s functions are accessed which can be

identified with dissipation and fluctuations. By integrating
over the random fields, as considered so far, one com-
putes the propagator associated to the quantum field theory
described by Zeff :

〈0|T ψ(x)ψ(y) |0〉eff = δ2Zeff [η, η]
δη(x) δη(y)

∣∣∣∣∣
η=η=0

= δ2〈Zϕ[η, η]〉
δη(x) δη(y)

∣∣∣∣∣
η=η=0

�= 〈 δ2Zϕ[η, η]
δη(x) δη(y)

〉
∣∣∣∣∣
η=η=0

. (12)

In (12), the last term requires the computation of the prop-
agator for each realization of the random field, i.e., to
compute first the Green function

〈0|T ψ(x)ψ(y) |0〉ϕ = δ2Zϕ[ϕ, η, η]
δη(x) δη(y)

∣∣∣∣∣
η=η=0

, (13)

followed by the statistical average

〈〈0|T ψ(x)ψ(y) |0〉〉 =
∫
Dϕ 〈0|T ψ(x)ψ(y) |0〉ϕ

×exp

{
− 1

2

∫
d3xd3y ϕ(x) M(x, y)ϕ(y)

}
.

(14)

This procedure defines a two point correlation function
which carries the effects due to dissipation and fluctuations
and from the definitions it follows that

〈〈0|T ψ(x)ψ(y) |0〉〉 = 〈0|T ψ(x)ψ(y) |0〉eff + · · · ,

(15)

where the corrections beyond the dissipative term
〈0|T ψ(x)ψ(y) |0〉eff are associated with the statistical
fluctuations. The dissipation-fluctuations aspects of quan-
tum mechanical systems with a large number of degrees
of freedom expressed by (15) can be found across differ-
ent areas of physics, from nuclear and particle physics to
quantum optics.

In order to substantiate the concepts under discussion,
in the next sections, we will explore the first term in
(15), which is driven by dissipation, for different types of
couplings to the random fields.

4 Dissipation from Random Fields: Examples

In order to study the dynamics associated to the coupling
to the random fields, we will consider a particular simple

realization of the matrix M which leads to a causal and local
theory

M(x, y) = i
δ(x − y)

σ 2
and, therefore,M−1(x, y) = −i σ 2 δ(x−y) ,

(16)

i.e., we are assuming that the random fields have a Gaussian
distribution with width σ . Note that ϕ is dimensionless and,
therefore, σ 2 has dimensions of l3, where l means length,
or, for a system of units where � = vF = 1, has dimensions
in E−3, where E stands for energy. In this case, the effective
Lagrangian built from coupling ϕ to the Fermi velocity (6)
reads

L1 = ψ i γ μ∂μψ − i
σ 2

2

[
ψ �γ · ∇ψ

]2
. (17)

As already discussed, the random field ϕ can couple to
any operator in the Lagrangian. If graphene is on top of a
given substrate, it develops a mass gap and it is natural to
add a mass term −m0ψψ to the free Dirac Lagrangian. If
the random field simulates corrections to the electron mass,
one expects that it should couple to a term that can be asso-
ciated to an effective mass. In this case, one can consider the
following Lagrangian density

L = ψ i γ μ∂μψ − (m0 + m1ϕ) ψ ψ (18)

prior to integration over ϕ. The integration over the random
field gives rise to the generating functional

Zeff =
∫

Dϕ Dψ Dψ exp

{
i

∫
d3x

[
ψ i γ μ∂μψ − m ψψ

]

−m2
1

2

∫
d3xd3y

[
ψ(x) ψ(x)

]
M−1(x, y)

[
ψ(y) ψ(y)

] }
(19)

and for a matrix M as in (16) it defines the effective Lagrangian

L2 = ψ
(
i γ μ∂μ − m0

)
ψ + i

m2
1 σ 2

2

[
ψ ψ

]2
. (20)

Note that for the cases considered so far, see (17) and (20),
the new two-body interaction is proportional to the width
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of the Gaussian distribution σ 2 and, therefore, the origi-
nal Lagrangian density is recovered for sufficiently small
fluctuations, i.e., when σ 2 → 0.

4.1 Wave Mechanics Approximation

In order to illustrated the effects due to the new non-
hermitian terms appearing in (17) and (20), we will consider
the corresponding relativistic quantum mechanical problem
in the small width approximation. The approach used in
this section ignores quantum fluctuations and reduce the
quantum field theoretical problem to the computation of
solutions of non-linear relativistic wave equations.

