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ABSTRACT
In the Halo Model, galaxies are hosted by dark matter haloes, while the haloes themselves
are biased tracers of the underlying matter distribution. Measurements of galaxy correlation
functions include contributions both from galaxies in different haloes, and from galaxies in
the same halo (the so-called one-halo terms). We show that, for highly biased tracers, the
one-halo term of the power spectrum obeys a steep scaling relation in terms of bias. We also
show that the one-halo term of the trispectrum has a steep scaling with bias. The steepness
of these scaling relations is such that the one-halo terms can become key contributions to the
n-point correlation functions, even at large scales. We interpret these results through analytical
arguments and semi-analytical calculations in terms of the statistical properties of haloes.
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1 IN T RO D U C T I O N

Galaxy surveys (York et al. 2000; Cole et al. 2005; The Dark En-
ergy Survey Collaboration 2005; Scoville et al. 2007; Adelman-
McCarthy et al. 2008b; Tonry et al. 2012; Dawson et al. 2012;
Blake et al. 2011; Anderson et al. 2012, 2014) are not just tools
for constraining cosmological parameters: they reveal the three-
dimensional spatial web of visible structures, the time evolution
of these structures, and the history of galaxy evolution. Next-
generation surveys are aimed at answering a variety of open as-
trophysical and cosmological questions, by collecting vast amounts
of data at low, intermediate, and high redshifts (Benı́tez et al. 2009,
2015; LSST Science Collaboration 2009; Schlegel et al. 2009; Ellis
et al. 2012; Levi et al. 2013; Dawson et al. 2015).

For the study of how gravity and the Universe’s background ex-
pansion affect the growth of structure, the standard statistical tools
are the n-point correlation functions and their Fourier transforms,
the polyspectra. If the distribution of matter were perfectly Gaus-
sian, the two-point correlation function (2pCF) or, equivalently, the
matter power spectrum, would contain all the statistical informa-
tion. However, the primordial fluctuations are believed to be very
nearly, but not perfectly, Gaussian. Information about the processes
that generated these primordial perturbations is encoded in higher
order moments, e.g. the bispectrum (Maldacena 2003). Moreover,
when subject to non-linear time evolution, even a perfectly Gaus-
sian initial field develops nontrivial higher order moments (skew-
ness, kurtosis, etc.) whereto statistical information propagates. At
late stage of non-linear gravitational evolution, information even
leaks out of the hierarchy of moments, as the density field becomes

�E-mail: abramo@fma.if.usp.br

approximately lognormal (Carron 2011, 2012, 2014; Carron &
Neyrinck 2012).

Adding to these complications is the fact that we do not directly
observe the total matter distribution, but only its visible component
– which accounts to ∼20 per cent of the total matter (see e.g. Planck
Collaboration XIII 2015) and is affected by non-gravitational effects
such as the physics and feedback of baryons, radiation pressure, etc.
Hence, the 2pCF of the distribution of visible matter cannot possibly
tell the full story and we must treat galaxies, quasars, Ly α systems,
etc., as unfaithful (and biased) tracers of the underlying dark matter
(DM) distribution.

The relation between tracers of large-scale structure (LSS) and the
DM distribution is partially provided by the Halo Model (Cooray &
Sheth 2002). The DM haloes – and not the DM particles – then
become the fundamental objects. In particular, the correlation func-
tions of the DM haloes are related to the correlation functions of
the DM particles by the halo abundance, bias and profile, such that
more massive haloes are less abundant, are more highly biased and
have less-concentrated profiles.

The statistics of how galaxies populate DM haloes is provided
by the so-called Halo Occupation Distribution (HOD; Martinez &
Saar 2001; Berlind & Weinberg 2002; Kravtsov et al. 2004; Zheng
et al. 2005), which specify how many observable galaxies inhabit
a halo as a function of its mass. HOD parameters can be calibrated
by measurements of specific abundance ratios, and by fitting the
observed correlation functions.

The relationship between the statistics of the halo density field
and that of galaxies is often non-trivial. For example, the n-point
statistics of galaxies get contributions from the N-halo term (when
each galaxy occupies a different halo), from the (N − 1)-halo term
(when two galaxies occupy the same halo, and the others lie in
different haloes), etc., all the way down to the one-halo term (when

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/454/3/2844/1207677 by U
niversidade Estadual Paulista Jï¿½

lio de M
esquita Filho user on 29 M

ay 2019

mailto:abramo@fma.if.usp.br


Scaling of the 1-halo terms with bias 2845

all the N galaxies occupy the same halo). Furthermore, there are
contributions to the N-point statistics from N − 1 types of shot-
noise terms: e.g. the (N − 1)-halo – (N − 1)-galaxy term (when
the correlation function hits twice a galaxy in a given halo, and
then only once galaxies in different haloes) down to the one-halo –
1-galaxy term (when the correlation function hits N times the same
galaxy). Hence, when we measure the N-point function of galaxies,
we are in fact measuring an ad-mixture of all the N′-point functions
of haloes (N′ = 1, 2, . . . , N).

