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characteristics of the Newton-Raphson Current Injection method. The methods used for solving the
power flow problem are based on current injection equations written in polar coordinates. Several tests
are presented to clarify the reasons of non-convergence and to provide a broad and fair comparison and
evaluation of the performance of the PV bus representation schemes. Performance analyzes were con-
ducted for 57-, 118- and 300-bus IEEE test systems and for two realistic Brazilian systems of 638 and
787 buses, corresponding to parts of the South-Southeast Brazilian system. Several R/X transmission line
ratios and loading conditions were considered. The simulation results show that the proposed PV bus rep-
resentation improves the convergence characteristics of the method.
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1. Introduction

The power flow tool is extensively applied in power systems
planning and operation analyzes. It is also used to provide the ini-
tial conditions for several studies such as short-circuit, angle and
voltage stability [1-3], among others. In real time operation, it is
used for simulating transmission line contingencies and loading
margin determination, requiring high computational processing
time. Thus, there is a continuing search for methods that exhibit
faster convergence and are also more robust and reliable.

Among the various numerical methods used for solving the
power flow problem, Newton-Raphson iterative method is the
most widely used, since it is more reliable and the number of iter-
ations required for convergence is independent of the power sys-
tem size. Both current and power injection power flow
formulations can be written with voltages and admittances in
either polar or rectangular coordinates. In some cases, hybrid for-
mulations can also be used [3].

Considering the incorporation of FACTS devices and control
strategies, current injection methods have been proposed in
rectangular [4] and in polar [5] forms. Hybrids of current and
power injection methods have also been proposed [6-9]. The use
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of rectangular coordinates results in a reduction of the effort to
compute the Jacobian terms, since most of them remain constant
during the iterative process. On the other hand, the use of polar
coordinates leads to a smaller number of equations [10]. An aug-
mented rectangular model in which bus voltages and current injec-
tions are retained in the state vector is presented in [11]. This
approach shows to be advantageous when many zero-injection
buses are present. In most of the current injection formulations,
the appropriate representation of PV buses has been the main con-
cern. Differently from PQ buses, for which the real and imaginary
current mismatches are known, the reactive power mismatch AQ
of a PV bus is unknown. Therefore, an additional equation for each
PV bus is introduced in the rectangular formulation. The use of cur-
rent injection mismatches with reactive mismatch AQ as a depen-
dent variable, together with a voltage magnitude constraint
equation, both written in rectangular coordinates are proposed in
[4,12,13]. In [6] a hybrid formulation of current injection method
written in polar coordinates, using a dependent variable AQ for
each PV bus associated to an active power mismatch equation is
proposed. A hybrid power flow method with PV buses represented
by equations of active power mismatches using angle deviation as
variable and PQ buses represented by equations of current injec-
tion written in rectangular coordinates are presented in [7,14,15].
A simplified Newton Raphson power flow solution method that
uses nonlinear current mismatch equations written in polar coor-
dinates is presented in [5]. A comparison is done with the power
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flow method using power mismatches also written in polar coordi-
nates. The generated reactive powers of PV buses are recalculated
alternately in the iterative process, i.e., during the iteration process
the generated reactive power is kept unchanged, being recalcu-
lated before the next one.

The objective of this paper is to present a new formulation for
representing PV buses to improve the convergence characteristics
of the current injection models used in power flow analysis of elec-
tric power systems. The new formulation does not result in Jaco-
bian matrix structure and size changes, leading only to little
numerical differences in its elements. The performance of the pro-
posed method is assessed by numerical simulations conducted for
the 57-, 118- and 300-bus IEEE test systems and for two realistic
Brazilian systems of 638 and 787 buses, corresponding to parts
of the South-Southeast Brazilian system. The performance assess-
ment is carried out considering different R/X transmission line
ratios and loading conditions. The voltage magnitudes of the criti-
cal bus obtained by each method are plotted as P-V curves to con-
firm that the converged state obtained by all methods is the same.
The P-V curves are also used to clarify why the methods do not
converge for specific R/X transmission line ratios and loading con-
ditions. The results obtained with the new representation of PV
buses show that the convergence characteristics can be improved.

