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A simple loop shaping technique is applied to design an optimal, robust feedback controller to reduce the
interior noise of an acoustic cavity. It is a data-based technique that uses the measured plant response to
tune the parameters of a fixed-structure controller in a graphical way. The two cases studied are narrow-
band noise control in a small cavity and broadband noise control in a long duct. Each control system
consists of a microphone, a loudspeaker, and a controller connecting the two transducers that are further
collocated. The fixed-structure of each controller should be chosen ahead of loop shaping and is deter-
mined in this paper solely based on the Nyquist plot of each plant measured. It turns out that a single
band (high) pass filter of second order is suitable for the narrowband (broadband) noise control case con-
sidered. It is finally demonstrated with experiments that the technique is practical and a second order
filter can be effectively used for active control of cavity noise in a single narrow or broad frequency band.
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1. Introduction

Active noise control is a method to reduce acoustic noise by
active means such as using loudspeakers. Low frequency noise is
of major concern as this noise is difficult to reduce by conventional
passive means such as using sound absorbing materials. Since it
has such a distinctive application area, it has attracted enormous
interest over far more than a half-century. Lueg as early as in
1930s proposed an idea of feedforward control that uses a super-
position principle to cancel noise [1]. Olson and May in 1950s then
proposed an idea of feedback control to build a very low impe-
dance device [2]. Their ideas have been extensively exploited dur-
ing the past several decades particularly since the advent of cheap
microprocessors in 1980s. Although there are a large number of
publications on this subject [3,4], few are concerned with experi-
mental implementations that use feedback control. For example,
see [5-10]. One reason for this may be that feedback control is gen-
erally more involved in design since it has to ensure stability and
robustness. However, there are many practical cases where feed-
back control is unavoidable because information of the primary
noise sources as well as their transfer path characteristics, which
feedforward control requires for an implementation, is often
unavailable. Hence, more feedback control studies and new data
are in need in the field of practical active noise control, i.e., active
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noise control of such practical cases by practical methods for prac-
tical implementations.

The paper presented here reports two experimental case studies
that use feedback methods for practical active noise control. The
first case is narrowband low frequency noise control in a small
cavity, and the second case is broadband low frequency noise con-
trol in a long duct. A single-input-single-output control system is
constructed in each case using a single microphone and a single
loudspeaker. A simple loop shaping technique, similar to that in
classical feedback control [11], is then applied to design the con-
troller that connects the microphone and the loudspeaker. As the
fixed-structure filter of the controller (i.e., the compensator in clas-
sical terms), a single filter of second order is commonly employed
for both cases studied. This is because it has been known in active
vibration control that this order of filter is effective for controlling
vibration in a single frequency band [12-20]. Active vibration con-
trol is similar to active noise control in that they are both distur-
bance rejection control. Thus, those design techniques and rules
established for active vibration control are extensively employed
in this paper.

Each control filter above can thus be designed under an optimal,
robust design framework based on Nyquist robustness criterion,
which has been widely used in both active noise [6,9,10] and vibra-
tion [15-20] control. The particular loop shaping (i.e., design)
method employed is then a data-based technique, for example
see [20], that uses the measured plant response to tune the param-
eters of the fixed-structure candidate controller in a graphical way
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by repeatedly plotting the open loop frequency response until a
desirable shape is obtained in terms of both performance and
robustness. Thus, no (or minimum) knowledge is required regard-
ing the physics involved, the mathematics on modeling and opti-
mization, and the formalism of modern robust control theory.
Instead, elementary knowledge on Bode and Nyquist plots is suffi-
cient for the loop shaping. The control filter designed under this
framework is then an optimal controller that is also robust in the
sense of Nyquist robustness criterion.

There are other design methods such as, those LQG and H,, con-
trol tools that often require explicit mathematical models of the
plant as well as measurable and immeasurable uncertainty
[21,22]. There is further an IMC (internal model control) technique
that transforms the feedback control architecture into a feedfor-
ward one so as to give a convex optimization problem involving
an FIR (finite impulse response)-type control filter [23]. However,
the simple data-based technique described above is preferred in
this paper as it is readily applicable, easier to use, and more intu-
itive and practical for the cases studied. By shaping a control filter
of second order, it is finally demonstrated with experiments that
more than 40 dB is reduced for narrowband noise in the first case
while the first eight acoustic modes are simultaneously reduced in
the second case.

