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Introduction

Symbiotic relationships between insects and bacteria occur 
in virtually all orders, including Hymenoptera, and may be 
divided into primary (obligate) and secondary (facultative) 
interactions, both types have been identified in Formicidae 
[1, 2]. Obligate endosymbionts are the result of an ancient 
association with the host; they usually live inside special-
ized cells called bacteriocytes and contribute to ant nutri-
tion. As a result of this association, the bacterial genome, 
which is vertically transmitted, may shrink [3]. Bloch-
mannia is an example of an obligate symbiont that is com-
monly found in Camponotus species in the Northern Hemi-
sphere [4].

In contrast, facultative symbionts are characterized by a 
more recent association and may be transmitted vertically 
or horizontally [5]. Wolbachia, for example, stands out for 
interfering in the reproduction of its hosts, but its role in the 
worker caste of ants is unknown. According to recent esti-
mates, between 20 and 35% of arthropods are infected with 
Wolbachia [6]. Wolbachia has a large diversity of strains, 
which are divided into supergroups (A–F); the strains 
found in insects belong exclusively to supergroups A and 
B. Traditionally, Wolbachia infections were detected with 
the wsp gene [7]; however, due to its high rate of recom-
bination [8] and strong selection for diversification [9] a 
multilocus sequence typing (MLST) approach has gained 
popularity [10].

In studies of intracellular bacteria, the term cospecia-
tion is often used, and these associations between insects 
(host) and bacteria are well documented in the literature. 
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Examples include aphids, the tsetse fly, cockroaches, and 
their respective symbionts [11–13]. In ants, this type of 
interaction also results in a high degree of congruence 
between host and symbiont phylogenetic trees, indicating 
the occurrence of parallel diversification and of maternal 
transmission of the infection. However, the geographic dis-
tribution may only partially reflect the congruence between 
host and symbiont phylogenetic trees [14].

One of the best known genera of ants for having symbi-
otic relationships with bacteria is Camponotus Mayr, 1861 
[15, 16] and in a recent study by Bronw and Wernergreen 
[17] found that 95–98% of bacteria found in Camponotus 
chromaiodes were Blochmannia and Wolbachia, but most 
studies of the microbiota and host are restricted to the 
Northern Hemisphere.

Camponotus textor, Forel as well as 14 other species of 
ants distributed around the world, is known as a weaver ant 
because it uses silk to construct its nests [18]. Although the 
existing literature suggests that this species is common in 
the forests of Central and South America, its precise distri-
bution is not fully known [19]. In general, published works 
describe only behavioral traits, mostly related to nest con-
struction using the silk produced by their larvae [20].

The taxonomy of the species is complicated. C. textor 
is often mistaken for C. senex (Smith) due to their mor-
phological similarities. Recently, however, Ramalho et  al. 
[21] distinguished the two species based on molecular 
data and ecological traits of specimens of both species 
collected in the Neotropics. Their results corroborate with 
Longino [22], who considers them as two separate species. 
Although C. textor has elaborate behaviors, little is known 
about its feeding habits, biology, ecology, and interactions 
with other organisms [20, 23, 24].

Other few studies involving ants and endosymbionts 
from the Neotropical region have already shown how 
diverse these associations are [25, 26]. Since the descrip-
tions of primary and secondary symbionts in Campono-
tus are based on species from the Northern Hemisphere, 
the goal of this study was to investigate the presence, fre-
quency of occurrence, and strain diversity of Wolbachia 
and Blochmannia in C. textor colonies, which are ants 
exclusively Neotropical, and evaluate the diversity of these 
endosymbionts.

Materials and Methods

Collection, Identification, and Total DNA Extraction

Camponotus textor workers were collected from eight 
localities in different regions of Brazil with either typi-
cal Cerrado or Atlantic Forest vegetation: Rio Claro, SP 
(22°23′42″ S, 47°32′33″ W), Araraquara, SP (21°43′29″ 

S, 48°1′7″ W), Ribeirão Preto, SP (21°12′42″ S, 47°48′24″ 
W), Santa Rita do Passa Quatro, SP (21°42′4″ S, 47°29′23″ 
W), São João da Boa Vista, SP (21°58′10″ S, 46°47′56″ 
W), Uberlândia, MG (two colonies: 18°53′10″ S, 48°15′39″ 
W, and 18°53′1″ S, 48°15′34″ W), and Ilhéus, BA 
(14°18′45″ S, 39°53′13″ W). The collected material was 
preserved in 80% ethanol and kept at −20 °C until DNA 
extraction. Specimens were identified by Dr. Jacques Dela-
bie and deposited in the collection of CEPLAC, Ilhéus, BA 
(accession number 5692).