2. Power flow in polar coordinates

The objective of this section is to describe the power and cur-
rent injection models used for the power flow analysis of electric
power systems. In order to highlight their convergence character-
istics and provide a fair comparison of the two models through
simulations, full polar coordinates are used for both, i.e., current
injections, bus voltages, injected powers and nodal admittance
matrix elements are represented in polar coordinates.

2.1. Newton Raphson power flow - formulation based on power
injection

In the standard power flow (SPF) formulation based on power
injection, the active (AP(0,|V])) and reactive (AQ(6,|V|)) power
mismatch equations at bus k take the following form [3],[16]:

AP (0, |V|) = PP — P(0,|V]) =0
4Q(8.[V]) = Q¥ — Qi(6,|V[) =0
where |V| and 0 are the vectors of the nodal voltage magnitudes and

phase angles respectively. The specified active and reactive powers
are given by:

P _ pSp p _ |CSP
Pic - Pfgen,k - Pioud,k - |Sk |COS(§Dk)

QY = Qgenk — Qloa = IS¢ Isin(¢y)

(1)

(2)

where |S’| and ¢, are the magnitude and angle of the net specified
complex power injected at bus k respectively, Py, and Py, are,
respectively, the specified real power generated and consumed for
the load (PQ) and generation (PV) buses, and Q;” ,, is the consumed
reactive power specified for the PQ buses. In general, the generated
reactive power Qg for a PQ bus is equal to zero or it has a fixed
value. However, it is not known a priori for a PV bus, and its value
is obtained after the convergence of (1). It may take any value
within its maximum (Qge;) and minimum (Qgr,) limits. The
respective balance equation is not included in (1). On the other
hand, if one of its limits is reached, the generated reactive power
is fixed at the corresponding value and its balance equation is
now included in (1) with Q;” given as in (2). The transmitted active
Pi(0,]V|) and reactive Qi(0,|V|) powers, considering bus voltages (V.

and V;) and line admittances (Yj;) written in polar form, are calcu-
lated by [3]:

Pe(8, [V]) = [Vl | Yiil[Vi] cos(dp; — O1i)
ik (3)
Q(0, [V]) = —|Vi] > _[Yil Vil sin(dy; — 0k)

iek

where K is the set of buses directly connected to bus k plus bus k
itself, |Vi|, |Vil, Ok, and 6; are the voltage magnitudes and angles at
buses k and i, |Yy| and ¢; are the magnitude and angle of element
(k,1i) of the nodal admittance matrix Y, and 0,; = 0, — 0; is the voltage
phase angle difference between the buses k and i. In a n-bus system
with one slack bus, npq load buses (PQ buses) and npv generator
buses (PV buses), there will be (2npq + npv) power mismatch equa-
tions, being (npv + npq) corresponding to active power mismatches
and npq corresponding to reactive power mismatches. In this case,
the Taylor's series expansion of (1), neglecting the higher order
terms, yields:

o] =~ i = [ Fe] v

where A|V| and A0 are, respectively, the vectors of the nodal volt-
age magnitude and phase angle corrections. The order of the Jaco-
bian matrix is (2npq + npv) by (2npq + npv). The elements of the
sub-matrices that compose the Jacobian (J), H=0P(0,|V|)/d0,
N =0P(0,|V|)/o|V], M =0Q(6,|V|)/00 and L =20Q(0,|V|)/d|V| are given
by:

Submatrix H:

H(k7 l) = —|Vi||Vil|Yil Sil‘l(d)k,- — Oki) for k#i (5)

H(k, k) = —Qi — [Vil*[ Vi S0 () (6)
Submatrix N:

N(k,i) = |Vi||Yi| cos(dy; — 0ki)  for k#i (7)

N(k, k) = (P + |Vi*|Yi| Sin(dbyee)) /| Vi (8)
Submatrix M:

Mk, i) = =|Vi||Vil|Yii| coS(dy — Oxi) for k=#i 9)

M(k, k) = P — [Vi[*Yiu| cOS (i) (10)
Submatrix L:

L(k,i) = —|Vi||Vi||Y il sin(dy; — 0y)  for k##i 11)

L(k, k) = (Qi — [Vi]* Y Sin(it)) /| Vi] (12)

For chosen initial values of 8 and |V|, the mismatches are com-
puted by (1). If their maximum absolute value is smaller than an
adopted tolerance the solution was obtained. Otherwise, solve (4)
to obtain the correction vectors (A8 and A|V|) and update their val-
ues as follows:

