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a b s t r a c t

A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are
±ωi ̸= 0 and 0. In general for a such equilibrium there is no theory for knowing
when it bifurcates some small-amplitude limit cycles moving the parameters of the
system. Here we study the zero-Hopf bifurcation using the averaging theory. We
apply this theory to a Chua system depending on 6 parameters, but the way followed
for studying the zero-Hopf bifurcation can be applied to any other differential system
in dimension 3 or higher.

In this paper first we show that there are three 4-parameter families of Chua
systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory,
we provide sufficient conditions for the bifurcation of limit cycles from these families
of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates,
and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate
simultaneously.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

The Chua system is a classical model for electronic circuit and one of the most simplest models presenting
chaos. It was presented by Chua, Komuro and Matsumoto [1] in 1986 and exhibits a rich range of dynamical
behavior. There are several different models of Chua’s systems see for instance [2–6].

The Chua circuit considered in [1] is a relaxation oscillator with a cubic nonlinear characteristic. It can
be thought as a circuit comprising a harmonic oscillator for which the operation is based on a field-effect
transistor, coupled to a relaxation oscillator composed of a tunnel diode. The Chua system can be described
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by the following equations

dx

dt
= a(z − bx− a2x

2 − a1x
3),

dy

dt
= −z,

dz

dt
= −b1x+ y + b2z.

(1)

Note that it depends on six parameters a, a1, a2, b, b1 and b2.
In [7] the authors analyze the existence of local and global analytic first integrals in the Chua system.

In [8] the authors use techniques of Differential Geometry in order to obtain an analytical expression of
the slow manifold equation of Chua system. In [9] was studied the dynamics at infinity of the Chua system
for the particular case where b1 and b2 are both one. Besides, we can find some aspects about the Hopf
bifurcation in [10,11]. In this paper, by using averaging theory, we study the limit cycles that can bifurcate
from zero-Hopf equilibrium points of the Chua system (1). We note that at these points for our system (1)
we can apply neither the classical Hopf bifurcation theory which needs that the real eigenvalue be non-zero,
nor the standard theory developed up to now for some special cases of zero-Hopf equilibrium points as the
ones analyzed in the papers [12–15]. A possible approach for studying the zero-Hopf equilibrium is to pass
to normal form, but this needs some work. Here we shall show how to study zero-Hopf bifurcations directly
without needing to pass to normal form. Other authors also have studied the zero-Hopf bifurcation in other
Chua systems different from the Chua system here analyzed, see for instance the articles [11,10,16] where
ẏ = x− y − z, among other differences with the system (1).

The Chua system (1) can have at most three equilibria, namely: the origin and the two equilibria

p± =

−a2 ±


a2

2 − 4a1b

2a1
,−a2b1

2a1
± b1


a2

2 − 4a1b

2a1
, 0

,

if a2
2−4a1b > 0 and a1 ̸= 0. When a2

2−4a1b = 0 and a1a2 ̸= 0 the system has only two equilibria, the origin
and the equilibrium

p =

−a2

2a1
,−a2b1

2a1
, 0

.

Otherwise the origin is the unique equilibrium of the system.
As far as we know, the study of existence or non-existence of zero-Hopf equilibria and zero-Hopf bifurcation

in the Chua system has not been considered in the literature. In this paper we have this objective. The method
used here for studying the zero-Hopf bifurcation can be applied to any differential system in R3.

A zero-Hopf equilibrium is an equilibrium point of a 3-dimensional autonomous differential system which
has a zero eigenvalue and a pair of purely imaginary eigenvalues. In general the zero-Hopf bifurcation is a
2-parameter unfolding of a 3-dimensional autonomous differential system with a zero-Hopf equilibrium. The
unfolding has an isolated equilibrium with a zero eigenvalue and a pair of purely imaginary eigenvalues if the
two parameters take zero values and the unfolding has different dynamics in a small neighborhood of this
isolated equilibrium as the two parameters vary in a small neighborhood of the origin. To read more about
zero-Hopf bifurcation, see Guckenheimer, Han, Holmes, Kuznetsov, Marsden and Scheurle in [17,14,18–20].
Moreover, complex phenomena can occur at an isolated zero-Hopf equilibrium, as bifurcation of complicated
invariant sets of the unfolding and a local birth of “chaos”, as can be seen in the work of Baldomá and Seara,
Broer and Vegter, Champneys and Kirk, Scheurle and Marsden in [21–24,20].