Total DNA was extracted from eight individual workers 
of each colony and preserved in 80% ethanol [19, 27]. We 
used primers Bloch16S-462F and Bloch16S-1299R [16] 
to screen for Blochmannia. We used primers wsp81f and 
wsp691r for the initial detection of Wolbachia [7, 28] and 
EF1α-532f and EF1α-610r [29] as positive controls. The 
amplification was performed using Taq DNA Polymerase, 
Recombinant (Invitrogen), following the protocol of the 
manufacturer. We used the thermal cycler parameters rec-
ommended by Baldo et al. [30] and Wernegreen et al. [16] 
to identify Wolbachia and Blochmannia, respectively.

Purification of the PCR product was performed using 
the GFX PCR DNA and Gel Band Purification kit (GE 
Healthcare). Samples were quantified in the Thermo Scien-
tific NanoDrop 2000 (Uniscience) and sequenced using the 
BigDye Terminator v3.1 reagent kit (Applied Biosystems). 
Sequence reading was carried out in a 3130 Genetic Ana-
lyzer automated sequencer (Applied Biosystems).

Analyses: Blochmannia

After the sequences were edited, multiple Blochmannia 
infections were detected. As a result, cloning with the 
pGEM-T Vector System I (Promega) was required to isolate 
each sequence; we followed the protocol provided by the 
manufacturer. Miniprep followed Zhou et al. [31], and the 
sequencing reactions were prepared as described before. 
Samples that have succeeded in sequencing were depos-
ited in GenBank (accession codes KX212263–KX212309, 
Ilhéus, Rio Claro, São João da Boa Vista and Santa Rita 
do Passa Quatro colonies). A haplotype network was con-
structed using sequences with highest similarity found in 
Genbank (E-values of 0.0 and 98% similarity with “Candi-
datus Blochmannia ulcerosus” AY334375.1, “Candidatus 
Blochmannia laevigatus” AY334370.1, and “Candidatus 
Blochmannia herculeanus” AJ250715.1) with the median-
joining method in Network 4.5.1.0 [32].

To test whether there is geographic correlation of the 
colony with the several strains of Blochmannia, we use the 
Mantel test available in “vegan” package [33] of R software 
[34]. The geographical coordinates of the colonies were 
transformed to metric UTM using the “rgdal” package [35], 
and the genetic distance of each Blochmannia sequence 
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was calculated using the Kimura 2-parameter model [36] in 
PAUP 4.0 [37].

Analyses: Wolbachia MLST

The sequences generated were edited and aligned using 
BioEdit sequence alignment editor [38] and ClustalW [39]. 
The sequences obtained with the wsp primers allowed us to 
determine if the Wolbachia infections were single or mul-
tiple. If a single infection was confirmed, the Wolbachia 
MLST approach was initiated following the single infection 
protocol available at the MLST website (http://pubmlst.
org/wolbachia/). All the analyses were run in triplicate 
(three different workers per colony). Double-infected colo-
nies were excluded from the analyses. The alleles of each 
gene were compared one at a time with those deposited 
on the MLST database, and the sequence types (ST) were 
later confirmed through the concatenated analysis. The 
sequences from the wsp primers were compared with others 
in the same database [30].

The dataset was partitioned into the different genes, and 
an appropriate model of sequence evolution was chosen 
using the Akaike Information Criterion in ModelTest v3.06 
[40]. The models selected were GTR_I_G for gatB and 
wsp, and GTR_G for coxA, hcpA, ftsZ, and fbpA. Phyloge-
netic reconstruction based on Bayesian analysis was carried 
out in MrBayes 3.1.2 [41] by running a 1,000,000-genera-
tion Markov chain and sampling every 1000 generations. 
The first 25% of the trees were discarded as burnin, and 
the probability values were calculated using the remaining 
trees. All the Formicidae STs in the MLST database were 
used for the comparative analysis. Since there is only one 
Formicidae B strain, other insects were added to compare 
and confirm the supergroups. The D strain was used as the 
outgroup.