07" = 0" + AB”

i (13)
V" = V" + AIV|

where v is an iteration counter.
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2.2. Newton Raphson power flow - formulation based on current
injection

In the power flow formulation based on current injection with
balance equations written in polar coordinates, hereafter referred
to as current injection power flow (CIPF), the complex current mis-
match at a given bus k is given by [5,15]:

AFy(0,V]) = ( ) Xvvi=o0 (14)

whose real (AGy(0,|V])) and imaginary (AHI(0,|V])) components are
given by:

Sy
AG0.VI) = [ oy + 0 ~ S I¥ul |V cos(is+ 0) =0
ick
AHI,(6, [V]) = |‘ || Sin(=@y + 0¢) — > _|Yil|Vi[ sin(¢y; + 6;) = 0
iex
(15)
The Newton Raphson linearized equation can be written as:
AG AO Ji ) AO
] =] = 5 wllaw) a9
AHI AV T 1 L LAV

where the Jacobian matrix (J;) has exactly the same structure of J,
for npq load buses and npv generator buses. Submatrices J; -
= —0AG(0,|V])/26, J2 = —0AG(6,|V|)/3|V], J3 = —0AHI(0,|V])/06 and ], -

= —dAHI(0,|V|)/0|V|, which are obtained similarly to the SPF, are
given by:
Submatrix J:
Ji(k,i) = —|Vil[Yi| sin(dy; + 6;) for k=i (17)
. IS¢
J1(k, k) = = |Vie|[Y | SIn( by + Ok) + IV_\ sin(—q; + 6k) (18)
Submatrix J5:

Jo (ki) = |Yii| cos(¢y; + 6;)  for k=i (19)
Jo(k.K) = [Yia] cOS(ye + 00) + 1 , cos(—gy 09 (20)
Vi

Submatrix Js:
Js(k,i) = |Vi||Yii| cos(dy; + 0;) for k=i 21
IS¢
Js(k. k) = |Vi|[Yie| cOs (g + k) — |v<, | (=@ + 61) (22)
K
Submatrix J4:
Ja(k,i) = |Yi| sin(dy; + 6;)  for k=i (23)
Ja(k,k) = |Yie| sin(dp + k) + B¢l Sin(—@; + ) (24)

Vil

In this formulation, as in the standard method, while the gener-
ated reactive power of a PV bus k lies within the maximum and
minimum limits, the respective balance equation is not included
in (15) and the total number of equations is the same as in (1).
On the other hand, differently from the standard method, the value
of Qgeny affects the values of the correction vectors once it explic-
itly appear in AG,, as well as in the respective elements of J; and
J2. This can be verified from the magnitude |S”| and angle ¢ of
the net specified complex power injection specified at bus k and
present in the second element of the left hand side of (18) and
(20). The appropriate representation of a PV bus in the current
injection formulations has been addressed by several references,

with the objective of improving the performance of the Newton
current injection power flow. In [5] Qgenk is taken into account
through an alternate adjustment. This adjustment is performed
alternately with the solution iterative process [16]. During the iter-
ative process Qgenx is kept unchanged, being recalculated before
the next iteration by:

Qen(0. V) = Qiguae |Vk‘Z|Yk1HV [ sin(dy; — Oki) (25)

iex

Note that obtaining Qg requires no extra calculation effort,
since this is already made when limit violations are checked. In
[12] the unknown reactive power mismatch is treated as a depen-
dent variable and an additional linearized equality constraint is
introduced, imposing that AV, =0 from the first iteration. Due to
convergence difficulties presented by the method because of the
assumption of zero voltage mismatch, a new formulation has been
proposed in [13]. The revised representation presented in [11]
requires three equations for each PV bus. In [7], an equation of
power injection mismatch is used to represent PV buses, improving
the convergence characteristics and decreasing the number of
equations to only one.