The paper is organized as follows. After this introduction, the
two cases studied are described in Section 2. The optimal, robust
design framework employed is then presented in Section 3 in
equation form by slightly adapting both classical [11] and modern
[21,22] robust control theory. Its implications are also discussed
together with introducing the room for uncertainty as a robustness
measure against immeasurable uncertainty. Section 4 gives some
rules and guidelines of loop shaping when second order filters
are used as fixed-structure controllers. In Section 5, the control
filters for the two cases are actually designed and the experimental
data obtained are finally displayed. The paper is closed in Section 6
with some conclusions.

2. Two plants

Two acoustic plants are of concern. The first plant is a small
cavity as shown in Fig. 1. There are two loudspeakers of the same
type (Peerless® P835025), one of which is for exciting the cavity
and the other is for controlling it. Each loudspeaker driver was
installed in a wooden cabinet (thickness: 15 mm, exterior dimen-
sions: 30 cm x 30 cm x 30 cm) packed partly by a piece of sound
absorbing foam (thickness 5 cm). There are also two 1/2” micro-
phones of the same type (RFT® MV201) located near the diaphragm
centers of the two loudspeakers, respectively. One of these is
merely for monitoring noise and the other is for controlling by
feeding the measured signal p, back to the control loudspeaker

y | Controller
(dSPACE
1103) _i
Mic. Preamps. / E *
Power Amp.
V4
#Foam v
Primary 3 Control
o- Ho TEZ Loudspeaker

Loudspeaker E, T
L

=

Fig. 1. Narrowband noise control in a small cylindrical cavity (inner diameter
17.5 cm, length 27.2 cm) made of acryl (thickness 5 mm).

through a microphone preamplifier (RFT® 00 023), a controller,
and an audio power amplifier (MMF® LV103). The controller
platform used was a DSP prototyping machine (dSPACE 1103)
running at a sampling frequency of 32 kHz. The control filter
designed later in this paper was implemented in discrete
form within the machine. The plant here resembles a blocked
human ear in the acoustical sense [6,10] and of interest is
controlling the sub-resonance frequency noise below the funda-
mental natural frequency (654 Hz: measured) of the cavity. Such
noise is largely responsible for the occlusion effects in hearing
instruments [24].

The second plant is a long duct as shown in Fig. 2. A sheet of
fabric (thickness 1 cm, length 60 cm) was rolled and placed inside
the duct to give some acoustic damping. The transducers and the
feedback control circuit used are exactly the same as those in the
first plant, except the location of the control microphone. This
microphone was not positioned at the center but an off-center at a
nodal point (searched experimentally) of the first radial acoustic
mode of the cylindrical duct in order to avoid measuring this mode
[25]. This was purposely done because this mode was not a target
mode for control so that it is always desirable to exclude its effect
from the measurement stage. The plant here resembles a simple
acoustic waveguide and of interest is controlling one-dimensional
modes far below the cutoff frequency (2270 Hz: measured) of the
waveguide. Controlling multiple modes is thus of concern across a
broad frequency range. A similar task has been successfully con-
ducted for a vibration beam [17]. This is an extension to an acoustic
system.

Each plant is the path from the power amplifier input (denoted
by x in Fig. 1) to the control microphone preamplifier output
(denoted by y), while the loop is disconnected. The input and out-
put signals were simultaneously monitored by a frequency ana-
lyzer (not shown) to produce the frequency response function
(FRF). Fig. 3 shows the measured plant response in the small cavity,
where both Bode and Nyquist plots are displayed. The sharp peak
at 654 Hz in Fig. 3(a) is due to the fundamental acoustic mode.
For a demonstration purpose, the control target chosen was the
narrowband noise at around 35 Hz indicated by the symbol ‘V"'.
This corresponds to the small cardioid-shaped locus located largely
in the ‘right half of the complex plane in Fig. 3(b). The task here is
to design an optimal, robust controller for this and a single filter of
second order will be used as the controller. Fig. 4 then shows the
measured plant response in the long duct in the same form as
Fig. 3, but in an extended frequency range up to 3 kHz. For a
demonstration purpose, the control target chosen was the broad-
band noise up to about 1.3 kHz containing the first eight acoustic
modes. They correspond to those several circular loci in the ‘lower
half of the complex plane in Fig. 4(b). The task is again to design an
optimal, robust controller for this and a single filter of second order
will also be used as the controller.
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Fig. 2. Broadband noise control in a long cylindrical duct (inner diameter 17.5 cm,
length 111 cm) made of acryl (thickness 5 mm).
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Fig. 3. Plant response in the small cavity: (a) Amplitude (V/V) and phase (degrees) and (b) Nyquist plots.
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Fig. 4. Plant response in the long duct: (a) Amplitude (V/V) and phase (degrees) and (b) Nyquist plots.