Results

Blochmannia

All Camponotus specimens analyzed were positive for 
Blochmannia, with a total of 47 clones distributed in 22 
different haplotypes, with 508-bp of the 16S rRNA region 
(Fig.  1). The network analysis revealed that Blochmannia 
haplotypes found in C. textor are distant (46 different 
nucleotides) from other Blochmannia sequences in Cam-
ponotus previously deposited in the database. As these 
Blochmannia from other Camponotus were selected to pos-
sess the highest similarity with the present study, it empha-
sizes how different the Blochmannia found in C. textor is.

In addition, there was more than one Blochmannia strain 
per worker, and these strains were not exclusive to a given 

geographic location. For example, haplotype 1 (H_1) was 
found in all locations and haplotype 7 (H_7) was only 
absent from São João da Boa Vista. There was no corre-
lation between the Blochmannia genetic distances and the 
geographic locations of the colonies using the Mantel test 
(r = 0.023, P = 0.3). In addition, haplotype 1 (H_1) was 
the most frequent, followed by haplotype 7 (H_7), the two 
differed by a single nucleotide. The H_1 haplotype differs 
by only one nucleotide of the following haplotypes: H_3, 
H_22, H_5, H_4, H_21, H_14, H_13, by two nucleotides: 
H_2, H_18, H_17, H_15, H_19, H_20; by three nucleo-
tides: H_12, H_16; and finally H_6 differ by five nucleo-
tides. The H_7 haplotype differs by only one nucleotide of 
the following haplotypes: H_8, H_11 and H_9, and by two 
nucleotides H_10. All these mutations happened in differ-
ent loci.

The haplotype network suggests that there are two dis-
tinct Blochmannia lineages (H_1 and H_7) in the ant popu-
lation, and that the other haplotypes derive from H_1 and 
H_7 (Fig. 1). This could explain the co-occurrence of H_7 
with H_8, H_9, and H_10, and the co-occurrence of H_1 
with H_2 and H_3. Except the haplotype H_22 being co-
occurring with H_7, all other haplotypes follow the pattern 
of the co-occurrence happens between haplotypes deriv-
ing from. For many others haplotypes found, we could not 
exclude the possibility of sequencing artifacts. Therefore, 
we decided to focus our discussions in these haplotypes 
that were repeatedly detected in different ant specimens 
(H_1 and H_7).

Wolbachia

Wolbachia was detected in all colonies analyzed with the 
wsp gene, but its rates of infection varied: 75% in Rio 
Claro, 37.5% in Santa Rita do Passa Quatro, 87.5 and 80% 
in Uberlândia I and II, and 100% in Araraquara, Ribeirão 
Preto, Ilhéus, and São João da Boa Vista. The electrophero-
gram revealed both single and double infections. The only 
colonies with single infections were in Santa Rita do Passa 
Quatro (SP) and São João da Boa Vista (SP).

The triplicate MLST sequences from the single-infected 
colonies were compared with the sequences deposited in 
the Wolbachia MLST database. There was no variation 
within the species; in other words, all alleles for all individ-
uals were identical. However, we found a new allele, coxA 
allele 185, and a novel ST, ST347, was deposited in the 
MLST database as a consequence. The sequences gener-
ated by wsp were included in an additional analysis, which 
revealed hypervariable regions (HVR1: allele 37, HVR2: 
allele 38, HVR3: allele 41, and HVR4: allele 37) and 100% 
similarity with wsp allele 58.

The Bayesian inference analysis (using Bayesian poste-
rior probabilities, BPP) of the 42 concatenated sequences 

http://pubmlst.org/wolbachia/
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in different supergroups revealed that ST347 was more 
closely related to supergroup A STs, thus characterizing 
this new strain (Fig. 2). However, the strain found in the 
present study is separated from the strains from North 
America and the Old World. Combined with ST45, this 
new strain forms a strongly supported clade (BPP = 90) 
that is separated from other supergroup A strains. Super-
group A and supergroup B were separated by 100 bp.