In the next proposition we characterize the Hopf equilibria of the Chua system.
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Proposition 1. There are three 4-parameter families of Chua systems having a zero-Hopf equilibrium point,
one for the equilibrium point located at the origin and the other two for each one of the equilibria p± when
they exist. Namely,

(a) b = b2 = 0 and ab1 + 1 > 0 for the origin; and
(b) b = a2

2/(4a1), b2 = 0, ab1 + 1 > 0, a2
2 − 4a1b > 0 and a1 ̸= 0 for p±.

The next result gives sufficient conditions for the bifurcation of a limit cycle from the origin when it is a
zero-Hopf equilibrium.

Theorem 2. Let

(a, a1, a2, b, b1, b2) =

a0 + εα0, a1 + εα1, a2 + εα2, εβ0,

ω2 − 1
a

+ εβ1, εβ2


.

If a0a2 ̸= 0, |ω| ≠ 0, 1 and

Γ = (a0β0(1− ω2) + β2ω
2)(a0β0ω

2(1− ω2) + β2ω
4) > 0,

then for ε > 0 sufficiently small the Chua system has a zero-Hopf bifurcation at the equilibrium point located
at the origin of coordinates, and a limit cycle appears at this equilibrium when ε = 0. Moreover, this limit
cycle has the same kind of stability or instability than an equilibrium point of a planar differential system
with eigenvalues

−β2ω
5 ±


ω6(β2

2ω
4(3− 2ω2) + 2a2

0β
2
0(ω2 − 1)3)

2ω6(ω2 − 1) . (2)

The following result provides sufficient conditions for the bifurcation of a limit cycle from the equilibrium
p− when it is zero-Hopf equilibrium.

Theorem 3. Consider the vector (a, a1, a2, b, b1, b2) given by

a = a0 + εα0 + ε2ξ0,
a1 = a1 + εα1 + ε2ξ1,
a2 = εα2 + ε2ξ2,

b = a
2
2

4a1
+ ε2ζ0,

b1 = ω
2 − 1
a

+ εβ1 + ε2ζ1,

b2 = ε2ζ2.

(3)

If a1ω ̸= 0 and a1ζ0 < 0 then, for ε > 0 sufficiently small the Chua system has a zero-Hopf bifurcation at
the equilibrium point located at p− and three limit cycles can bifurcate from this equilibrium when ε = 0.
Moreover, examples of systems where 1, 2 or 3limit cycles bifurcate simultaneously are given.

Proposition 1 and Theorems 2 and 3 are proved in Section 3. In particular, both theorems are proved
using the averaging method. This method will be briefly summarized in the next section. We note that
Theorem 2 is proved using averaging theory of first order, but the proof of Theorem 3 needs averaging of
second order.

Also the stability or instability of the bifurcated limit cycles in Theorem 3 can be studied, but the
expressions of the eigenvalues which provide such stability or instability are huge and we do not give them
here.
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Remark 1. For the equilibrium point p+ we have analogous results to the ones of Theorem 3 for p−. For
this reason, we omit the statement of the result for the equilibrium p+ and its proof. This fact is not due to
any symmetry of the Chua system, it is only due to the fact that doing the corresponding computations for
the equilibrium point p+ we obtain the same results than in the equilibrium p−.

2. Limit cycles via averaging theory

The averaging method is a classical tool in nonlinear analysis and dynamical systems. The procedure of
averaging can be found already in the work of Lagrange [25] and Laplace [26] who provided an intuitive
justification of the method. After them, Poincaré considered the determination of periodic solutions by series
expansion with respect to a small parameter, but until around 1930 we see the start of precise statements and
proofs in averaging theory. After this time many new results in the theory of averaging have been obtained.
The main contribution in direction to the formalization of the method started with Appleton and van der
Pol [27] and Fatou [28], and later with the work of Bogoliubov and Krylov [29] and Bogoliubov [30].