An approach, hereafter named as current injection power flow
considering Qg as variable (CIPFQ), considers the reactive power
generated as a new variable (Qgy) [6,12]. As the voltage magnitude
of a PV bus k is known and does not appear in the unknown 0 and
V, its respective equation can be included in (15) and used to
obtain its generated reactive power. In other words, it uses the
simultaneous adjustment consisting on the inclusion of the equa-
tions and the new variables in the basic power flow problem
[16]. In this augmented formulation, for each generation bus k
(PV) the imaginary component of the complex current mismatch
(AHI(6,|V])) is considered in (15) and the linearization of (15)
yields:

\C A® b L1l A
||~ | 8w —L’ ; J?] AN (26)
AQ,(; 3 4 4 3AQG

Note that in J, and J4, the elements corresponding to the respec-
tive derivatives with respect to voltages magnitudes of PV buses do
not appear, since they are specified. In J', and J'4 all elements are
zero except those corresponding to PV bus k. In case bus k is PV,
the respective values are given by:

Jo(k k) = —sin(6;)/|Vi] (27)

Ja(k k) = cos(6r)/|Vi] (28)

Differently from Jacobian matrices J and J, for npq load buses
and npv generator buses the order of the matrix J; is (2npq
+2npv) by (2npq +2npv). In CIPFQ, as well as in [6,12,13], the
matrix dimension increased with the number of PV buses involved.
Note that this formulation is somewhat different from that pre-
sented in [4,12,13], which uses current injection mismatches with
reactive mismatch AQ as a dependent variable, together with a
voltage magnitude constraint equation both written in rectangular
coordinates. It is also different from the hybrid formulation of cur-
rent injection method written in polar coordinates presented in [6],
which uses a dependent variable AQ for each PV bus associated to
an active power mismatch equation.

In the new alternative formulation proposed in this paper,
named as modified current injection power flow (MCIPF), Qg is
a function of the state variables 0 and |V|. Hence, the elements of
submatrices J; and J,, given by (17)(20), are now obtained as
follows:
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Submatrix J:

Ji(k, i) = =|Vil| Yyl sin(dy; 4 6;) + [Vi]|Yii] cOS(dy; + 0; — )

x sin(6y) (29)
. ISE1
Ji(k, k) = —|Vi||Y | sin(dyy + 0k) + Vel sin(—q,, + 6x)
(Psgn - Psga <) :
- [% — Vil |Yia| cOS (i) | sin(0r) (30)
Submatrix Jj:
Jo(k, 1) = Y| cOS(by; + ;) + | Yiil sin(dy; + 0; — 0x) sin(6y) (31)
SP
Ja(k, k) = [ Y| COS(dye + Bk) + | 55| cOS(— @ + 1)
k
Q enk — nga . .
- [(gkw;z’“) — | Vil sin(dy | sin(6y) (32)
k

Note that in J,, the diagonal elements J,(k, k) corresponding to
the respective derivatives with respect to voltages magnitudes of
PV buses do not appear, since their voltage magnitudes are speci-
fied. Likewise, even though the elements of J;3 and J, are also influ-
enced by the unknown generated reactive power, their respective
equations (AHI(0,|V|) are not enforced in the polar coordinates.
So, the elements of submatrices J3 and J4 do not change, since they
correspond to derivatives of equations related to PQ buses. The
advantage of this formulation is that the structure and size of the
Jacobian matrix remain the same as in (16), except the elements
corresponding to the PV buses, which have their values changed
in submatrices J; and J,. This is shown by the new elements of
the left hand sides of (29)(32), which correspond to the partial
derivatives of AG(0,|V]) with respect to 6 and V taking into
account that Qg (0,V) as defined in (25) is present in the magni-
tude |S;’| and angle ¢, of the net specified complex power injection
specified at bus k. In the case of the standard method, the new rep-
resentation of PV buses adds one term for (29) and (31), and two
terms in (30). On the other hand, as will be confirmed by the sim-
ulations, the convergence of the iterative process is also improved,
since the elements of sub-matrices J; and J, are more accurately
calculated, as they now take into account the influence of gener-
ated reactive power variation when obtaining the correction vec-
tors (A® and A|V|). Furthermore, as discussed in [15], the
performance of Newton’s method is closely associated with the
degree of nonlinearity of the power flow equations. The more lin-
ear it is, the better the performance. Comparing Eqgs. (1) and (14),
one can see that, unlike (1), Eq. (14) has only one term (|S;P|/|V|)
on the right-hand sides that is not linear in |V,|. Besides, each
off-diagonal element of the power flow formulation based on cur-
rent injection requires one less multiplication than the standard
power flow (SPF), and then a smaller numbers of FLOPs (floating-
point operations) [5], as will be confirmed in the next section.