Discussion

Blochmannia

Corroborating the findings of Sameshima et  al. [15] 
and Wernegreen et  al. [16], all analyzed individuals had 
Blochmannia suggesting that the bacteria are fixed within 
populations of species in the ant genus Camponotus, as 

Fig. 1  Blochmannia haplo-
types in Camponotus textor. a 
Haplotype network showing 
the higher frequency of H_1, 
followed by H_7. b Distribu-
tion of the different haplotypes 
from each analyzed individual. 
The haplotype size represents 
the frequency found, and the 
point in red was added by the 
software as hypothetical haplo-
type. *C. textor from this study. 
(Color figure online)
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observed in Formica truncorum and its obligate endosym-
biont Wolbachia [42]. Additionally, Blochmannia strains 
found in the present work were very different to “Candi-
datus Blochmannia ulcerosus” (AY334375.1, USA), “Can-
didatus Blochmannia laevigatus” (AY334370.1, USA), 
and “Candidatus Blochmannia herculeanus” (AJ250715.1, 
USA), which confirms the high interspecific diversity. 
We believe that this huge difference could be because (I) 
there are few studies in South America that analyzed the 
diversity of this endosymbiont, and (II) this bacterium has 
a high rate of mutation [43]. Besides that, there was no 
correlation between the geographical location and strain 
similarity based on the intraspecific haplotype network of 
the Blochmannia sequences found in C. textor, i.e., shared 
strains occurred in different geographical regions (Fig. 3).

The intracellular endosymbionts that live in bacte-
riocytes are vertically transmitted [44]. The fact that the 

bacteria are located inside a specialized organ associated 
with female reproductive tissues suggests that the specia-
tion processes of the host and its endosymbiont are inter-
connected [45, 46]. Phylogenetic congruence suggests the 
absence of horizontal transfer [43], contrasted to the recur-
rent recombination among strains of free-living bacteria 
[47]. The present study analyzed different colonies from 
different locations and showed the same pattern of diver-
sity of Blochmannia (H_1 and H_7, in different locations). 
Therefore, there is no evidence of horizontal transmission 
of Blochmannia among these populations of C. textor, sug-
gesting that the long-distance migration of the ants hap-
pened in the past and that the common ancestor of this ants 
has been carrying these strains ever since [15, 16, 44].

The high intraspecific diversity of Blochmannia hap-
lotypes in this species should also be noted. Based on the 
frequencies observed, we cannot exclude the possibility of 

Fig. 2  Bayesian inference analysis of the sequences in the Wolbachia 
with the host/location available in MLST database. The Wolbachia 
strain found in Camponotus textor and identified through this work 

is highlighted (ST347), and belongs to the supergroup A clade. The 
symbol “-” means that the information was unavailable
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at least two distinct haplotypes coexisting in the same host 
species. Degnan et  al. [43] observed a high mutation rate 
in Blochmannia, which might explain the occurrence of 
haplotype variation within a single species. Nevertheless, 
we should consider three hypotheses: (1) this diversity is 
a sequencing artifact; (2) there are multiple copies of 16S 
in the Blochmannia genome; and (3) there are multiple 
strains of Blochmannia in C. textor. Given the high fre-
quency of haplotypes identified in this study, the possibility 
of a sequencing artifact may be rejected, at least for H_1 
and H_7, which were frequently found in different colo-
nies. The second hypothesis merits further investigation. 
Because we did not analyze the whole genome of Bloch-
mannia, we do not know if there are multiple copies of the 
16S genome. However, we checked whether there is prec-
edence in the publicly available genome sequence of the 
Blochmannia endosymbiont from C. obliquus strain 757, 
GenBank accession # NZ_CP010049, and it was found 
in only one copy of the 16S gene [48]. Therefore, we also 
believe that this hypothesis does not apply to C. textor. The 
third hypothesis is the most plausible; although we sampled 
different colonies from different locations, we observed the 
same two haplotypes in each one of them (either H_1 or 

H_7). Due to the high mutation rate of Blochmannia, it is 
possible that these diversified strains of Blochmannia had 
already been present in the ancestor of C. textor, and that 
they spread along with their host species as the geographic 
range of C. textor expanded.