In order to find a solution of the non-linear Dirac equa-
tion, we will use the representation considered in [25, 26]
where

ψ =

⎛
⎜⎜⎝

ψb
K

ψa
K

ψa
K ′

ψb
K ′

⎞
⎟⎟⎠ (21)

with the indices a, b naming the sublattices A and B, respec-
tively, and K and K ′ referring to the Dirac points. For
convenience, we introduce the two dimensional spinors

uK =
(

ψb
K

ψa
K

)
and uK ′ =

(
ψa

K ′
ψb

K ′

)
(22)

such that the four dimensional spinor can be written as

ψ =
(

uK

uK ′

)
. (23)

The Dirac matrices read

γ 0 =
(

0 1
1 0

)
, �γ =

(
0 �σ

−�σ 0

)
and γ5 =

( −1 0
0 1

)
,

(24)

where σ i represents a two-dimensional Pauli matrix. Note
that this representation differs from the usual chiral repre-
sentation by a sign in γ 0.

4.1.1 The Massless Case

The wave equation associated with L1 reads

i
∂ψ

∂t
=

{
− i �α · ∇ + i σ 2

[
ψ �γ · ∇ψ

]
�α · ∇

}
ψ , (25)

where �α = γ 0 �γ . For σ 2 = 0 and setting

ψ(x) = ei( �p·�x−Et)ψ , (26)

where E = | �p|, one can identify the following four
independent solutions

ψs
K =

( [
E − �σ · �p]

χs

0

)
ψs

K ′ =
(

0[
E + �σ · �p]

χs

)

(27)

with

χ+ =
(

1
0

)
and χ− =

(
0
1

)
. (28)

These solutions verify the relations

ψ
s′
K ψs

K = ψ
s′
K ′ ψs

K ′ = ψ
s′
K ψs

K ′ = ψ
s′
K ψs

K ′ = 0

ψ
s

K γ 0 ψs
K = ψ

s

K ′ γ 0 ψs
K ′ = 2 E2 N2 (29)

where N is a normalization factor.
In (25), the term proportional to σ 2 can be treated as a

perturbation to the free massless case. The two classes of
solutions associated with K and K ′ are orthogonal to each
other and the new interaction term in the hamiltonian

Vnew = i σ 2
[
ψ �γ · ∇ψ

]
�α · ∇ (30)

do not mix the two families of solutions, i.e., it does not
break the intervalley symmetry. Therefore, one can consider
the outcome of the perturbation separately on ψK and ψK ′ .
For the solutions associated to the Dirac point K

V s′ s
K K = i σ 2

[
ψs

K �γ · ∇ψs
K

] [ (
ψs′

K

)† �α · ∇ψs
K

]

= − i E2 σ 2
[ (

ψs
K

)†
ψs

K

] [ (
ψs′

K

)†
ψs

K

]
(31)

and
(
V s′ s

K K

)
= − i 4 N4 E5 σ 2 L2

(
E −p−

−p+ E

)
(32)

where p± = px ± ipy . In perturbation theory for degenerate
eigenstates, the first correction to the energy � is given by
the solutions |V − �| = 0 which are

� = 0 or � = − i 2 p2 σ 2 n , (33)

where n should be interpreted as the carrier density. Choos-
ing a normalization of the Dirac spinor such that the integral
of ψ† ψ in a cubic box of size L is unitary, then n = 1/L2.
Recall that σ has dimensions of length to the power three
and, therefore, � has dimensions of energy as expected.

It turns out that the new interaction coming from the inte-
gration over the Gaussian fluctuations removes the degen-
eracy between the two sublattices A and B at the same
point K . Of the two resulting states, one remains mass-
less and undamped, while the other has an energy given by
E = p − i 2 p2 σ 2 n which describes a damped fermionic
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state. This results means that this damped state has a mean
life τ = (2 p2 σ 2 n)−1 that is inversely proportional to the
width of the Gaussian distribution, to the momentum and to
the charge carrier density. The damped state becomes stable,
i.e., τ → ∞, when the Gaussian distribution becomes nar-
rower and approach a delta distribution, for low momenta
states and small carrier densities. The presence of a damped
state tends to reduce the effective number of propagating
modes that can contribute to transport properties. Note that
for sufficiently small momentum and given that τ ∝ p2,
the ballistic transport properties of the charge carriers in
graphene are protected against the noise for this particular
case of coupling.

So far, we have considered only the solutions around the
Dirac point K but the results described also holds for the
modes associated to the other Dirac point K ′.