Now we present the basic results on the averaging theory of first and second order. The averaging of first
order for studying periodic orbits can be found in [31], see Theorems 11.5 and 11.6. It can be summarized
as follows.

Theorem 4. We consider the following two initial value problems

ẋ = εf(t, x) + ε2g(t, x, ε), x(0) = x0, (4)

and

ẏ = εf0(y), y(0) = x0 (5)

where x, y, x0 ∈ Ω an open subset of Rn, t ∈ [0,∞), ε ∈ (0, ε0], f and g are periodic of period T in the
variable t, and f0(y) is the averaged function of f(t, x) with respect to t, i.e.,

f0(y) = 1
T

 T
0
f(t, y)dt. (6)

Suppose:

(i) f , its Jacobian ∂f
∂x , its Hessian ∂2f

∂x2 , g and its Jacobian ∂g
∂x are defined, continuous and bounded by a

constant independent on ε in [0,∞)× Ω and ε ∈ (0, ε0];
(ii) T is a constant independent of ε; and
(iii) y(t) belongs to Ω on the interval of time [0, 1/ε]. Then the following statements hold.

(a) On the time scale 1/ε we have that x(t)− y(t) = O(ε), as ε→ 0.
(b) If p is a singular point of the averaged system (5) such that the determinant of the Jacobian matrix

∂f0

∂y


y=p

(7)

is not zero, then there exists a limit cycle φ(t, ε) of period T for system (4) which is close to p and
such that φ(0, ε)→ p as ε→ 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the stability or instability of the
singular point p of the averaged system (5). In fact, the singular point p has the stability behavior
of the Poincaré map associated to the limit cycle φ(t, ε).

The next result presents the second order averaging method of a periodic differential system. For a proof
see Theorem 3.5.1 of Sanders and Verhulst in [31], see also [32].
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Theorem 5. We consider the following two initial value problems

ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε), x(0) = x0 (8)

and

ẏ = εf0(y) + ε2(f10(y) + g0(y)), y(0) = x0, (9)

with f, g : [0,∞)× Ω → Rn, R : [0,∞)× Ω × (0, ε0]→ Rn, Ω an open subset of Rn, f, g and R periodic of
period T in the variable t,

f1(t, x) = ∂f
∂x
y1(t, x), where y1(t, x) =

 t
0
f(s, x)ds.

Of course, f0, f10 and g0 denote the averaged functions of f , f1 and g, respectively, defined as in (6).
Suppose:

(i) ∂f/∂x is Lipschitz in x, g and R are Lipschitz in x and all these functions are continuous on their
domain of definition;

(ii) |R(t, x, ε)| is bounded by a constant uniformly in [0, L/ε)× Ω × (0, ε0];
(iii) T is a constant independent of ε; and
(iv) y(t) belongs to Ω on the interval of time [0, 1/ε]. Then the following statements hold.

(a) In the time scale 1/ε we have that x(t) = y(t) + εy1(t, y(t)) + O(ε2).
(b) If f0(y) ≡ 0 and p is a singular point of averaged system (9) such that

∂(f10 + g0)(y)
∂y


y=p

is not zero, then there exists a limit cycle φ(t, ε) of period T for system (8) which is close to p and
such that φ(0, ε)→ p as ε→ 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the stability or instability of the
singular point p of the averaged system (9). In fact, the singular point p has the stability behavior
of the Poincaré map associated to the limit cycle φ(t, ε).

3. Proofs

In this section we give the proofs of the results presented in Section 1.

Proof of Proposition 1. The characteristic polynomial of the linear part of the Chua system at the origin is

p(λ) = −λ3 + (b2 − ab)λ2 + (b2ab− ab1 − 1)λ− ab.

Imposing that p(λ) = −λ(λ2 + ω2), we obtain b = b2 = 0 and b1 = (ω2 − 1)/a. So statement (a) follows.