3. Test results

The effectiveness of the proposed methodology is demonstrated
through numerical tests that were conducted for the 57-, 118- and
300-bus IEEE test systems and for two realistic Brazilian systems of
638 and 787 buses, corresponding to parts of the South-Southeast
Brazilian system. For all methods the maximum absolute value of
the power mismatch vector R=[APT AQ"|" (||R|].. = max{|Ri]}) is
adopted as the convergence criterion. The convergence tolerance
adopted was 107° p.u. Reactive power generation limits at PV
buses are enforced in all methods.

For all tests, the iterative power flow process starts from the
respective power system data files and the total mismatch is used
to illustrate the iterative process convergence. This mismatch is
defined as the sum of the absolute values of the real and reactive
power mismatches. In order to highlight the convergence difficul-
ties of the Newton-Raphson method, a maximum of 40 iterations
was adopted in the simulations. The performance assessment is
carried out considering different R/X transmission line ratios and
loading conditions. For the R/X ratio tests, parameters R and X of
all branches varied according to the multipliers shown in the first
columns of the respective tables. For the loading tests, the real and
reactive loads and real power generations varied according to the
multipliers (loading factor, ) shown in the first columns of the
respective tables.

3.1. Performance of the methods for the IEEE test systems

Tables 1 and 2 show the numbers of iterations of the methods
for the 57- and 118-bus IEEE test systems, considering different
R/X ratios. For both systems, all methods present a low number
of iterations, except for CIFP, that shows a significant increase in
the number of iterations required for the 118-bus system. The
weak performance in this case is due to the presence of a larger
number of PV buses. Note for both systems that the methods do
not converge for R multipliers equal to or greater than four.

Fig. 1(a) depicts the trajectories of total power mismatches for
the 3 x R/1 x X condition of the 118-bus system. CIPF needs 18
iterations to obtain the solution, whereas the other methods
require only five iterations for convergence. From the analysis of
total mismatch evolution one can see that a slight oscillatory
behavior occurs at the second iteration, whose value decreases
slowly in the next iterations.

Fig. 1(b) and (c) shows the converged states (0,|V|) obtained by
the methods, for the IEEE 118-bus system. At the end of the itera-
tive process, all methods converge to the same solution.

Tables 3 and 4 present the numbers of iterations needed by the
methods to obtain the solution starting from the state from the
data file and considering different loading conditions and a fixed
R/X ratio of 1 x R/1 x X. The loading values presented in the first
column of Tables 3 and 4 were set from the knowledge of the max-
imum loading value (A.x) of each system, 1.5972 and 1.8664 p.u.
for the 57-bus and 118-bus systems, respectively. The maximum
loading values and the P-V curves were previously obtained using
the continuation power flow presented in [17]. Loads are modeled

Table 1

IEEE 57-bus system: Performance for different R/X ratios.
R/X ratios SPF CIPF CIPFQ MCIPF
1.0 x R/0.5 x X 4 4 3 3
1.0 x R/1.0 x X 4 5 4 4
20xR/1.0x X 5 6 4 4
3.0xR/1.0x X 8 8 5 5
4.0 x R/1.0 x X NC NC NC NC

NC- no convergence or divergence for a maximum iteration number of 40.

Table 2

IEEE 118-bus system: Performance for different R/X ratios.
R/X ratios SPF CIPF CIPFQ MCIPF
1.0 x R/0.5 x X 5 8 5 5
1.0 x R/1.0 x X 5 7 5 5
20 x R/1.0 x X 5 10 5 5
3.0xR/1.0x X 5 18 5 5
4.0 x R/1.0 x X NC NC NC NC
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Fig. 1. [EEE 118-bus system: (a) evolution of total mismatches of each one of the
methods, (b) voltage and (c) angle profiles, for the 3 x R/1 x X ratio.

