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Abstract We report an investigation on Bose-Einstein condensates with two-body (cubic) and three-body
(quintic) interactions in the corresponding nonlinear Schrödinger equation, considering s−wave two-body
scattering length as periodically varying in time. For the quintic interacting term, the dependence on as was
considered within two models, being quadratic or quartic. It was shown that parametric instabilities can lead
to th e generation of Faraday wave resonances in this system, with wavelengths depending on the background
scattering length, as well as on the corresponding modulation parameters. A few sample results are shown
here for repulsive as , in case of quadratic and quartic three-body interactions. The effect of dissipation is also
verified on the amplitude of the resonances. Analytical predictions for the resonance positions are confirmed
by our numerical simulations.

1 Introduction

First described by Faraday in 1831 as nonlinear standing waves of a fluid on the surface of a vessel vibrating
vertically [1], the Faraday waves (FW) are governed by parametric resonance equations, as waves oscillating
at half the driving frequency. In the context of Bose-Einstein condensates (BEC), the interest on FW can be
traced from a theoretical investigation reported in [2], with corresponding experimental observation of this
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kind of patterns [3], which can be achieved by periodic modulations of the two-body atomic scattering length
as(t). Our motivation in studying FW in cold-atom systems is due to the fact that both two- and three-body
interactions are affected by the modulation of as(t), with the corresponding predictions being possible to be
experimentally verified. In the present communication, by following a more detailed investigation presented
in Ref. [4], we reproduce the basic expressions with a few results for repulsive as . Within our approach, we
have a condensate with atoms of mass m, where the nonlinear cubic and quintic terms are functions of time
[as dependent on as(t)], respectively, given by Γ (t) and G(t). As usual, with an appropriate external time-
independent trap potential, having a strong transversal trap frequency ω⊥, we can reduce to a one-dimensional
(1D) the original three-dimensional (3D) system, such that

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2 + Vext (x)ψ − Γ (t)|ψ |2ψ − G(t)|ψ |4ψ. (1)

Here, the wave-function ψ ≡ ψ(x, t) is normalized to the number of atoms N , Γ (t) is linearly related to the
two-body scattering lengthas(t), which can be varied in time by considering Feshbach resonance techniques [5].
Correspondingly, we have the three-body strength G(t), which is also related to as(t), as well as induced by
some external interactions acting on the condensate. More specifically, as discussed in [4], the dependence
of G(t) on as(t) can be quadratic or quartic. Quadratic behavior of G(t) on as(t) can occur in a model with
1D non-polynomial Gross-Pitaevskii (GP) equation confined in a cigar-type trap [6,7]. For small as |ψ |2, an
effective quintic term can be derived with G(t) ≡ 2h̄ω⊥a2

s (t), where h̄ω⊥ is our defined energy unit. Other
models, presenting quadratic dependences of G(t) on as(t) can be found in Refs. [8,9]. A quartic behavior of
G(t) on as(t) can be verified by varying as through Feshbach resonance techniques [5]. As the absolute value
of this observable becomes very large, one approaches the unitary limit (|as | → ∞), also known as Efimov
limit [10], where many three-body bound-states and resonances can be found. This behaviour will induce
changes in the corresponding quintic parameter of the GP equation, such that we can have G(t) ∼ a4

s (t) [11].
With the assumption that Vext (x) = 0, and dimensionless quantities, such that t → t/ω⊥, x → l⊥x , and

ψ → u/
√
l⊥ where u ≡ u(x, t) and l⊥ ≡ √

h̄/(2mω⊥), the Eq. (1) can be written as

i
∂u

∂t
+ ∂2u

∂x2 + γ (t)|u|2u + g(t)|u|4u = 0, with γ (t) ≡
√

2m

h̄2

Γ (t)√
h̄ω⊥

, g(t) ≡ 2m

h̄2 G(t). (2)

2 Modulational Instability

By considering modulational instability (MI) analysis of the nonlinear solution, as shown in Ref. [4], we look
for a solution of the form

u(x, t) = [A + δu(x, t)] exp

⎧⎨
⎩i

⎛
⎝A2

t∫
0

[
γ (t ′) + A2g(t ′)

]
dt ′

⎞
⎠

⎫⎬
⎭, with δu 	 A. (3)

In order to include the inelastic three-body collisions, one should add in the formalism the term iκ3|u|4u,
replacing g(t) by gc(t) = g(t) + iκ3. By keeping only linear terms δu ≡ δu(x, t), with δu = v + iw, and
going to the Fourier components, (v, w) = ∫

eikx (V,W ) dk, we have a coupled equation for V and W . The
solution in V , where we have the dissipative term ∼ κ3 together with a term ∼ κ2