3. Optimal, robust design framework
3.1. Formulation

Consider the single-input-single-output active noise control
system for an acoustic cavity shown in Fig.5(a). There is a
microphone to measure the noise at a target position and is also
a loudspeaker to control this noise. The two transducers may or
may not be collocated. Primary noise sources are not explicitly
shown as they are unimportant in feedback control. The micro-
phone and the loudspeaker are connected via a negative feedback
controller —C(jw), where j = v—1 and w is the angular frequency.
This is disturbance rejection control that can be represented by the
general block diagram shown in Fig. 5(b), where P(jw) is the plant
and u(t) is the control signal in time t. The signals d(t) and e(t) are

o —
- e(t)

~C(jo)

Fig. 5. Disturbance rejection control: (a) schematic drawing of an active noise
control system and (b) its block diagram representation.

the responses measured by the common error microphone when
the control loop is open and closed, respectively. Thus, the two sig-
nals cannot be measured simultaneously. Consequently, the block
diagram is a representation of a rather mathematical relationship
than a real physical circuit. This diagram is used only for mathe-
matical analysis throughout this paper. The performance of the
control system can then be specified by the mathematical closed
loop FRF or the so-called sensitivity function S(jw) = e/d, where e
and d are respectively the microphone responses in frequency with
and without control. This can be more specifically written as

S(jw) = [1+Ljw)] ", (1)

where L(jow) = P(jw)C(jow) is the open loop FRF. It can also be repre-
sented in decibels by RR(dB) = 20log;,|S(jw)| to practically mean
the reduction ratio after control.

With reference to the block diagram in Fig. 5(b), the problem of
optimal, robust control can be defined as follows: Given the plant
P(jw), find a controller C(jw) that minimizes |S(jw)| in the control
bandwidth (w € Q.) under a certain robustness constraint imposed
across all frequencies (w € Q) such that [16]

minimize [Sjo)|, (2a)
weQe
subject to |S(jw)| < 1/l,, (for all frequencies) (2b)

where 0 < [, < 1 and it has been assumed that P(jw), C(jw), and the
resulting control system are all stable. Egs. (2a) and (2b) respec-
tively indicate the performance and the robustness of the control
system. In an optimal control state, the inequality constraint in
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Eq. (2b) can be replaced by an equality constraint:
max |S(jw)| = 1/l,. This value practically means the maximum
allowable control spillover: RRm.x (dB) = —20log;ol,, or equiva-
lently the generalized gain margin: GM (dB) = —20log;y(1 — I,).

3.2. Formulation interpretation and the room for uncertainty

Regarding the robustness of the design framework, it is interest-
ing to know where the value [, in Eq. (2b) comes from. Referring to
the Nyquist plot of an open loop FRF illustrated in Fig. 6(a), it is
clear that I, indicates the radius of the circle of robustness
(dash-dotted line) centered at the instability point (—1,0). From
this, it is natural to introduce the generalized gain margin as it
has been already defined above. It is further natural to define
Nyquist robustness criterion such that a control system is stable
and robust with a degree of [, if and only if its open loop FRF locus
does not enclose or cross the circle of radius I, centered at the
instability point (—1,0) [16]. Thus, Eq. (2) is more specifically an
optimal, robust design framework based on Nyquist robustness
criterion (as well as the sensitivity function [S(jw)|).