The galaxy 2pCF includes both a 2-halo term (related to galaxies
in two distinct haloes) and a 1-halo term (accounting for galaxies
within the same halo). Clearly, the 2-halo term is most important on
large scales, within the linear regime, and bears the imprint of the
large-scale matter distribution, whereas the 1-halo term dominates
on small, non-linear scales, and reflects the matter distribution inside
haloes (the halo density profile). Even though these two regimes are
connected by time evolution, we may describe the galaxy power
spectrum as the superposition of two independent scaling laws: that
of the linear DM power spectrum, which dominates on large scales,
and that coming from the halo profiles, which dominates on small
scales (k � 1 h Mpc−1).

In the large-scale limit, the 1-halo term contributes a constant to
the galaxy power spectrum. This constant may be poorly known,
since galaxy surveys designed for cosmological studies are often
insufficiently complete (or have poor redshift accuracy, in the case of
photometric redshifts) to determine precisely the HOD parameters
for a type of galaxy, and for the survey’s mean redshift. This constant
represents a noise that must be subtracted from the power spectrum –
just as it happens with shot noise, which has a completely different
origin but is also a constant that must be subtracted. This feature
of the 1-halo term on large scales also comes into play in higher
order statistics: the bispectrum gets a constant contribution from the
1-halo term of the 3-point function; the trispectrum gets a constant
contribution from the 1-halo term of the 4-point function; and so
on.

In this paper, we study the behaviour of the 1-halo terms as a
function of the galaxy bias, where these quantities are connected
via their mutual dependence on HOD parameters. The same goes
for the other observable quantities, such as the mean number density
of galaxies, the 2-halo term of the power spectrum, etc. Hence, the
HOD provides an internal (but unobservable) parameter space that
we can use to vary the observable quantities. In particular, we use the
galaxy bias to parametrize the 1-halo terms both because it is more
readily available in observations, and also because we are interested
in identifying universal behaviours, regardless of the details of the
HODs.

We show that, for highly biased tracers (bg � 3), the 1-halo term
of the 2pCF obeys a scaling relation in terms of bias, growing as
P 1h ∼ b4−5

g , which is much faster than the scaling of the 2-halo term
(P 2h = b2

gPm, where Pm is the matter power spectrum). For highly
biased galaxies, the effective shot noise contributed by the 1-halo
term can become at least comparable to the Poisson shot noise, sig-
nificantly lowering the signal-to-noise ratio for measurements of the
power spectrum, baryon acoustic oscillations, etc. In some cases,
the 1-halo term can even surpass by a large factor the shot noise, as
is the case, e.g. for the angular power spectrum of the cosmic
infrared background on the angular scales probed by Herschel
(Thacker et al. 2013). Furthermore, we show that the 1-halo term
for the trispectrum also grows very fast – typically, like (P1h)3 – and
should, therefore, contribute an important source of noise for the
power spectrum covariance in the limit of high bias.

When employing a particular cosmological model below, we used
a standard flat �CDM scenario, with �m = 0.26, ns = 0.96, and
σ 8 = 0.78.

2 FO R M A L I S M A N D A NA LY T I C A L
APPROX I MATI ONS

2.1 The Halo Model

Over time, gravity enhances the density contrast field by attracting
matter towards the density peaks, and by creating voids where the
density was initially below average. The Halo Model (Cooray &
Sheth 2002) describes how this process depends on the mass of the
collapsed structures by determining, e.g. the abundances of the DM
haloes – i.e. the mass function, d n̄h/d log M .

Haloes are ultimately determined by the peaks of the initial den-
sity field, and according to the theory of peak statistics (Bardeen
et al. 1986; Mo & White 1996), the main driver of the abundance
of peaks as a function of mass is the mass variance within a certain
comoving radius R. The variance of the linear density field inside a
spherical top-hat region of radius R is determined by

σ 2(R) = 1

2π2

∫
dk k2Pm(k)W (kR)

=
∫

d ln k �2
m(k)W (kR), (1)

where Pm(k) is the linear matter power spectrum and
W(x) = [3j1(x)/x]2 is the window function for a spherical top-hat
region. The mass contained within radius R at the mean background
matter density today, ρ̄m, is M(R) = 4πR3ρ̄m/3. The peak height
is defined as ν(M) = δc/σ (M), where δc is the linearly extrapolated
critical density contrast for spherical collapse.