4.1.2 The Massive Case

Let us now discuss the case of the Lagrangian density L2.
The corresponding wave equations is given by
{
i γ μ∂μ −

[
m0 − i m1 σ 2 ψψ

] }
ψ = 0 . (34)

The interaction induced by the fluctuations contributes to
the mass with a small negative pure imaginary term that is
proportionally to the width of the gaussian noise σ 2 and also
to the fermion condensate ψ ψ . At the Hamiltonian level,
the new term is

Vnew = −i m2
1 σ 2 [

ψ ψ
]
γ 0 . (35)

For a vanishing width, the solutions of the Dirac equation
can be built in the usual way. Setting ψ(x) = e−ipμxμ ψ ,

where p0 = E =
√

�p 2 + m2
0, the positive energy solutions

of the wave equation are

ψs =
(

χs

E+�σ · �p
m0

χs

)
. (36)

Treating the new term Vnew using perturbation theory for
degenerate states, a straightforward calculation gives
(
V s′ s

K K

)
= −4 i N4 σ 2 E L2

(
E p−
p+ E

)
, (37)

where N2 is a normalization factor. Then, the first-order
correction to the energy is given by

� = 4 i N4 m2
1 σ 2 E L2

(
−E ±

√
E2 − m2

0

)
. (38)

If one chooses the same normalization as in the previous
subsection, then N2 = m2

0/(2E2L2) and

� = i σ 2 m2
1m

2
0 n

E2

⎛
⎝−1 ±

√
1 − m2

0

E2

⎞
⎠ , (39)

where n should be read as the charge carrier density. It turns
out that the first-order correction to the energy is always
a pure negative imaginary number and, therefore, the fluc-
tuations associated to electron mass operator give rise to
unstable states and, therefore, the quantum states collapse
for sufficiently large times. Note that width associated to the
quantum states, i.e., the imaginary part of the energy, is pro-
portional to σ 2 and stability is recovered in the limit where
σ 2 vanishes.

5 Mean Field Approach to Several Random Fields
and Charge Carrier Width

In Sections 4.1.1 and 4.1.2, we considered a unique random
field and studied the effect of considering a coupling to a
single operator. However, it is possible to consider various
random fields, with each field coupled to a different oper-
ator. In order to simplify the problem, herein we will focus
on non-derivative terms, with the exception of that consid-
ered in Section 4.1.1, and assume that parity is conserved.
Then, for scalar random fields, the most general Lagrangean
density reads

L = ψ i γ 0∂0 ψ − m0 ψ ψ + i
(
1 + gϕ ϕ

)
ψ �γ · ∇ ψ + gs ξs ψ ψ

+g0 ξ0 ψ γ 0ψ + gT

∑
i,j

ξij

2
ψ σ ijψ , (40)

where ϕ, ξs , ξ0, and ξij = −ξji are Gaussian distributed
random fields with widths given by σ 2

ϕ , σ 2
s , σ0 and σ 2

ij =
σ 2

ji , respectively. Note that the coupling constants gs , g0,
and gT have mass dimensions, while gϕ is dimensionless.
After the integration over the random variables one arrives
at the following effective Lagrangian density

Leff = L0 − i

2
g2

ϕ σ 2
ϕ

[
ψ �γ · ∇ ψ

]2 + i

2
g2

s σ 2
s

[
ψ ψ

]2

+ i

2
g2

0 σ 2
0

[
ψ γ 0ψ

]2+ i

4
g2

T

∑
i,j

σ 2
ij

[
ψ σ ijψ

]2
,

(41)

where

L0 = ψ i γ μ∂μ ψ − m0 ψ ψ (42)

is the usual free Dirac Lagrangian. The field equation
associate to (41) is

{
i /∂ − m0 − i g2

ϕ σ 2
ϕ

[
ψ �γ · ∇ ψ

] �γ · ∇ + i g2
s σ 2

s

[
ψ ψ

]

+i g2
0 σ 2

0

[
ψ γ 0ψ

]
γ 0+ i

2
g2

T

∑
i,j

σ 2
ij

[
ψ σ ijψ

]
σ ijψ

}
ψ = 0 .