Table 3
IEEE 57-bus system: Performance for different loading conditions.
X (p-u.) SPF CIPF CIPFQ MCIPF
1.0 4 5 4 4
14 5 5 4 4
1.5 5 6 4 4
1.58 6 5 5 5
1.596 8 7 7 7
1.6 NC NC NC NC
Table 4
IEEE 118-bus system: Performance for different loading conditions.
A (p.u.) SPF CIPF CIPFQ MCIPF
1.0 5 7 5 5
14 5 11 5 5
1.7 6 17 6 6
1.86 8 NC 8 9
1.865 9 NC 9 10
1.9 NC NC NC NC
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as constant power and loading factor A is applied to the real and
reactive loads, considering a constant power factor [1,2]. The load-
ing factor is also used to provide an equivalent increase in active
power generation. The voltage magnitudes of the critical bus
obtained by each method are plotted on the respective P-V curves,
to confirm that the converged state obtained by all methods is the
same, as shown in Fig. 2(a) and (b).

Table 2 shows that all methods presented similar performances,
including an expected increase in the number of iterations as the
system approaches the maximum loading point. In spite of the sin-
gularities of Jacobian matrices at the maximum loading point
(Amax), Operating points very close to it can be obtained starting
from the system data file condition showing the robustness of
the methods. Table 3 shows that similar performances are pre-
sented by the methods for the 118-bus system, except CIPF [5],
that fails for values of A larger or equal to 1.7 p.u. As expected,
all of them fail to loadings slightly higher than Apax.

Table 5 shows the performance of the IEEE 300-bus system for
different R/X factors. All methods present similar performance,
failing to converge for multiplier R equal to or greater than
1.473. Note that CIPF requires more iterations than the other meth-
ods. The trajectories of total power mismatches for R/X condition
of 1.472 x R/1 x X, for which there is convergence, is shown in
Fig. 3(a). Fig. 3(b) shows the P-V curve, from which it can be clearly
seen that the new corresponding maximum loading value is equal
to 1.0 p.u. and this is the main reason why the methods do not
converge.

The performances for different loading conditions are presented
in Table 6. The maximum loading point for this system
(Amax = 1.0553 p.u.) was obtained by a continuation power flow.
Thus, the methods do not converge to slightly higher values than

7\'l'l'lﬂX'
3.2. Performance of the methods for the realistic Brazilian systems

Tables 7-10 show simulation results for two realistic large sys-
tems corresponding to parts of the south-southeast Brazilian sys-
tem, respectively 638-bus, 1276-branch and 787-bus, 1395-
branch systems. Tables 7 and 8 show the effect of R/X ratio
changes, while Tables 9 and 10 of the loading factor increments.
These systems are heavily loaded, particularly the 638-bus, which
represents a very stressed operating condition, i.e., its maximum
loading point is very close to the base case. The respective exact
maximum loadings of these systems are a little bit larger than
1.0087 and 1.1273 p.u. While the methods require a reasonable
number of iterations to converge, CIPF presents a larger number
of iterations, not converging for most cases analyzed.

Fig. 4(a) and (b) shows the evolution of the total mismatches for
the base case (A =1.0 p.u. and 1.0 x R/1.0 x X) for the 638- and
787-bus systems, respectively. The methods show the same con-
vergence characteristics, except CIPF. There is a great reduction
in the total mismatch magnitudes in the first iterations, regardless
of the system’ size, a fact already expected for the Newton-
Raphson’s method.

Fig. 4(c) shows the P-V curve for the critical bus of the 638-bus
system for 1.098 x R/1.0 x X, from which the respective maximum
loading is equal to 1.0 p.u. Therefore, this is the maximum multi-
plier that results in a feasible solution for the load flow problem.