Due to the statistics of density peaks (Bardeen et al. 1986),
all mass functions exhibit an exponential dependence on the peak
height ν(M). In fact, we have

dn̄h

d ln M
= ρ̄m

M

d ln σ−1

d ln M
f (ν), (2)

where, up to some model-dependent factors and coefficients,
f (ν) ∼ e−ν2/2.

Another crucial ingredient of the Halo Model is the halo bias.
Since we would like to substitute the true matter density contrast
δm by the contrast of halo counts, δh = nh/n̄h − 1, a relationship
between the two must be established. We can write this in terms of
a local ansatz such as (Fry & Gaztañaga 1993):

δh = bhδm + b
(2)
h (δ2

m − σ 2
m) + · · · . (3)

In this paper, we will only consider the first term in this relation –
the higher order terms can also become important precisely in the
limit that we are investigating (tracers with high bias), but we leave
this key issue for future investigations. Typically, the halo bias is a
smooth power-law function of peak height, such that more massive
haloes correspond to higher (and rarer) peaks and have higher values
of the halo bias.

Our analytical calculations were performed using both the Press–
Schechter (Press & Schechter 1974) (PS) as well as the Sheth–
Tormen (Sheth & Tormen 1999; Sheth, Mo & Tormen 1999, ST) pre-
scriptions for the mass function and halo bias. The semi-analytical
calculations of Section 3.3 were performed using the Tinker mass
function (Tinker et al. 2008) and halo bias (Tinker et al. 2010). The
main results are very similar on all cases.
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2.2 Halo profile

Related to the Halo Model, but still a slightly orthogonal result
which depends more strongly on the non-linear regime of structure
formation, is the shape of the halo density profile. Although our
results are completely insensitive to the fine details of these profiles,
in our semi-analytical calculations we employ the standard results
of Navarro, Frenk & White (1997). In that case, the density profile
for a halo of mass M is given by

ρ(r|M) ∼ u(r|M) ∼ 1

r
rs

(
1 + r

rs

)2 , (4)

where rs = rs(M) is the characteristic scale (‘knee’) for a halo
of mass M. The mass-averaged halo profile in Fourier space is
computed as

u(k|M) = 4π

M

∫
dr r2 sin kr

kr
ρ(r|M). (5)

The important feature for our purpose is that u(k|M) → 1 when
k � 1 h Mpc−1 for the range of masses that we are interested
in. This property follows simply from the fact that u(k → 0) =
(1/M)

∫
d3x ρ = 1, and in the range k � 1 h Mpc−1 this approxi-

mation holds for the mass scales we are interested in. Hence, our
calculations are insensitive to the precise adopted profile, and im-
portantly to whether or not the galaxy count profile is identical to
the DM density profile. Note indeed that a discrepancy between
these two profiles may have been observed in the innermost regions
of the DM haloes, where the galaxy profiles may be significantly
steeper than the NFW profile (Watson et al. 2010; Kayo & Oguri
2012; Piscionere et al. 2014).

2.3 Halo occupation distribution

It has been known for a long time that there must be a direct relation
between the distribution of galaxies and that of the underlying DM
haloes (White & Frenk 1991; Kauffmann, White & Guideroni 1993;
Navarro, Frenk & White 1995; Mo & White 1996; Kauffmann et al.
1999; Springel et al. 2005). HOD models provide the probability
distribution function P(N|M) for a certain number (N) of galaxies
to occupy haloes of a given mass (M; Ma & Fry 2000; Seljak
2000; Cooray & Sheth 2002; Martinez & Saar 2001; Berlind &
Weinberg 2002; Zheng et al. 2005). Although halo mass is not
the only factor which determines the number of galaxies (Zentner,
Hearin & van den Bosch 2014), HODs have been extremely useful
to interpret measurements of the clustering of different types of
tracers, from galaxies (Zheng, Coil & Zehavi 2007; Zheng et al.
2009) to quasars (Porciani, Magliocchetti & Norberg 2004; Shen
et al. 2007, 2010; Wake et al. 2008; Kayo & Oguri 2012; Richardson
et al. 2012) – however, in the latter case the simplest HODs may be
inadequate to capture the complex interactions between quasars and
their environments (Chatterjee et al. 2013; Shen et al. 2013; Cen &
Safarzadeh 2015), and additional parameters such as assembly bias
should be included. Often, instead of P(N|M), what is provided are
the momenta of the HOD, such as N̄ (M) = 〈N〉M , 〈N(N − 1)〉M,
etc. The brackets define averages over haloes of the same mass, and
the HOD can be defined in terms of these momenta. For brevity, we
will drop the subscript M from now on.