(43)
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In the Hartree approximation, the non-linear terms within
the parenthesis are replaced by vacuum expectation values.
Setting ψ(�x, t) = e−i(Et− �p·�x)ψ one can write to lowest
order in perturbation theory

〈ψ �γ · ∇ ψ〉 = i

(
〈Eψ γ 0 ψ〉 − m0 〈ψ ψ〉

)
. (44)

Ignoring the contribution coming from the tensorial cou-
pling, i.e., setting gT = 0, (43) can be written as
(
γ μPμ − M

)
ψ = 0 (45)

where

P0 = E + i g2
0 σ 2

0 n , (46)

Pj = pj

[
1 − i g2

ϕ σ 2
ϕ

(
〈E ψγ 0ψ〉 − m0〈ψ ψ〉

)]
, (47)

M = m0 − i g2
s σ 2

s 〈ψ ψ〉 (48)

and n is the charge carrier density. Then, the energy-
momentum dispersion relation for an electron in graphene
is given by

E = E0 − i�

E ≈
√

�p 2 + m2
0 − i

{
g2

0 σ 2
0 n + m0 g2

s σ 2
s

〈ψ ψ〉√
�p 2 + m2

0

+ �p 2

√
�p 2 + m2

0

g2
ϕσ 2

ϕ

(
〈E ψγ 0ψ〉 − m0〈ψ ψ〉

)}
. (49)

This results means that the many-body dynamics, here sim-
ulated by the coupling to the random fields, induces a width
for the charge carriers given by

� ≈ g2
0 σ 2

0 n + m0 g2
s σ 2

s

〈ψ ψ〉√
�p 2 + m2

0

+ �p 2

√
�p 2 + m2

0

g2
ϕσ 2

ϕ

(
〈E ψγ 0ψ〉 − m0〈ψ ψ〉

)
. (50)

The vacuum expectation values are

〈E ψγ 0ψ〉 = 1

4π

[ (
k2
F + m2

0

)3/2 − m3
0

]
≈ k3

F

4π
,

〈ψ ψ〉 = m0

4π

[√
k2
F + m2

0 − m0

]
≈ m0kF

4π
and n = k2

F

4π
,

(51)

where kF is the Fermi momentum and EF ≈ kF is the Fermi
energy. Then, one can write the electron width as

� ≈ g2
0 σ 2

0 E2
F

4π
+ m2

0 g2
s σ 2

s EF

4π

√
�p 2 + m2

0

+ �p 2

4π

√
�p 2 + m2

0

g2
ϕσ 2

ϕ EF

(
E2

F − m2
0

)
. (52)

For states close to the Fermi surface, the carrier width
simplifies to

� ≈ g2
0 σ 2

0 E2
F

4π
+ m2

0 g2
s σ 2

s

4π
+ g2

ϕσ 2
ϕ

4π
E2

F

(
E2

F − m2
0

)
. (53)

Or in a slightly different form,

� ≈ m2
0 g2

s σ 2
s

4π
+

[
g2

0 σ 2
0

4π
−g2

ϕσ 2
ϕm2

0

4π

]
E2

F +g2
ϕσ 2

ϕ

4π
E4

F . (54)

This prediction of our theory can be compared against
the experimental data of [24], where the � was measured
for graphene. It turns out that the experimental data � as a
function of the Fermi energy is well reproduced by (54) as
can be seen in Fig. 1. An analysis of the data shows that
the coefficient of E4

F , is much smaller than all the others.
Indeed, the data is well reproduced by � = 0.22+0.075E2

F ,
where � and EF are given in eV . Note that part of the effect
of the fluctuations of the Fermi velocity is present in the
fitted number 0.075 that multiplies E2

F .
Thus, we reach the conclusion that the essential contribu-

tions to the electron width in graphene are associated with
the random fields that couple to the mass operator ψ ψ and
the energy operator as given by ψγ 0ψ . The fluctuations of
the Fermi velocity seems to give a contribution to � through
the quadratic EF term . It would be interesting to find a case
where this latter contribution is more evident.

The prediction (54) gives a � that is quadratic in the
gap energy, i.e., in m0. In this sense, changing the doping
or the graphene substrate dislocates the experimental data
accordingly.

In [24] besides the experimental measurement of �, a
theoretical calculation of the decay rates for highly excited
electrons in graphene is made. Although their theoretical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

E
F
 [eV]

0

0.1

0.2

0.3

0.4

Γ 
 [

eV
]

Fig. 1 The experimental widths as a function of the Fermi energy as
measured in [24]. See text for details
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computation underestimates the experimental value by 20–
30%, the authors look at the relative contributions to � due
to the electron-phonon and electron-electron interactions. It
turns out that the contribution of the electron-phonon inter-
action seems to be independent of the Fermi energy. On the
other hand, the electron-electron interaction grows with EF .
It is curious to observe that in (54) the constant term is asso-
ciated to the electron mass term, while the term which grows
with EF is connected with an interaction that is proportional
to the energy of the many-electron system.