Regarding the performance of the design framework, it is
important to understand some general property of the sensitivity
function. For most control systems there is a tradeoff called the
waterbed effect between the reduction (below unity) and the
amplification (above unity) of the sensitivity function [S(jw)],
imposed fundamentally by Bode’s sensitivity integral [15]. In other
words, a reduction in the control bandwidth can in general only be
achieved by allowing an increase in some other bandwidth and
vice versa. Optimal, robust control is thus a balance between them,
achieving large reductions in some important frequency band-
widths while distributing small amplifications in other band-
widths. It is also important to understand the relationship
between the open and the closed loop response function given
by Eq. (1). It can be seen that for a good performance (i.e., low sen-
sitivity |S(jw)| < 1) the open loop response should be large
|L(jw)| > 1 in the control bandwidth, provided that the control sys-
tem is stable. This condition can be mathematically written as

RelL(jw)] > 1. (w e Q) (3)
The case of Im[L(jw)] > 1 with w € Q. has been excluded since the
corresponding locus L(jw) could tend to interfere with the circle of
robustness in the range of w ¢ Q.. Fig. 6(b) illustrates an open and
the corresponding closed loop FRF in decibels. It can be seen that
there is a good performance (dashed line) in the control bandwidth
at frequencies around ., where |L(jw)| (solid line) is large.
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There is another issue that is important in practice but has not
been incorporated into the mathematical framework given by Eq.
(2). This framework is reliable only if the function of |S(jw)| is
reliable, which in practice can hardly be met for all frequencies.
A reliable strategy to avoid any uncertain attack of instability is
thus to make the control effort as small as possible in the unreli-
able frequency ranges as if there were no feedback action in those
ranges. In this regard and generally speaking, the control effort of a
practical active control system should be small at very low and
very high frequencies. This is because these are often outside the
working frequency range, where most acoustic and vibration trans-
ducers of piezoelectric type are unreliable and most theoretical
plant models can be erroneous. Such small control efforts can then
be conveniently assessed by |L(jw)|: a small value of |[L(jw)| <« 1
means a weak feedback action. Thus, the plot of |[L(jw)| illustrated
in Fig. 6(b) is desirable for robustness as the control system works
effectively in the control bandwidth while ineffectively at very low
and very high frequencies.

From the analyses above, it is clear that the plot of |S(jw)| in
Fig. 6(b) can show both the control performance and the control
spillover. Whereas, the plot of |L(jw)| can show the robustness to
the uncertainty due to immeasurable and unpredictable dynamics.
It is thus natural hereby to introduce the room for uncertainty as a
robustness measure to this immeasurable uncertainty. As graphi-
cally indicated in the plot, this may be defined by the area below
the level of —GM (dB). The room for uncertainty is also a useful
measure to judge the relative robustness between controllers,
e.g., the electrical damper and the electrical dynamic absorber
method compared in [16]. For robustness, not only the circle of
robustness but also the room for uncertainty should be taken into
consideration. These two are convenient as well as practical con-
cepts as they let a control engineer to conduct control experiments
straightforwardly rather than an exhaustive modeling of
uncertainty that is partly impossible to model.

3.3. Comparison

In the previous two subsections, the optimal, robust design
framework based on Nyquist robustness criterion and the room
for uncertainty has been constructed by slightly adapting classical
[11] and modern [21,22] robust control theory. First, the theories
have been tailored to suit disturbance rejection control only, disre-
garding tracking control. Thus, the sensitivity function has been
exclusively used in Eq. (2). Second, the constrained optimization
formulation in Eq. (2) is used rather than a standard unconstrained
one that involves additional introductions of weighting functions

in log scale

Control Bandwidth

Room for Uncertainty

Fig. 6. Optimal, robust control with a robustness degree of I,. (a) Nyquist plot of L(jw) and (b) Amplitude plot of L(jw) (solid lines) and S(jw) (dashed) in decibels: 20log,| e |
The degree of robustness (dash-dotted) is indicated by a circle of radius I, in (a) and by a level of RR,.x in (b).
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accounting for uncertainties. The explicit expression in Eq. (2) is
preferred in this paper as the design conducted later in this paper
does not rely on any automatic optimization solver but a simple
interactive loop shaping technique based on visual inspection.
Third, the robustness has been defined by using a single circle
centered at the instability point (i.e., the circle of robustness)
rather than many different circles along the open loop frequency
response points. This has greatly simplified the formulation.
Robustness to such frequency dependent uncertainty can instead
be separately assessed by visually inspecting |L(jw)| (i.e., the room
for uncertainty) in the frequency axis, as explained earlier. There-
fore, the design framework in this paper relies on both S(jw) and
L(jw) in which the latter is used only for inspecting the room for
uncertainty.