It is clear that, for very massive haloes, the number of galax-
ies should scale proportionally to the halo mass, but as we ap-
proach the low-mass end the situation can be more nuanced. Ac-
cording to the hierarchical scenario of structure formation, a galaxy
can either form inside its original halo, or join after formation an

already existing and populated halo. Such a dichotomy is also seen
in numerical simulations (Kravtsov et al. 2004) and leads to the
distinction between ‘central’ galaxies, of which there can be only
one per halo, and possibly numerous ‘satellite’ galaxies. A popular
functional form for the number of central and satellite galaxies is
(see e.g. Zheng et al. (2005))

〈Nc〉 = N̄c = 1

2
Erfc

(
Mc − M√

2 σg

)
(6)

〈Ns〉 = N̄s = N̄c × Ñs, (7)

where

Ñs = θ (M − κgMc)

(
M − κgMc

M1

)α

. (8)

As denoted by equation (7), the existence of satellites is conditional
on the existence of a central galaxy. Typical values for the HOD
parameters are Mc 	 1013.5 h−1 M
, M1 	 1014 h−1 M
, α 	 0.9–
1.0, κg 	 1.1, σ g 	 1 (Zheng et al. 2005) – although, in the case of
quasars, especially at high redshifts, some parameters can deviate
significantly from these values (Chatterjee et al. 2013).

Besides the mean numbers (or richness), we must also specify the
higher order momenta of P(N, M). If we are only interested in the
2-halo and in the 1-halo terms, then all we need are the expectation
values 〈N2

c 〉, 〈NcNs〉 and 〈N2
s 〉. The model separating central and

satellite galaxies naturally provides these momenta. By definition,
the central galaxy either exists (Nc = 1) or does not exist (Nc = 0)
inside a halo so 〈Nc(Nc − 1)〉 = 0 or equivalently 〈N2

c 〉 = N̄c.
Regarding the cross-correlation between central satellite galaxies,
notice that satellites can only exist if there is already at least one
central galaxy, so 〈NcNs〉 = N̄s. As for the satellites, we can as-
sume a simple Poisson distribution, which means, in particular, that
〈N2

s 〉 = N̄s(Ñs + 1).

2.4 Combining the halo model and the HOD

The Halo Model allows us to compute several quantities of interest
from these ingredients. The mean galaxy number density is

n̄g =
∫

d ln M
dn̄h

d ln M
× N̄ (M), (9)

where N̄ = N̄c + N̄s. The galaxy bias is given by

bg(k) = 1

n̄g

∫
d ln M

dn̄h

d ln M
× N̄ (M)b(M)u(k|M), (10)

where recall that u(k|M) → 1 for k � 1 h Mpc−1. In terms of the
galaxy bias, the two-halo galaxy power spectrum is given by

P 2h(k) = b2
g(k)Pm(k). (11)

The 1-halo term, on the other hand, is given by the correlation of
two different galaxies in the same halo:

P 1h(k) = 1

n̄2
g

∫
d ln M

dn̄h

d ln M
× 〈N (N − 1)〉 |u(k|M)|2

= 1

n̄2
g

∫
d ln M

dn̄h

d ln M

× N̄c(M) [2Ñs(M) + Ñ2
s (M)] |u(k|M)|2 , (12)

where the term inside square brackets in the third line is the intrahalo
number variance, given the assumptions outlined above. As usual,
the 1-halo term of the power spectrum does not include the con-
tribution arising from self-correlations of galaxies with themselves
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(i.e. shot noise): in fact, when there is a single galaxy in a halo, that
is, by definition, the central galaxy, so the number of satellites is
zero.1 The measured galaxy power spectrum is therefore

Pg = P 2h + P 1h + PS, (13)

where PS takes into account the shot noise power spectrum – which,
under the assumption of Poissonian statistics for the galaxy counts,
is given by PS = 1/n̄g.