The characteristic polynomial of the linear part of the Chua system at p− is given by

p(λ) = − (1− b2λ+ λ2)[2a1λ+ a(a2
2 + a2


a2

2 − 4a1b− 4a1b)] + 2a1b1aλ

2a1
.

The proposition follows imposing that p(λ) = −λ(λ2 + ω2), and that the equilibrium point p− exists. �

Proof of Theorem 2. If we consider

(a, a1, a2, b, b1, b2) =

a0 + εα0, a1 + εα1, a2 + εα2, εβ0,

ω2 − 1
a

+ εβ1, εβ2


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with ε > 0 a sufficiently small parameter, then the Chua system becomes

ẋ = (a0 + εα0)(εβ0x+ z − (a2 + εα2)x2 − (a1 + εα1)x3),
ẏ = −z,

ż = −

εβ1 + ω2 − 1

a0 + εα0


x+ y + εβ2z.

(10)

By the rescaling of variables (x, y, z) = (εX, εY, εZ), system (10) becomes

Ẋ = (a0 + εα0)(εβ0X + Z − ε(a2 + εα2)X2 − ε2(a1 + εα1)X3),
Ẏ = −Z,

Ż = −

εβ1 + ω2 − 1

a0 + εα0


X + Y + εβ2Z.

(11)

Now we shall write the linear part at the origin of (11) into its real Jordan normal form0 −ω 0
ω 0 0
0 0 0

 , (12)

when ε = 0. For doing that we do the linear change of variables (X,Y, Z)→ (u, v, w) given by

X = a0(w + ωv)
ω2 ,

Y = w − w
ω2 −

v

ω
,

Z = u.

(13)

In these new variables, system (11) is written as follows

u̇ = −vω + ε−(α0(1− ω2) + a2
0β1)(w + ωv) + a0uβ2ω

2

a0ω2 − ε2α
2
0(ω2 − 1)(w + ωv)

a2
0ω

2 ,

v̇ = uω − ε (ω
2 − 1)(−uα0ω

4 + a2
0(w + ωv)(β0ω

2 + a0a2(w + ωv)))
a0ω5

− ε2 1
ω7 (ω2 − 1)(w + ωv)(α0β0ω

4 + a0(w + ωv)(a2α0ω
2 + a0α2ω

2 + a2
0α1(w + ωv))),

ẇ = −ε−uα0ω
4 + a2

0(w + ωv)(β0ω
2 + a0a2(w + ωv))

a0ω4

− ε2 (w + ωv)(α0β0ω
4 + a0(w + ωv)(a2α0ω

2 + a0α2ω
2))

ω6 .

(14)

Writing the differential system (14) in cylindrical coordinates (r, θ, w) by u = r cos θ, v = r sin θ and
w = w we have

dr

dθ
= ε


rβ2 cos2 θ

ω
− a0(ω2 − 1) sin θ(w + rω sin θ)(a0a2w + β0ω

2

ω6

× +a0a2rw sin θ)
ω6 − cos θ(w(α0 + a2

0β1 − α0ω
2) + rw(a0β1

a0ω3
−2α0(ω2 − 1)) sin θ)

a0ω3


+ O(ε2),

dw

dθ
= εrα0ω

4 cos θ − a2
0(w + rω sin θ)(a0a2w + β0ω

2 + a0a2rω sin θ)
a0ω5 + O(ε2).

(15)

Now we apply the first order averaging theory as described in Theorem 4 of Section 2. In order to do this,
we note that (15) satisfies all the assumptions of Theorem 4, where we identify t = θ, T = 2π, x = (r, w)T ,
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F (θ, r, w) = (F1(θ, r, w), F2(θ, r, w)) and f(r, w) = (f1(r, w), f2(r, w)). In short system (15) is the normal
form of system (1) in order to apply the averaging theory.

By calculating f1 and f2, we get

f1(r, w) = 1
2π

 2π

0
F1(θ, r, w)dθ

= r(β2ω
4 − 2a2

0a2w(ω2 − 1)− a0β0ω
2(ω2 − 1))

2ω5 ,

f2(r, w) = 1
2π

 2π

0
F2(θ, r, w)dθ

= −a0(2wβ0ω
2 + a0a2(2w2 + r2ω2))

2ω5 .