3 , is

d2V

dt2 + k2 [
k2 − 2A(t)2(γ (t) + 2A(t)2g(t))

]
V = −6κ3A(t)4 dV

dt
+ 15

[
κ3A(t)4]2

V . (4)

The periodic modulations of the scattering length in time is given by γ (t) ≡ γ0 + γ1 cos(ωt), with the three-
body interaction term given by g(t) = c

[
γ0 + γ1 cos(ωt)

]2n (n = 1 for quadratic, and n = 2 for quartic). γ0
refers to the natural two-body scattering length, which can be attractive (γ0 > 0) or repulsive (γ0 < 0), with
γ1 being the amplitude of the periodic modulation. In Ref. [4] both the cases, with γ0 > 0 and γ0 < 0, were
verified. However, for attractive two-body interaction, usually one needs to consider three-body repulsion to
stabilise a condensate. Here, we show results only for γ0 ≤ 0 (repulsive), with attractive quintic terms (c > 0),
having quadratic or quartic dependence on as .



Faraday Waves in Cold-Atom Systems Page 3 of 5 52

Next, we derive the FW conditions for the wavenumber k. As the inclusion of dissipation is straightforward,
for simplicity we consider the case with no dissipation (κ3 = 0). By considering the above periodic modulations
for γ (t) and g(t), we obtain

d2V

dt2 + Ω2 [1 − f1 cos(ωt) − f2 cos(2ωt)] V = 0, (5)

where Ω2 ≡ k2Δ ≡ k2
{
k2 − 2A2

[
γ0 + A2c(2γ 2

0 + γ 2
1 )

]}
, with f1 ≡ [

2γ1A2(1 + 4cA2γ0)
]
/Δ and f2 ≡

2cγ 2
1 A4/Δ. The parametric resonances will occur when matching the frequency ω with Ω , in two cases:

ω = 2Ω (η ≡ 1) and ω = Ω (η ≡ 2). The corresponding wavenumbers are given by

k(η)
F = ±

√
M±
2

+ 1

2

√
M2± + (ηω)2 ≡ 2π

Lη

, with M± ≡ 2A2 [±|γ0| + A2c
(
2γ 2

0 + γ 2
1

)]
. (6)

M+ is for attractive or zero two-body interactions, γ0 ≥ 0, and M− for the repulsive case, γ0 < 0. In the
present case, as we are analysing the case with c > 0, M− can be set to zero or negative only for repulsive
interactions. Only the relevant positive sign for kF is being considered in our results.

3 Results

In order to obtain our results, we start first by considering the analytical approach derived from the modulational
instability conditions. In Fig. 1 we show the behavior of the period of the FW oscillations for different values
of ω, as given by (6). In both panels, we have LF = L1 for ω = 2Ω and = L2 for ω = Ω , considering
two cases with repulsive two-body interactions, using three-body interactions proportional to a2

s (t). The other
parameter are such that A = c = 1. Our search for the exact numerical solutions of the FW resonances is
implemented by solving the nonlinear Eq. (2), considering the analytical predictions given by (6).

In Fig. 2, we present results for the evolution of the central density |u(0, t)|2, when considering quadratic
model for the behavior of the three-body strength G(t) in terms of as(t). In the upper panels, we verify the
emergence of the first (left) and second (right) resonances, with no dissipation. In the lower panels, we show
the effect of dissipation, by considering the value of k at the resonant position. As expected, the amplitude of
the resonance decreases gradually as we increase the dissipation. In the bottom-right panel we show that the
effect of dissipation can be partially compensate by varying the amplitude of the time-oscillating part of the
scattering length, γ1. These results are reproduced from Ref. [4], where more details and results can be found.
We should also observe that our analytical prediction for the resonance positions kF are quite well determined
within our numerical search, in case of quadratic as well as quartic behavior of G(t) in terms of the two-body
scattering length. Verified by the time evolution results of Eq. (2), one should notice that with a small shift of
k from kF , the resonant behavior vanishes completely (as indicated inside the upper panels).