Similar arguments can also be applied to higher order correla-
tions. The trispectrum T (k1, k2, k3, k4), i.e. the 4-point function in
Fourier space, is of particular interest as it determines the covariance
of the power spectrum, in its limit T (k, −k, k′,−k′). The 1-halo
term of this part of the trispectrum is given by

T 1h
g (k,−k, k′, −k′) = 1

n̄4
g

∫
d ln M

dn̄h

d ln M

×〈N (N − 1)(N − 2)(N − 3)〉
× |u(k|M)|2 ∣∣u(k′|M)

∣∣2

= 1

n̄4
g

∫
d ln M

dn̄h

d ln M

×N̄c[4Ñ3
s + Ñ4

s ]

× |u(k|M)|2 ∣∣u(k′|M)
∣∣2

, (14)

where on the second line of the equation above we used the same
assumptions about the statistics of central and satellite galaxies
that were used to obtain the expression in the second line of
equation (12).

For our purposes, we will consider scales larger than the size of
the largest haloes, so we take u(k|M) → 1 in all our expressions from
now on. We have checked that this is an excellent approximation
for k � 1 h Mpc−1.

2.5 Analytical model for the peak height

In some of the following subsections, we will perform analytical
computations of several quantities of interest in the PS (Press &
Schechter 1974) and ST (Sheth & Tormen 1999; Sheth et al. 1999)
formalisms. In order to carry out those calculations we need an
analytical approximation for the peak height in terms of the halo
mass.

The variance of the linear density field inside a top-hat spherical
region of radius R was given in equation (1). Since the spheri-
cal top-hat window function has the features that W(0) = 1 and
W → 0 for x � 1, with a full width at half-maximum (FWHM) of
approximately xFWHM ≈ 1, it is fair to approximate the variance as

σ 2(R) ≈ �2
m(k = kR) ∝ k3

R Pm(kR), (15)

where kR = 1/R. For self-similar models in which Pm(k) ∝ kn,
we have σ 2(R) ∝ kn+3

R ∝ R−(n+3). In terms of the mass contained
inside radius R at the mean background density, M ∝ R3, we have

σ 2(M) ∝ M−(n+3)/3. (16)

Even though LSS in a standard �CDM Universe is not described
by a self-similar model, it will be useful to consider this case as

1 Notice that the one-halo terms vanish in the absence of satellite galaxies.
However, due to the Poissonian nature of the HOD, it is possible for a halo
to have satellites even if 〈N〉 = 1 for the mass of that halo.

Figure 1. Power-law index as a function of M. Solid (black) line:
n = −3(1 + d ln σ 2/d ln M). Dashed (red) line: nP = d ln P(k)/d ln k, eval-
uated at k = kR = 1/R(M). The wiggles seen in nP are caused by the BAOs.

it will allow us to obtain interesting analytical expressions for
fixed n.

The peak height, normalized to 1 at M = M∗, is given by

ν = (M/M∗)(n+3)/6 , (17)

where M∗ is typically ∼2 × 1013 h−1 M
 in the �CDM
models. In particular, within this approximation we have
d ln σ−1/d ln M = (n + 3)/6.

We check the approximation of equation (16) in Fig. 1, where
we plot the power-law index n = −3(1 + d ln σ 2/d ln M) (solid,
black line) together with nP = d ln P(k)/d ln k, evaluated at
k = kR = 1/R(M) (dashed, red line). The slope of the power spec-
trum, nP, shows the wiggles from the BAOs. The power index of the
peak height, on the other hand, is an average over several different
scales, hence it is only sensitive to the mean slope of the power
spectrum. It is clear that the two are closely related, and that the
approximation of equation (17) holds quite well for n between −2
and −1 in the mass range considered. In Sections 3.3 and 3.4, we
do not use this approximation anymore, and instead compute σ (M)
from the power spectrum in a �CDM model.

2.6 Mass functions and halo bias

The simplest case is that of the PS formalism (Press & Schechter
1974). It provides closed-form expressions for the mass function
and halo bias:

fPS(ν) =
√

2

π
ν exp [−ν2/2], (18)

bPS(ν) = 1 + ν2 − 1

δc
. (19)

These formulas are in poor agreement with the data and N-body
simulations, however, when used in conjunction with an extremely
simple HOD, they yield simple, straightforward analytical calcula-
tions whose results convey the basic message of this paper – see
Section 3.1.

A better fit to simulations and observations is given by the ST
mass function and halo bias (Sheth & Tormen 1999; Sheth et al.
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1999):

fST = A

√
2a

π

[
1 + (aν2)−p

]
ν e−aν2/2, (20)

bST = 1 + aν2 − 1

δc
+ 2p

δc[1 + (aν2)p]
, (21)

where A 	 0.322, a 	 0.71, and p 	 0.3. The ST framework gives a
more accurate description compared to PS, while still allowing for
fully analytical calculations. In Section 3.2, we use the ST formulas
and a slightly more realistic HOD compared with the calculation
in the PS case – yet the main results of that section are basically
unchanged.