Table 11 shows the CPU times for the methods, except CIPF, for
the most critical condition of ratio R/X and loading condition. For
cases where the numbers of iterations for convergence differ, the
calculation of the normalized CPU time considered the smallest
number of iterations for all three methods. Their values were nor-
malized by the respective CPU times of the SPF method (third col-
umn). Compared to SPF, MCIPF results in an average CPU time
reduction of 2%, while CIPFQ results in an increase of 2%.
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Table 5 Table 6
IEEE 300-bus system: Performance or different R/X ratios. IEEE 300-bus system: Performance for different loading conditions.
R/X ratio SPF CIPF CIPFQ MCIPF A (p.u.) SPF CIPF CIPFQ MCIPF
1.0 x R/0.5 x X 5 7 6 6 1.0 4 10 4 4
1.0 x R/1.0 x X 4 10 4 4 1.02 5 10 5 5
1.2 x R/1.0 x X 5 10 5 5 1.04 5 9 5 5
1.4 x R/1.0 x X 6 11 5 5 1.05 6 10 6 6
1.47 x R/1.0 x X 7 13 7 7 1.055 7 10 7 7
1.472 x R[/1.0 x X 8 13 8 8 1.056 NC NC NC NC
1473 x R/1.0 x X NC NC NC NC
200F r r v 3
r O - SPF o - CIPF
180 X - CIPFQ o - MCIPF 1 Table 7 ) )
IEEE 638-bus system: Performance for different R/X ratios.
- 160| 1
:; R/X ratio SPF CIPF CIPFQ MCIPF
8 140f ; 1.0 x R/05 x X 5 10 4 5
1.0 x R/1.0 x X 5 NC 4 4
§ 120F 1 1.08 x R/1.0 x X 6 NC 5 5
T 100k ] 1.095 x R/1.0 x X 7 NC 6 6
ﬁ 1.098 x R/1.0 x X 9 NC 8 8
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Iteration number 1.0 xR/1.0x X 3 14 3 3
20xR/1.0x X 4 NC 4 4
~ 11 2.4 x R/1.0 x X 5 NC 5 5
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& 0.9 ] 2485 x R/1.0 x X 8 NC 8 8
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Fig. 3. IEEE 300-bus system for 1.472 x R/1 x X: (a) evolution of total mismatches

and (b) P-V curve of critical bus.




C.C. Oliveira et al./Electrical Power and Energy Systems 90 (2017) 237-244

243

Table 11
Performance of the methods - Normalized CPU times.

Table 10
IEEE 787-bus system: Performance for different loading conditions.
A (p.u) SPF CIPF CIPFQ MCIPF
1.0 3 14 3 3
1.08 4 36 4 4
1.10 5 NC 5 5
1.1273 8 NC 8 8
1.1274 NC NC NC NC
~ 3000 O- SPF o - CIPF
9- X - CIPFQ e - MCIPF
2 2500
g
ﬁ 2000
& (a)
2 1500 1
&
-
o 1000
2
0
B soo}
of. P - s - Ts— | 1] ]
0 1 2 3 4 5 6
Iteration number
10004
900 H:
~ soof}
2 700
2 H
~ 600f : 4
"5 500 ::. 4 (b)
H H
ﬁ 400F
-4 300F
€
~ 200
o
)
0
E wun e - - - - e wnnf) Xl s TLLY -
0 5 10 15
Iteration number
~ 1.1
7
&
0.9
9
3 0.8
i}
S 0.7F (C)
g
g 0.6
& o.s}
3
~ 0.4
S
0.3}

0.840.860.88 0.9 0.920.940.960.98 1
Loading factor, A (p.u.)

Fig. 4. Evolution of the total mismatches for the base case for (a) 638-bus system
and (b) 787-bus system, and (c) P-V curve for the critical bus of the 638-bus system
for 1.098 x R/1.0 x X.

Table 12 presents a comparison between the FLOPs per iteration
required by MCIPF and SPF. It can be seen from table that the pro-
posed method requires a slightly smaller number of FLOPs than
SPF. It is important to note that this feature is still maintained, even
when the long sums of diagonal submatrix elements of SPF are

System  Loading Normalized CPU time (p.u.)  CPU Ratio (%)
Condition SPF MCIPF  CIPFQ  MCIPF  CIPFQ
300 1.055 1.0000 0.9783 1.0249 -2.17 2.49
638 1.0087 1.0000 09726 1.0190 -2.74 1.90
787 1.1273 1.0000 09784 1.0221 -2.16 2.21
R/X ratio condition
300 1472 x R/1.0 x X 1.0000 0.9811 14920 -1.90 1.49
638 1.098 x R/1.0 x X  1.0000 0.9722 1.0074 -2.78 0.74
787 2485 x R/1.0x X  1.0000 09814 1.0312 -1.87 3.12
Table 12
Number of FLOPs per iteration.
nPVv System SPF MCIPF
68 300 225,019 208,949
97 638 660,738 634,308
111 787 751,586 708,475

avoided and the new elements of the left hand sides of (29)(32)
take into account the dependence of Qqep With the state variables
0 and |V|.