As above, the design framework presented here is similar to
those in modern robust control theory, but is simpler. It is also sim-
ilar to the classical design framework based on Nyquist stability
criterion combined with the gain and phase margins. Eq. (2) is
essentially a compact mathematical description of the classical
one, in terms of modern terms (e.g., l,). Moreover, inspection of
the room for uncertainty is analogous to inspection of roll-off
characteristics in classical control. Not only the high frequency,
but the low frequency roll-off characteristic should be also
inspected in general. Thus, it can be stated that the design frame-
work presented in this paper is one that has combined merits of
classical and modern robust control theory to suit practical active
control of noise and vibration. In this design framework, it should
be noted that a proper selection of the fixed-structure controller
(i.e., the compensator) is of paramount importance. Some rules
and guidelines related are thus discussed in the following section.

4. Loop shaping technique
4.1. Basic rules

Over decades of endeavors since the introduction of positive
position feedback (PPF) in 1990s [12], it has been known that a sin-
gle second order filter is effective for controlling a single mode in a
single narrow frequency bandwidth. It can be also effective for con-
trolling multiple modes in a single broad frequency bandwidth,
provided that it is collocated feedback [17]. The former and the lat-
ter respectively correspond to the first and the second plant in this
paper. Thus, a single second order filter is commonly employed for
each of the cases studied. Some basic design rules are addressed in
this subsection as to how to determine the type of the filter (e.g., a
low, band or high pass filter).

From Eq. (3), a rule of thumb for control performance may be
stated as follows:

“Bring the target open loop frequency response point(s) near to the
positive real axis of the complex plane”

and make it as large as the robustness in Eq. (2b) allows. Then, the
negative feedback architecture will automatically suppress
the target response(s) as set by Eq. (1). This rule can be applied
to design the controllers for some standard patterns of plant
responses often encountered in practical active control of noise
and vibration.

As the simplest system, consider the active vibration control of
an oscillator consisting of mass m, spring k and damper ¢ shown in
Fig. 7(a). The position w, velocity w and acceleration w are individ-
ually taken as the output while the force f is the common input.
The corresponding plants can be respectively written as

Py(jo) = (jw) ' -Y, (4a)

P,(jo) =Y, (4b)

Po(jo) = (jo) -Y, (4¢)

where P,(jw) = w/f is called receptance, P,(jw) = w/f is mobility,
Py(jw) = w/f is accelerance, and Y = ¢ 1(j2¢,m,m)
(@2 — ? -|rj2§,1cunw)’1 in which w, = \/k/m is the angular natural
frequency and ¢, = c¢/(2v/mk) is the damping ratio of the oscillator.
Note that the three plants are in the forms of a low, band, and high
pass filter of second order, respectively. Their responses are shown
in Fig. 7(b). It can be seen that the FRF loci reside in the ‘lower half,
in the ‘right half, and in the ‘upper half of the complex plane,
respectively. Applying the rule of thumb above with w, being the
target frequency w,, a possible set of the corresponding control fil-
ters of second order can be written as

Co(jo) = (jw) - Z, (53)
Co(jw) =Z, (5b)
Ca(jo) = (jo) - Z, (5¢)

where Z = c.(j2{.w.0)(w? — w? +j2§cwcco)71 in which o, = w, is
the center frequency and 2{, is the normalized bandwidth. They
are now a high, band, and low pass filter of second order, respec-
tively. Their responses are illustrated in Fig. 7(c). These three meth-
ods then all yield the same open loop response given by

Ljw) = Pi(jo) - Ci(jo) =Y - Z, (6)

where i = p, v and a. This response is shown in Fig. 7(d), where note
that the target frequency response (‘¢>') is in the positive real axis in
accord with the rule of thumb. Its magnified view around the circle
of robustness has been already shown in Fig. 6(a). Accordingly,
those shown in Fig. 6(b) are the corresponding |L(jw)| and |S(jw)|.