In our study, a pattern emerged where every worker 
analyzed harbored either haplotype H_1 or H_7 (Fig. 1b). 
Interestingly, however, these two dominant haplotypes 
never co-occurred, that is, with our sampling protocol we 
were unable to find haplotypes H_1 and H_7 in the same 
individual. More studies are needed to address the possi-
bility of incompatibility or competition between these hap-
lotypes. It is important to note that little is known of the 
general biology of this host ant, and in particular if the 
colonies are polygynous or monogynous. If this species is 
monogynous, the single queen may harbor both haplotypes, 
excluding the possibility of incompatibility or competition. 
However, an additional question may be raised: why would 
these multiple strains not be quickly lost due to genetic 
drift? Genetic drift does not prevent the co-occurrence of 
multiple strains of Wolbachia within the same individual 
[25, 26, 49, 50], and we believe the same could be the case 
for Blochmannia, explaining its diversity. If functional 

Fig. 3  Distribution map of 
Blochmannia haplotypes 
found in Camponotus textor. 
Haplotype 1 (H_1) was the most 
common and it is highlighted 
in pink. Haplotype 7 (H_7) is 
highlighted in blue. Note that 
there are colonies with the pres-
ence of both haplotypes. Loca-
tions where we confirmed the 
presence of Blochmannia, but 
we cannot define the haplotype 
by the technique of cloning, 
are highlighted in gray. (Color 
figure online)
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divergence has occurred, akin to the recent diversification 
of symbionts in cicadas reported by Campbell et  al. [51], 
more studies will be needed to understand the diversity of 
Blochmannia in Camponotus sp.

Wolbachia

Camponotus textor had a high rate of Wolbachia infection 
compared to Solenopsis spp. from the same region [25], 
suggesting that the bacteria may be at or near fixation, as 
suggested by Wenseleers et al. [42] in F. truncorum, Fab-
ricius. However, the ST and the wsp gene did not vary 
among different colonies, suggesting that the Wolbachia 
infection may have occurred a long time ago in the com-
mon ancestor of the populations. According to Watanabe 
et  al. [52], there are three possible explanations for the 
presence of similar strains of Wolbachia in related species: 
vertical transmission by a common ancestor [53], hori-
zontal transmission [54], and introgressive hybridization 
between the hosts [55, 56].

Introgressive hybridization may be discarded because 
we are reporting similar strains of Wolbachia within a spe-
cies C. textor. Therefore, the observed distribution of Wol-
bachia may be caused by(a) vertical transmission by a com-
mon ancestor, maintained despite the geographic separation 
of the colonies, or (b) horizontal transmission induced by 
similar host–parasitoid or predator–prey interactions [52]. 
These two hypotheses are also supported by the results of 
Salunke et al. [57], who used MLST to study Wolbachia in 
butterflies.

Phylogenetically, several strains of Wolbachia have been 
detected in different species of ants using the MLST meth-
odology, and the great majority belongs to supergroup A 
and the ST347 strain. The distribution of the supergroups 
(A, B, and D) in the haplotype network and the recon-
structed phylogeny confirm that the supergroups are com-
pletely separated. Haplotype 31 and haplotype 10 (which 
are equivalent to ST347 and ST45, respectively) were 
closely related, both in the network and in the phylogenetic 
tree, but they are distant from the other strains in super-
group A. The similarity among the variants in family For-
micidae was also confirmed through MLST, indicating that 
there are differences between the strains found in ants and 
those from other insects, and between the variants in the 
New World and the Old World [6].

Conclusion

Research into symbiotic interactions of ants of the genus 
Camponotus often focuses on Blochmannia, but the actual 
diversity of the bacterial community of this genus is still 
unknown. In the general context, we were able to find at 

least two strains of Blochmannia present in the same spe-
cies of C. textor, an ant occurring only in the Neotropi-
cal region. One possible explanation for the occurrence 
of these strains could be the high mutation rate of Bloch-
mannia. In the same species, the high infection rate was 
also observed for Wolbachia, and a new strain was depos-
ited in the MLST database. However, these new ST and 
wsp genes were the same for all C. textor colonies ana-
lyzed, suggesting that the Wolbachia infection occurred 
in the past in the common ancestor of these populations, 
before the colonies split. New studies with C. textor using 
next-generation sequencing technologies are needed to 
obtain more data on the role of symbiotic relationships and 
their implication for the biology of the host.
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