In Fig. 3, we also present results for the evolution of the central density |u(0, t)|2, when considering that
G(t) ∼ [as(t)]4 (quartic model). In the left panel we verify the emergence of the first resonance at ω = 20 and
k = 3.139; and, in the right panel, the resonance occurs at ω = 40 with k = 4.45. In both panels, the quintic
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Fig. 1 Period of FW resonances for a few sets of frequencies ω (LF = L1 for ω = 2Ω and = L2 for ω = Ω), with two cases of
repulsive two-body interactions (γ0 = −0.5 and −1), when the three-body interaction is proportional to [as(t)]2. The parameters
A and c are = 1, with all quantities in dimensionless units. (The panels are reproduced from Ref. [4])
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Fig. 2 For the central density |u(0, t)|2 as function of time, in the upper-left panel we show the emergence of the first parametric
resonance, for ω = 20, at k = 3.2; and, in the upper-right panel, the emergence of the second parametric resonance, for ω = 40,
at k = 4.5. In both upper panels we have no-dissipation and the other parameters γ0 = 0, γ1 = 0.5, A = 1, and c = 1. In the
lower panels we show the effect of dissipation, by considering the value of k (=3.17) at the resonant position. For that, in the
quintic parameter g we add a dissipative term κ3. In the lower-left panel, we vary κ3 from zero (non-dissipative) to 1, as indicated.
In the lower-right panel, in correspondence to the lower-left panel, we show that the effect of dissipation can be compensated by
varying γ1. By selecting κ3 = 0.025, γ1 was varied from 0.5 till 1. As verified the maximum occurs near γ1 = 0.8. All quantities
are dimensionless (Results extracted from Ref. [4])
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Fig. 3 Quartic case, with g(t) > 0, γ0 = −0.2, γ1 = 0.2, A = 1, c = +1. The first resonance, with ω = 20, is found at
k = 3.139 (left panel); with the second resonance, with ω = 40, at k = 4.45 (right panel). All quantities are in dimensionless
units (Results extracted from Ref. [4]

term is assumed positive (attractive, g(t) > 0), with the other parameters given by γ0 = −0.2 (repulsive
two-body interaction), γ1 = 0.2, A = 1, c = 1.

4 Conclusion

We have studied the generation of Faraday patterns in a BEC system, by engineering the time dependent
two- and three-body interactions. Two models were analysed, according to the mechanism of modulation and
behaviour of the three-body interaction with respect to the atomic scattering length as (quadratic and quartic
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power). From our analysis, we found that the time-dependent three-body interaction excites Faraday patterns
with the wave-numbers defined not only by the background scattering length and frequency of the modulations,
but also by the oscillation amplitudes. Both cases, with repulsive and attractive two-body interactions, were
considered in Ref. [4], where more details can be found. Only results for the repulsive case are shown in this
communication.

Acknowledgements This work was partly supported by funds provided by the Brazilian agencies CAPES, CNPq and FAPESP.
FKA acknowledge support from the Grant FRGS 16-014-0513 (IIUM).

References

1. M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating
elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–318 (1831)

2. K. Staliunas, S. Longhi, G.J. de Valcrcel, Faraday patterns in Bose-Einstein condensates. Phys. Rev. Lett. 89, 210406 (2002)
3. P. Engels, C. Atherton, M.A. Hoefer, Observation of Faraday waves in a Bose-Einstein condensate. Phys. Rev. Lett. 98,

095301 (2007)
4. F.Kh. Abdullaev, A. Gammal, L. Tomio, Faraday waves in Bose-Einstein condensates with engineering three-body interac-

tions. J. Phys. B 49, 025302 (2016)
5. E. Timmermans, P. Tommasini, M. Hussein, A. Kerman, Feshbach resonances in atomic Bose-Einstein condensates. Phys.

Rep. 315, 199–230 (1999)
6. L. Salasnich, A. Parola, L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose conden-

sates. Phys. Rev. A 65, 043614 (2002)
7. L. Khaykovich and B.A. Malomed, Deviation from one dimensionality in stationary properties and collisional dynamics of

matter-wave solitons. Phys. Rev. A 74, 023607 (2006)
8. F. Abdullaev, A. Abdumalikov, R. Galimzyanov, Gap solitons in Bose-Einstein condensates in linear and nonlinear optical

lattices. Phys. Lett. A 367, 149–155 (2007)
9. K.W. Mahmud, E. Tiesinga, P.R. Johnson, Dynamically decoupled three-body interactions with applications to interaction-

based quantum metrology. Phys. Rev. A 90, 041602 (2014). (R)
10. V. Efimov, Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970)
11. A. Bulgac, Dillute quantum droplets. Phys. Rev. Lett. 89, 050402 (2002)


	Faraday Waves in Cold-Atom Systems with Two- and Three-Body Interactions 
	Abstract
	1 Introduction
	2 Modulational Instability
	3 Results
	4 Conclusion
	Acknowledgements
	References