The examples above have demonstrated that the type of the
second order control filter can be determined solely based on the
pattern (i.e., receptance, mobility or accelerance) of the plant
response in the Nyquist plot. The three equivalent control methods
(or basic design rules) above are respectively called position-
acceleration feedback (PAF), velocity-velocity feedback (VVF), and
acceleration-position feedback (APF) [16]. It is important to note
in Fig. 6(b) that they commonly yield the same band pass filter
form of |L(jw)|, which is desirable for the room for uncertainty.
Thus, it can be stated that the three control methods are not only
desirable methods for performance but also for robustness. Note
here that control filters in desirable forms in the sense of the rule
of thumb can be undesirable in the sense of the room for uncer-
tainty, for example, a PPF control filter at low frequencies [12].

Finally, it is interesting to note that many practical plants are, at
low frequencies or in a limited band of frequencies, of the three
patterns illustrated in Fig. 7(b) [7,8,10,12,14-18,23,24]. For exam-
ple, the long duct response shown in [7] is similar to that in
Fig. 4 revealing a receptance-like response at low frequencies.
The headphone response in [10] is similar to that in Fig. 3 revealing
a mobility-like response at low frequencies. The ear simulator
response in [24] is also in mobility pattern at low frequencies, if
inverted. The headset response in [9] is further in mobility pattern
at frequencies around 400 Hz, if inverted. The headrest response in
[23] is then in accelerance pattern at low frequencies around
230 Hgz, if inverted. The vibration plants in [12,14-18] can also be
similarly categorized. Thus, the three control methods above can
be applied to not only simple oscillators but also to many other
practical plants.

4.2. Guidelines

Some design guidelines already well known in practical active
control are summarized in this subsection. For the active control



70 S.-M. Kim et al./ Applied Acoustics 121 (2017) 65-73

(a)
© JIPEEEN X
. el Cp(Jw) Ty
& /7 N
,_E. ,/ \\
ro4 . )
! C,(jo) ‘
R \
0
7 i
, %\«/ i
AN |
- '
| \.\ e
L . : /
sof |~ 0T
 Real 100

(b) o
./ ° 1
& P(jo) / o
E| I N
g v\
1 IOONN
L \ ]
0 .
/,
/! '
K r |
P,,(J ) \ )
\\ ,/ 7
-1 N S
-1 0 Real 1
&) .
L(jw)
2y
E
Circle of Robustness
0
-10

0 " Real 20

Fig. 7. Three controllers for the three standard patterns of plant responses: (a) Active control of an oscillator: m = 1kg, c=1Ns/m, k =1N/m, and g = c./c = 20; (b) the
three plant patterns: receptance Pp(j) in position feedback, mobility P,(j) in velocity feedback, and accelerance Py(jw) in acceleration feedback; (c) the three corresponding
controllers: Cy(jw), C(jw), and Cy(jw); and (d) the common open loop FRF. The symbol ‘¢’ is indicated at the natural frequency ), as well as the center frequency @, of the
control filter, where @, = w.. The arrows on each locus indicate the direction of increasing frequency.

of cavity noise illustrated in Fig.5(a), the plant response can
change its pattern depending on how the loudspeaker behaves in
the frequency range of operation, e.g., a spring-, damper- or
mass-like behavior [26]. Consequently, a different type of control
filter should be employed for each range. If the plant is inverted,
the control filter should also be inverted to counteract the effect
[18]. Roll-off shaping filters may additionally be introduced to
improve the robustness at very low and very high frequencies
[17]. The frequency tuning rule w. = w, already applied earlier is
for a single-mode system. It can be slightly altered if the plant is
a multi-modal system with considerable mutual interactions
between modes. If the concern is now to reduce several modes
simultaneously in collocated control, it can be tuned to the center
frequency of the bandwidth covering all the target modes. The gain
¢ and the bandwidth 2¢{. can then be tuned by loop shaping. In
general, the greater the gain c., the greater is the reduction. Fur-
ther, the greater ¢, and 2., the wider is the control bandwidth
[16]. If multiple bandwidths are to be controlled, multiple second
order filters are generally required each of which is individually
designed to control a single individual bandwidth [18]. If there is
a considerable time delay in the plant, a phase compensator can
be additionally introduced in series with each second order filter
[19].