6 Summary and Conclusions

In this paper, we propose to study the many-body prob-
lem of electrons in graphene through the consideration
of random fields. Although, the work described here uses
graphene as inspiration, the conclusions of our investiga-
tion are valid to any material that can be described, in first
approximation, by a Dirac equation as, e.g., silicene or ger-
manene. The introduction of the random variables can be
viewed as a way to incorporate statistically the details of the
interaction in a many-body system.

Assuming that the random fields have a Gaussian distri-
bution, it is possible to integrate their contribution exactly
using functional methods. The interplay between the two
types of averages considered, a functional integration over
the electron fields and a functional integration over the
random fields, allows to investigate dissipation and fluctu-
ations properties, which are a manifestation of the complex
dynamics of the many-body problem. Although, in the
present work, we provide all the ingredients to look at
the fluctuation terms of the different Green’s functions, we
focused on the dissipative nature of the interaction.

The use of functional methods allows to integrate exactly
the contribution of the random fields and identify a non-
hermitian and dissipative effective Hamiltonian Heff . Start-
ing from a one-body Hamiltonian, the integration of the
random fields builds an Hamiltonian with two-body interac-
tions. The non-hermitian and dissipative terms in Heff are
proportional to the fluctuations of the random fields. Fur-
thermore, they vanish when the distribution associated to the
random fields approaches a delta function distribution, i.e.,
in the limit of zero fluctuations.

The analysis of the perturbative solution for two differ-
ent types of coupling shows that the eigenstates of Heff

have, typically, complex eigenvalues and, therefore, the cor-
responding states have a finite lifetime. For the so called
massless case, see Section 4.1.1, one of the electron states is
stable but the other gets a width proportional to the charge
carrier momentum. From small charge carrier momentum,
the width essentially vanishes, and the corresponding quan-
tum states are effectively stable. On the other hand, the

states of Heff coming from coupling the random fields to a
mass term, see Section 4.1.2, produces eigenstates that have
always a finite width and lifetime. The perturbative solu-
tion of the cases devised in Sections 4.1.1 and 4.1.2 gives
a first flavor to the full quantum field theoretical problem
associated to Heff .

In Section 5, we investigated a more general type of
coupling between the electron and the random fields and
attempted a Hartree mean field solution of the many-body
problem with the effective Hamiltonian. The computation
of the Heff eigenvalues shows that the charge carriers
have, in general, finite widths. Furthermore, we look at
how the width � changes with the charge carrier Fermi
energy EF .

This allows us to compare our prediction for �(EF ) with
recent available experimental data for graphene [24]. It is
worthwhile to have in mind that in ref. [24], the quasi-
particle lifetime was extracted from the spectra of the optical
conductivity of a single graphene layer, as a function of
doping density. The optical conductivity spectra was fitted
to an ab-initio GW Bethe-Salpeter equation (GW/BSE) cal-
culation, which disregarded the quasiparticle lifetime but
considered a convolution with Lorentzians of appropriate
line width to fit the experimental data, and from that deter-
mined the values of the experimental quasi-particle width.
With respect to the experimental data, it was observed in
Ref. [24] that the width of the optical conductivity spec-
tra increases with the doping. They interpreted this effect
as associated with the decrease in the lifetime of the higher
optically excited states when the doping increases, which
gave physical meaning for their fitting procedure. Naively,
the decrease of the highly excited charge carriers lifetime
corresponds to the opening of new decay channels, associ-
ated with many-body scattering of these quasi-particles with
the ones close to the Fermi surface. Indeed, the good agree-
ment between the theoretical prediction for �(EF ) and the
experimental data suggests that, one can describe the many-
body problem of an electron in graphene, or other similar
materials, via the introduction of random fields, which mim-
ics those complex interactions, as considered in the current
work.

A final remark concerning the effect of fluctuations on
the averaged Green’s function. The procedure described
above using functional integration and ending up deal-
ing with an effective theory governed by a non-Hermitian
Hamiltonian can also be used to analyze the fluctuation
contribution. The fluctuation effects are embedded in the
equation that defines the full Green’s function, which is
described by the so-called Pastur equation [27]. The analyt-
ical solution of this equation is difficult to obtain. On the
other hand, the Pastur equation is amenable to numerical
treatment, which will be investigated in a future publi-
cation. Thus, a full treatment of the many-body effects,
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besides performing an average over a random field, would
require defining a non-Hermitian tight-binding Hamilto-
nian for Graphene and treat the accompanying fluctuation
contribution in a unitary consistent way.
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