Finally, we also consider the expressions found by Tinker et al.
(2008, 2010), which were calibrated from numerical simulations.
The mass function (Tinker et al. 2008) and bias (Tinker et al. 2010)
are given in this case by

f (σ ) = 0.186 ×
[( σ

2.57

)−1.47
+ e−1.2/σ 2

]
, (22)

bh(ν) = 1 − AT

νaT

νaT + δ
aT
c

+ BT νbT + CT νcT , (23)

where AT = 1 + 0.24 y exp [− (4/y)4] (with y = log10�, where
we choose � = 200), aT = 0.44 y − 0.88, BT = 0.183, bT = 1.5,
CT = 0.019 + 0.107 y + 0.19 exp [− (4/y)4], and cT = 2.4. We
will employ this mass function in our semi-analytical calculations,
assuming now a realistic HOD – see Section 3.3. As we shall see
shortly, the results are qualitatively identical to those of Sections 3.1
and 3.2, which were found by means of analytical calculations.

3 A PPLICATIONS

3.1 PS mass function and a simple HOD

We begin assuming an extremely simplified HOD, which should
hold in an approximate sense for sufficiently high halo masses (see
e.g. Porciani et al. 2004):

N̄(M) =
(

M

M1

)α

θ (M − M1), (24)

where θ (x) is the Heaviside step-function. In this simple HOD, we
take the cut-off mass to be equal to the mass scale M1. This HOD
also assumes that all galaxies are satellites. In the final subsections,
we recover the full description in terms of N̄c and N̄s, and show that
the central galaxies are unimportant in the limit we are interested
in (bg � 3). Except for the low-mass limit, the halo richness should
scale roughly proportional to its mass, so α ≈ 1. We will assume for
the moment that M1 also defines the threshold for finding galaxies
in haloes – i.e. N̄ = 0 for M < M1. This approximation will be
improved in the next subsection, where we carry out the same
calculations as here, but using the ST formalism. As we will see,
this does not change significantly our main results.

We start by computing the number density of haloes which host
at least one galaxy in our simple HOD, equation (24). Since the
number of galaxies in each halo follows a Poisson distribution, this
is given by

n̄h/g =
∫

d ln M
dn̄h

d ln M

[
1 − exp(−N̄ )

]
(25)

Another definition, which will become more useful later on, is the
number of haloes that could contain galaxies:

n̄h,g =
∫ ∞

M1

d ln M
dn̄h

d ln M

=
∫ ∞

M1

d ln M
ρm

M

d ln σ−1

d ln M

√
2

π
ν exp [−ν2/2]

=
√

2

π

ρm

M∗

∫ ∞

ν1

dν ν−6/(n+3)e−ν2/2, (26)

where we have used the PS mass function and the approximations
M = M∗ν6/(n + 3), as well as the definition ν1 = (M1/M∗)(n + 3)/6.

For high M1 the integral in equation (25) is dominated by the
exponential behaviour of the mass function, and we can replace the
N̄ in the exponent by the mean number of galaxies in the haloes just
above the cut-off mass scale, N̄(M) → N̄(M1) = N̄min. Hence, the
actual number of haloes containing galaxies can be approximated by
n̄h/g ≈ (1 − e−N̄min ) × n̄h,g. For the HOD of equation (24) this min-
imum mean number of galaxies is N̄min = 1, so n̄h/g ≈ 0.63 n̄h,g.

With the variable change x ≡ ν2/2 we obtain

n̄h,g =
√

2

π

ρm

M∗
2λ0

∫ ∞

x1

dx xλ0e−x =
√

2

π

ρm

M∗
2λ0�(1 + λ0, x1),

(27)

where λ0 = −1/2 − 3/(n + 3), x1 = ν2
1/2, and �(κ , x) is the

(upper) incomplete Gamma function of order κ . Typically, −2
� n � −1 for haloes at the scales of interest, which means that
−7/2 � λ0 � −2.

The incomplete Gamma function is related to the simple Gamma
function by �(κ) = �(κ , x = 0), and has asymptotic limits given
by

lim
x→0

�(κ, x) → �(κ) − xκ

[
1

κ
− x

1 + κ
+ O(x2)

]
, (28)

and

lim
x→∞

�(κ, x) → e−x xκ−1

[
1 + κ − 1

x
+ O(x−2)

]
. (29)

Notice, in particular, that limx→∞ �(1 + κ, x)/�(κ, x) → 1 + x +
O(x−1). It is also interesting to note that, for 0 � κ � 1, the
asymptotic expression of equation (29) is remarkably accurate down
to x 	 1.