4. Conclusion

In this work the influence of three ways of treating generation
(PV) buses are compared as far as the convergence characteristics
of Newton-Raphson method for solving the power flow problem
based in current injections considering polar coordinates. A com-
parison between power injection and current injection-based for-
mulation in terms of polar coordinates is also shown.

The performance analyzes are carried out for the 57-, 118- and
300-bus IEEE test systems as well as two versions of the Brazilian
interconnected system, with 638 and 787 buses. Different R/X
ratios and loading conditions were taken into account. The results
obtained with the proposed formulation showed that it is possible
to improve the convergence characteristics of the current injection
power flow model proposed in [5] in terms of number of iterations
and CPU time. The convergence of the proposed process is
improved since the elements of sub-matrices J; and J, are more
accurately calculated, as they now take into account the influence
of generated reactive power variation when obtaining the correc-
tion vectors (A6 and A|V|). When compared to the conventional
power injection method considering polar coordinates, this simple
change in the calculation of the derivatives increases the efficiency
of the proposed technique and proves that it is possible to obtain a
reduction in computational time of current injection method writ-
ten in polar coordinates, without loss of robustness.
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Appendix A

For a PV bus, the elements of the MCIPF submatrices J; and J,
are obtained as follows.
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A.1. Elements of submatrix J;

The real component (AGy(6,|V])) in (15) can be written as

PSP Qgen.k( ‘VD
|V\ cos(6) + 1A

— Gkk|Vk| COS(ek) + Bkk|vk‘ sin(@k)
= > _IYul[Vi| cos(dy +6:) =0,

icQy

AG(6, |V]) = o sin(6y)

where € is the set of buses directly connected to bus k and Qg is
given by (25). The derivatives of AG, with respect to 6; can be
expressed as

Ji(k, i) = —0AGy/06;

. Sln 0
— Vil|Ya] sin(y + 07) — S0

|V | 8Qgenk(
= —|Vil[Yii| sin(dy; + 0:) + |Vil| Yy cOS(dy +

:[V])/06;
0; — 0x) sin(0y),

while the derivatives of AG, with respect to 0, can be expressed as
J1(k, k) = —OAGy /06

—PPsi P .
_ R Sm(ek‘)v*HQk €0SO) _ 1y, 1(Gue sin(6) + Bec
x sin(6y)) — S'Rﬁ")anenk(ﬁ IV[)/ 0.

The derivatives of Qg with respect to 6y is given by
OQgenie(8, [V]) /00 = [Vil| > |Vl Vi cOS (g — Ok + )
ieQy
= Pu(0, [V]) — [Vi[*| Y| COS (-

By plugging the equation above into the expression of J;(k,k)
one gets

Ji(k, k) = —|Vi||Y | sin(dyy + Ok) + m sin(—y + 0y)
(nger k Pzgr a ) .
— | S VY] cOS () | SIN(B),

Vil
where P(0,|V]) is assumed equal to P}
A.2. Elements of submatrix J»

The derivatives of AG, with respect to V; can be expressed as
I (k,i) = —0AG,/dV;

S““‘,(ﬂ") 0Qgen (0, V])/0V;

= |Yyi| coS(dyi 4 0i) + Y| SIN(Py; + 0; — O ) sin(6y).

= |Yii| cos(dy; + 6;) —

while the derivatives of AG, with respect to V can be expressed as

J,(k, k) = —9AGy/V
P SP oy
- c05(9k|)V+|2 i SIn) + (G €S (k) — By Sin(6y))
k
0,
— IO 90 (0. V1) Vs

Vil

The derivatives of Qg With respect to Vj is given by

9Qgenk(8,[V])/0IVi| = = DIVl |Vi| sin(dy; — O

ieQy

= 2|V ||| Sin(y)

+6;)

= Qi(0, [V))/IViel = IVl Yiae| SIn (i)
By plugging the equation above into the expression of J5(k,k)

one gets

Jo(k, k) = —0AG, OV
SP
= | Y| cOS(dpse + Ok) + V—"z cos(— @, + O)
k
(Q er . Qcar a. ) . .
- % — Y sin(¢y) | sin(6y).

where Qi(0,|V]) is assumed equal to
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