There is only one solution (r∗, w∗) for f1(r, w) = f2(r, w) = 0 satisfying r∗ > 0 and this solution is

r∗ =


Γ

2a4
0a

2
2(ω2 − 1)2 ,

w∗ = a0β0ω
2(1− ω2) + β2ω

4

2a2
0a2(ω2 − 1)

,

since a0a2 ̸= 0, |ω| ≠ 1 and Γ > 0. We recall that Γ is defined in the statement of Theorem 2.

We note that the Jacobian (7) at (r∗, w∗) takes the value

β2
2ω

4 − a2
0β

2
0(ω2 − 1)2

2ω6(ω2 − 1)

and the eigenvalues of the Jacobian matrix

∂(f1, f2)
∂(r, w)


(r,w)=(r∗,w∗)

=


0 − 1√

2ω5


a0(ω2 − 1)Γ

− 1
ω3


a0Γ

2(ω2 − 1)3
β2

ω(1− ω2)


are the ones given in (2).

In short, from Theorem 4 we conclude the proof once we show that periodic solutions corresponding
to (r∗, w∗) provide a periodic solution bifurcating from the origin of coordinates of the differential system
(10) when ε = 0. Theorem 4 guarantees for ε > 0 sufficiently small the existence of a periodic solution
corresponding to the point (r∗, w∗) of the form (r(θ, ε), w(θ, ε)) such that (r(0, ε), w(0, ε))→ (r∗, w∗) when
ε→ 0. So system (14) has a periodic solution

(u(θ, ε) = r(θ, ε) cos θ, v(θ, ε) = r(θ, ε) sin θ, w(θ, ε)) (16)

for ε > 0 sufficiently small. Consequently, from relation (16) through the linear change of variables (13)
system (11) has a periodic solution (X(θ), Y (θ), Z(θ)). Finally, for ε > 0 sufficiently small system (10) has
a periodic solution (x(θ), y(θ), z(θ)) = (εX(θ), εY (θ), εZ(θ)) which tends to the origin of coordinates when
ε → 0. Thus, it is a periodic solution starting at the zero-Hopf equilibrium point located at the origin of
coordinates when ε = 0. This completes the proof of theorem. �

Since the proof of Theorem 3 is very similar to that of Theorem 2, we will omit some steps in order to
avoid some long expressions.
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Proof of Theorem 3. Suppose that we have the conditions given in (3) on the parameters of Chua system
(1). Then, by a translation of the equilibrium point p− at the origin of coordinates, and a rescaling of
variables given by (x, y, z) = (εX, εY, εZ) the Chua system becomes

Ẋ = A1X + (a0 + α0ε+ ε2ξ)Z +A2X
2 +A3X

3,

Ẏ = −Z,
Ż = A4X + Y + ε2ζ2Z,

(17)

where

A1 = ε2(1/2a2
1)(a0)(−4a2

1ζ0 − α1α2ε

−a1ζ0 + 2a1


−a1ζ0(α2 + εξ2) + 2a1α0ε(−2a1ζ0 + α2


−a1ζ0)),

A2 = ε2(1/2a1)(a0(3α1ε

−a1ζ0 + a1(α2 + 6


−a1ζ0 + εξ2)) + a1α0ε(α2 + 6


−a1ζ0)),

A3 = ε2(a1α0ε+ a0(a1 + α1ε)),
A4 = (ω2 − 1)[a3

0 − α3
0ε

3 − a2
0ε(α0 + εξ0 + a0α0ε

2(α0 + 2εξ0))] + a4
0ε(β1 + εζ1).