Hence, for the ranges of interest for n, in which λ0 is negative, the
number density of the haloes that host galaxies should diverge in the
limit x1 → 0 – i.e. when M1 � M∗. Indeed, the number of haloes
of arbitrarily small masses is arbitrarily large, unless we specify
a smoothing scale Rf, in which case it asymptotes to n̄h,g ∝ R−3

f

(Bardeen et al. 1986).
Similarly as was done above, we can compute analytically the

quantities defined in Section 2.4. For the mean number density of
galaxies we obtain

n̄g =
∫ ∞

M1

d ln M
dn̄h

d ln M
× N̄ (M)

=
√

2

π

ρm

M∗

(
M∗
M1

)α

2λ1�(1 + λ1, x1), (30)

where we have used the same definitions as
above, with the difference that now the index is
λ1 = λ0 + 3α/(n + 3) = −1/2 + 3(α − 1)/(n + 3). Since
α 	 1 and −2 � n � −1, we have λ1 	 −1/2. Notice that for
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Scaling of the 1-halo terms with bias 2849

the case α = 1, λ1 = −1/2 and in the limit x1 → 0, we have
n̄g = ρm/M1 = ρm〈N〉/M

Interestingly, using equation (29) we find that in the high mass
limit (x1 →∞), n̄g = n̄h,g – i.e. in that case the number of haloes that
could host a galaxy is equal to the mean number of galaxies. This is
a consequence of the simple HOD, equation (24), which takes the
cut-off mass to be identical to the mass scale M1. Since the galaxy
bias increases with M1, for high values of this mass the number of
haloes above the cut-off is exponentially suppressed, and only the
least massive haloes are populated with galaxies. In this case, each
halo ends up hosting only one galaxy – or, more accurately, because
of Poisson statistics, about 63 per cent of haloes contain only one
galaxy, and the rest contain two or more galaxies.

We can calculate the galaxy bias in the same fashion, using the
PS halo bias of equation (19):

bg = 1 − δ−1
c + 2δ−1

c

�(2 + λ1, x1)

�(1 + λ1, x1)
. (31)

In the x1 → 0 limit, we can use the property of the Gamma function
�(2 + λ1) = (1 + λ1)�(1 + λ1), which leads to bg 	 1 − δ−1

c +
2δ−1

c (1 + λ1). We also note that taking α = 1 leads to λ1 = −1/2 and
bg = 1, simply reflecting the halo bias consistency relation. On the
other hand, in the limit of very large threshold masses (x1 � 1) we
obtain bg 	 1 + δ−1

c + 2δ−1
c x1. Hence, in order to increase bias, it

is sufficient that x1 � 1 – however, this is not a necessary condition:
one could also fix the cut-off mass scale and decrease n, or increase
α.

A similar calculation as the one performed in equation (30) leads
to an expression for the 1-halo term of the galaxy power spectrum:

P 1h = 1

n̄2
g

∫
d ln M

dn̄h

d ln M
N̄2

=
[√

2

π

ρm

M∗
22λ1−λ2

]−1

× �(1 + λ2, x1)

[�(1 + λ1, x1)]2
, (32)

where on the first line the term 〈N(N − 1)〉 reduces to N̄2 since
we only have satellite galaxies with a Poisson distribution, and
on the second line we have substituted the expression for n̄g and
λ2 = λ0 + 6α/(n + 3). Using the expression for the number density
of haloes hosting these galaxies, equation (26), we obtain:

P 1h = �(1 + λ0, x1) �(1 + λ2, x1)

[�(1 + λ1, x1)]2
× 1

n̄h,g
. (33)

Notice that the three indices, λ0 (that appeared in n̄h,g), λ1 (which
appeared in n̄g and bg), and λ2, are related by λ0 = 2λ1 − λ2.
By substituting the asymptotic expression for �(κ , z) in the limit
z → ∞ one can verify that the pre-factor appearing equation (33)
is �(1 + λ0, x1)�(1 + λ1, x1)/[�(1 + λ1, x1)]2 	 1. Hence, in the
limit of high threshold mass, P 1h ≈ 1/n̄h,g.