5. Two designs and experiments
5.1. Two designs

According to the rules in the previous section, the controller for
the first plant (the small locus in the ‘right half of the complex

plane: mobility pattern) shown in Fig. 3(b) should be a band pass
filter written as

j2Lwcm

Clow) =c w? — ? +j2{ 0w’

(7)

where the parameters are later tuned to be w. =27 x 35 Hz,
cc = 62.7, and (. = 0.005. Similarly, the controller for the second
plant (many loci in the ‘lower half’ of the complex plane: receptance
pattern) shown in Fig. 4(b) should be a high pass filter written as

2{ow
w? — w? 4+ 2l w0’

C(jw) = jorc. 8)
where the parameters are later tuned to be w. =27 x 80 Hz,
c. = 6.4e — 4, and {, = 10. The controller bandwidth of this can be
written as 4 Hz < Qc,n < 1604 Hz, where (w./r) < Qcon < (1) with

r=(b+Vb* +4)/2 and b = 2¢.. The three parameters of each con-
trol filter specified above were determined by loop shaping with
using the measured plant response. This was performed in a graph-
ical way by repeatedly plotting the open loop FRF locus (as well as
IL(jow)| and |S(jw)|) in a computer until a desirable shape was
obtained in terms of both performance and robustness. The design
procedure for each case can be summarized as follows.

In the first case, the target frequency is w; = 27 x 35 Hz. Step 1:
It is desirable to tune the controller center frequency . in Eq. (7)
to be w; such that

We = Oy 9)

It is then a two-variable tuning problem. Step 2: Either of {. and c. is
set to be fixed while the other is changing until a desirable open
loop shape is obtained. Step 3: They switch the roles and repeat
the process for any improvement. In the second case, the target
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bandwidth is roughly about 165.6 Hz (1st mode) < ©; < 1290 Hz
(8th mode). Step 1: It is desirable to tune the controller bandwidth
Qn in Eq. (8) to cover Q; such that

Q € Qeon. (10)

Choose a set of w, and {, satisfying Eq. (10). It is then a single-
variable tuning problem. Step 2: Increase c. until a desirable open
loop shape is obtained. Step 3: Choose many other sets of w. and
{., and repeat the process for any improvement.

Fig. 8 shows the final desirable open and closed loop FRFs
designed for the small cavity under a robustness degree of
l, = 1/2. Fig. 9 then shows those for the long duct. The optimal
parameters obtained have been already given in Egs. (7) and (8).
It can be seen in each of the Nyquist plots in Figs. 8(a) and 9(a) that
the design allows a maximum control spillover of about 6 dB (the
dash-dotted circle). It can be also seen in each amplitude plot that
there is a large reduction in the control bandwidth. In the first case
shown in Fig. 8(b), there is more than 40 dB reduction (dashed line)
at the target frequency of 35 Hz with the control bandwidth span-
ning from 20 Hz to 75 Hz. In the second case shown in Fig. 9(b), the
reductions (dashed line) are respectively about 12 dB, 17 dB, 16 dB,
13 dB, 12 dB, 7.3 dB, 5.7 dB, and 2.5 dB for the first eight modes. It
is also important to note that each controller designed secures
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Fig. 8. Controller design for the small cavity with [, = 1/2. Refer to Fig.6 for
detailed captions.

large rooms for uncertainty (solid lines) at very low and very high
frequencies. It implies that, if implemented in practice, the control
systems would be very robust.

5.2. Experimental results

The discrete form of each control filter was then implemented
within the DSP prototyping machine for real-time control as
described in Section 2. The impulse invariant method was used
for Eq. (7) [18] while the bilinear transform method (‘bilinear’ in
Matlab®) was used for Eq. (8) because of the extremely large
damping (. = 10 in this case. A random signal was transmitted to
the primary loudspeaker and the microphone signals were mea-
sured without and with control (i.e., disconnecting and connecting
the control loop, respectively).