The linear part of (17) at p− in the real Jordan normal form when ε = 0 is given by (12), and doing also
the linear change of variables (X,Y, Z)→ (u, v, w) given by (13) we write the linear part of system (17) in
its real Jordan normal form when ε = 0, we obtain the system

u̇ = −ωv + ε(B1v +B2w) + ε2ζ2u,

v̇ = ωu+ εα0(ω2 − 1)u
a0ω

+ εω
2 − 1
a0ω

B3,

ẇ = εα0

a0
u+ ε

2

a0
B3,

(18)

where

B1 = −a
3
0(β1 + ζ1)− a0(α0 + εξ0)(ω2 − 1)− εα2

0(ω2 − 1)
a2

0ω
,

B2 = −a
3
0(β1 + ζ1)− a0(α0 + εξ0)(ω2 − 1) + εα2

2(ω2 − 1)
a2

0ω
2 ,

B3 = ξ0u−
a2

0(w + ωv)(2(−2a1ζ0 + α2
√
a1ζ0)ω4 − a0a1(α2

2a1ω6
+6ω2(w + ωv)

√
a1ζ0) + 2a2

0a
2
1(w + ωv)2)

2a1ω6 .

If we write system (18) in cylindrical coordinates (r, θ, w) defined by u = r cos θ, v = r sin θ and w = w,
after we take as new independent variable the angle θ, and we apply to the system dr/dθ and dw/dθ that
we obtain the second order averaging method described in Theorem 5, we get that the function f = (f1, f2)
is identically zero, and that the function g = (g1, g2) is

g1(r, w) = πr4ω


4ζ2 + a0(ω2 − 1)(4a0a1w(α2 + 6

√
−a1ζ0)ω2

a1ω6

+ 4(2a1ζ0 − α2
√
−a1ζ0)ω4 − 3a2

0a
2
1(4w2 + 3r2ω2))

a1ω6


,

g2(r, w) = a0π

2a1ω7


4w(2a1ζ0 − α2


−a1ζ0)ω4 − 2a2

0a
2
1w(2w2 + 3r2ω2)

+ a0a1(α2 + 6

−a1ζ0)ω2(2w2 + r2ω2)


.

In order to find solutions (r∗, w∗) of g = 0 we compute a Gröbner basis {bk(r, w), k = 1, . . . , 20}
in the variables r and w for the set of polynomials {g1(r, w), g2(r, w)} where g1 = 4(a1ω

7/πr)g1 and
g2 = (2a1ω

7/a0π)g2 and then we will look for roots of b1 and b2. It is a known fact that the solutions
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of a Gröbner basis of {g1(r, w), g2(r, w)} are the solutions of g1 = 0 and g2 = 0, consequently solutions of
g1 = 0 and g2 = 0 as well. For more information about Gröbner basis see [33,34].

The Gröbner basis for the polynomials {g1(r, w), g2(r, w)} in the variables r and w is formed by twenty
polynomials. We only use two polynomials of this basis, namely,

G1(r, w) = 30(ω2 − 1)a4
0a

3
1w

3 − 15(ω2 − 1)ω2a2
1a

3
0(α2 + 6


−a1ζ0)w2

+ 2a0a1ω
4(−6a1ζ2ω

2 + a0(α2
2 − 42a1ζ0

+ 15α2

−a1ζ0(ω2 − 1)))w + 2ω6(a1(α2 + 6


−a1ζ0ζ2ω

2)
+ a0(8a1α2ζ0 − α2

2

−a1ζ0 − 12(−a1ζ0)


−a1ζ0(ω2 − 1)))

and

G2(r, w) = a0a1ω
2(6a0a1w − α2ω

2 − 6ω2

−a1ζ0)r2 + 2w(2a2

0a
2
1w

2

− a0a1w(α2 + 6

−a1ζ0)ω2 + 2(−2a1ζ0 + α2


−a1ζ0)ω4).

Since G1(r, w) = G1(w) is a polynomial of degree 3 in the variable w, it is clear that we can have at most
three real solutions for w depending on the parameters of the zero-Hopf family. Replacing these three values
of w in the second polynomial G2 we have six solutions for r of the form ±r∗i for i = 1, 2, 3, because G2(r, w)
is of the form P1(w)r2 + P2(w). However, since r must be positive, we have at most three good solutions
for G1 = 0 and G2 = 0. Consequently, we have at most three good solutions for g = (g1, g2) = 0 and then,
by Theorem 5 and using the same arguments that in the proof of Theorem 2 when we go back through the
changes of coordinates, we can have at most three limit cycles bifurcating from the equilibrium point p−.