Fig. 10 shows the sound pressure responses of the small cavity
at the primary and at the control microphone. The performance at
the collocated control microphone in (b) is well expected from
Fig. 8(b). The large reduction at the remote primary microphone
in (a) is also reasonable because the cavity is small and the
frequencies are low. Fig. 11 shows those of the long duct. Again,
the performance at the collocated control microphone in (b) is well
expected from Fig. 9(b). There are also large reductions of the first
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Fig. 9. Controller design for the long duct with [, = 1/2. Refer to Fig. 6 for detailed
captions.
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Fig. 10. Sound pressures in the small cavity before (dash-dotted lines) and after
(solid) control. (a) Primary microphone p; and (b) control microphone p,.

eight modes at the remote primary microphone in (a) and this is
also reasonable because it is modal control in such a collocated
control configuration [17]. It is noteworthy that there is an enor-
mously large peak at about 2270 Hz in (a) but not in (b). This is
because the primary microphone was positioned at the center
but the control microphone was positioned off-center at a nodal
point of the first radial mode of the cylindrical duct. This large peak
also indicates that the sheet of sound absorbing fabric rolled inside
the duct was little helpful in reducing this mode. The results in
Figs. 10 and 11 finally suggest that, although it is local feedback
using a single loop in each case, it is possible to achieve global con-
trol all over the cavity.

5.3. Discussion

In the previous subsection, the experimental results of the two
cases are displayed. In the first case, a reduction of more than 40 dB
has been achieved in a narrow frequency band around 35 Hz. It is
even possible in principle to completely nullify the target tonal
noise at the error microphone position [20]. The results here are
comparable to those in [6,10]. In the second case, the first eight
acoustic modes have been simultaneously reduced in a broad fre-
quency band. This is dissimilar to the vibration application in
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Fig. 11. Sound pressures in the long duct before (dash-dotted lines) and after (solid)
control. (a) Primary microphone p; at the center position of the cylinder and (b)
control microphone p, at an off-center position.

[17] in that the patterns of the plant responses are different and
so are the types of the control filters used. The results here are then
comparable to those in [7]. Finally, it should be emphasized that
the control performances in this paper have been achieved under
a generalized gain margin of 6 dB.

Lastly, it should be emphasized that the two design tasks repre-
sented by the plant responses in Figs. 3 and 4 are well-prepared
problems after trials and errors, which can thus be easily solved
by loop shaping with simple control filters. More specifically, the
target frequency of 35 Hz in Fig. 3(b) resides near the positive real
axis in the ‘right half of the complex plane, being suitable for
applying VVF using a band pass filter of second order. The target
frequencies in Fig. 4(b) then reside all near the negative imaginary
axis in the ‘lower half of the complex plane, being suitable for
applying PAF using a high pass filter of second order. It is also
important to note that the high pass filter could have been effec-
tively applied since the error microphone was placed at a position
where the corresponding plant response gave a good roll-off
characteristic at high frequencies (see Fig. 4(a)). Further, the
dimensions of the two cavities studied were also carefully chosen.
Efforts should thus be devoted to obtain a suitable form of the
plant response by any means including relocating transducers,
mechanical redesigns of the physical system, applying passive
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damping treatments, etc. As such and also discussed in [27],
practical (active noise) control is in general an engineering task
involving knowledge and experience of many other disciplines
specific to each application (e.g., headphones, compressors,
vehicles, etc.) as well as basic control theory. The paper presented
here has demonstrated with case studies that the simple
data-based loop shaping technique based on visual inspection is
a practical tool in this endeavor.

6. Conclusions

The two cases studied are narrowband noise control in a small
cavity and broadband noise control in a long duct. A simple loop
shaping technique has been applied to design the control filter of
second order for each case. It is a data-based technique that uses
the measured plant response for loop shaping. The parameters of
each control filter have been tuned in a graphical way under a
well-known design framework based on Nyquist robustness crite-
rion. The room for uncertainty has been additionally inspected to
ensure the robustness to immeasurable uncertainty. A discernable
aspect of the design process conducted in this paper is that the
fixed-structure (i.e., the order and the type) of each control filter
has been rather logically determined than a wild guess, solely
based on the Nyquist plot of each plant measured. Some rules
and guidelines have also been provided to facilitate the said selec-
tion as well as the subsequent tuning process of the control filter.
Finally, it has been demonstrated with experiments that the tech-
nique is practical and a second order filter can be effectively used
for active control of cavity noise in a single narrow or broad fre-
quency band.
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