Moreover, if we consider α2 = −6
√
−a1ζ0, then the relations (g1(r, w), g2(r, w)) = (0, 0) provide three

solutions given by

(r∗, w∗±) =


2ω√
15


8a0ζ0(1− ω2)− ζ2
a3

0a1(ω2 − 1)
,± ω2

a0
√
a1


−4a0ζ0(1− ω2) + 2ζ2ω2

5a0(ω2 − 1)



and

(r0, w0) =


2ω√
3


4a0ζ0(1− ω2) + ζ2
a3

0a1(ω2 − 1)
, 0


as long as the expressions in the square roots are positives. This shows that three limit cycles can bifurcate
simultaneous from the equilibrium p−. In a similar way we can produce examples with one, or two limit
cycles bifurcating from p−. This completes the proof of the theorem. �

Acknowledgments

We thank Pedro T. Cardin and Tiago de Carvalho for their comments which helped us to improve the
presentation of this paper.

The first author is supported by the FAPESP-BRAZIL grants 2010/18015-6, 2012/05635-1, and
2013/25828-1. The second author is partially supported by MINECO/FEDER grants MTM2008-03437
and MTM2013-40998-P, AGAUR Grant No. 2014SGR568, ICREA Academia, the grants FP7-PEOPLE-
2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378, and a CAPES grant 88881. 030454/2013-01 do
Programa CSF-PVE.
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[3] R. Kiliç, Experimental study on impulsive synchronization between two modified Chua’s circuits, Nonlinear Anal. RWA 7
(2006) 1298–1303.

[4] K.W. Lee, S.N. Singh, Robust control of chaos in Chua’s circuit based on internal model principle, Chaos Solitons Fractals
31 (2007) 1095–1107.

[5] R. Riaza, Dynamical properties of electrical circuits with fully nonlinear memristors, Nonlinear Anal. RWA 12 (2011)
3674–3686.

[6] J.J. Yan, J.S. Lin, T.L. Liao, Synchronization of a modified Chua’s circuit system via adaptive sliding mode control, Chaos
Solitons Fractals 36 (2008) 45–52.

[7] J. Llibre, C. Valls, Analytic integrability of a Chua system, J. Math. Phys. 49 (10) (2008) 102701. 9 pp..
[8] B. Rossetto, J.M. Ginoux, Differential geometry and mechanics: applications to chaotic dynamical systems, Internat. J.

Bifur. Chaos Appl. Sci. Engrg. 16 (4) (2006) 887–910.
[9] M. Messias, Dynamics at infinity of a cubic Chua’s system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 (1) (2011)

333–340.
[10] M. Messias, D.C. Braga, L.F. Mello, Degenerate Hopf bifurcations in Chua’s system, Internat. J. Bifur. Chaos Appl. Sci.

Engrg. 19 (2) (2009) 497–515.
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[13] F. Dumortier, S. Ibáñez, H. Kokubu, C. Simó, About the unfolding of a Hopf-Zero singularity, Discrete Contin. Dyn. Syst.

33 (2013) 4435–4471.
[14] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Revised and

Corrected Reprint of the 1983 Original, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990.
[15] B. Krauskopf, C. Rousseau, Codimension-three unfolings of reflectionally symmetric planar vector fields, Nonlinearity 10

(1997) 1115–1150.
[16] J.L. Moiola, L.C. Chua, Hopf bifurcations and degeneracies in Chua’s circuit–a persective from a frequency domain

approach, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999) 295–303.
[17] J. Guckenheimer, On a Codimension Two Bifurcation, in: Lectures Notes in Math., vol. 898, 1980, pp. 99–142.
[18] M. Han, Existence of periodic orbits and invariant tori in codimension two bifurcation of three dimensional systems, J.

Sys. Sci. Math. Sci. 18 (1998) 403–409.
[19] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, third ed., Spring-Verlag, 2004.
[20] J. Scheurle, J. Marsden, Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations, SIAM

J. Math. Anal. 15 (1984) 1055–1074.
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