In the opposite limit, of low threshold masses, the pre-factor can
become quite large – but then so does n̄h,g become large. In general,
this case corresponds to tracers with low biases. In that limit, it is
convenient to revert to the original expression, equation (32), and
write instead:

P 1h = 2λ2−λ1

n̄g

(
M∗
M1

)α
�(1 + λ2, x1)

�(1 + λ1, x1)

	 2λ2−λ1

n̄g

(
M∗
M1

)α
�(1 + λ2)

�(1 + λ1)
. (34)

Let us suppose that we can change the HOD parameters while
maintaining the mean number of galaxies, n̄g, fixed. In the limit

Figure 2. Scaling of the 1-halo term in the PS model. The exact formula,
equation (32), is denoted by the thick solid lines (upper line: n = −2; lower
line: n = −1), while the dashed lines correspond to the approximation of
equation (36). The dotted lines are the power laws b4

g (for the case n = −1)

and b6
g (for the case n = −2).

of low-mass threshold the bias is bg ≈ 1 − δ−1
c + δ−1

c [1 + 6(α −
1)/(n + 3)] – i.e. higher values of α and/or lower values of n cor-
respond to higher biases. Since λ2 = λ1 + 3α/(n + 3), the ratio
of Gamma functions in equation (34) can be regarded as a steep
function of bias.

From equation (33) we see that P1h, which is proportional to
1/n̄h,g, plays the role of a halo shot-noise term. For highly biased
tracers (whose mass thresholds are relatively high), the galaxies end
up in just a few haloes, so that the halo shot noise term becomes
an important part of the power spectrum and its covariance. This
means, in particular, that the barrier for measuring the (2-halo)
power spectrum with highly biased tracers may not be just the shot
noise of that tracer, but also an additional halo shot noise coming
from the 1-halo term.

In the limit of high bias (and high-mass thresholds), we can
neglect the subdominant dependence in the pre-factor of 1/n̄h,g in
equation (33), and express the contribution of the halo shot-noise
term as a function of bias. Using bg 	 1 + δ−1

c + 2δ−1
c x1 → 2δ−1

c x1,
the mean number density of haloes can be expressed as

n̄h,g ∼ x
− n+9

2(n+3)
1 e−x1 ∼ b

− n+9
2(n+3)

g e−bg δc/2, (35)

hence,

P 1h ∼ x
n+9

2(n+3)
1 ex1 ∼ b

n+9
2(n+3)
g ebg δc/2. (36)

For intermediate values of the galaxy bias the 1-halo term is well
approximated by a power law. In Fig. 2 we show the exact formula,
equation (32), for the cases n = −1 (lower solid line) and n = −2
(upper solid line), in arbitrary units. The first approximation in the
middle of equation (36) is plotted as the dashed lines for the two
cases, where we used x1 ≈ (1 − δc + δc bg)/2. One can see that the
approximation becomes better for higher values of the bias. Also
plotted (dotted lines) are the power laws b4

g (for the case n = −1)
and b6

g (for the case n = −2). The simple power laws shown in
Fig. 2 are a good approximation in the interval 1.5 � bg � 3.

Since the 2-halo term scales as P 2h = b2
g Pm, but the 1-halo term

grows much faster with bias, the latter component should become
increasingly important for highly biased tracers. In fact, this already
happens at small scales (k � 1 h Mpc−1) even for galaxies with
relatively low biases. If we select tracers with increasing values of
the bias (e.g. quasars), the 1-halo term will become more important,
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2850 L. R. Abramo et al.

even in the large-scale limit, acting effectively as a type of ‘halo
shot noise’. However, in contrast to the usual situation where shot
noise can be beaten down by observing a larger number of galaxies,
when the tracers are very highly biased this halo shot noise cannot
be lowered, and a limiting factor for measuring the power spectrum
is the finite number of haloes, and not only the number of galaxies
in the survey.

It is easy to see that this argument also applies to higher order
correlation functions. The same type of integral computed above
appears also in the 1-halo term of the trispectrum, equation (14),
and taking k → 0 and k′ → 0 leads to:

T 1h = 1

n̄4
g

∫
d ln M

dn̄h

d ln M
[4N̄3 + N̄4]

= 1

n̄4
g

×
√

2

π

ρm

M∗

[
4

(
M∗
M1

)3α

2λ3�(1 + λ3, x1)

+
(

M∗
M1

)4α

2λ4�(1 + λ4, x1)

]
, (37)

where λi = λ0 + i × 3α/(n + 3). In the high-mass, high-bias limit
we obtain that

T 1h ∼ b
3
2

n+9
n+3

g e3bg δc/2 ∼ (
P 1h

)3
. (38)

Thus T1h will become a dominant part of the power spectrum co-
variance matrix in the high bias limit.

The same calculation can be employed generally for the 1-halo
term of the N + 1th order polyspectrum in the high bias limit,

showing that it grows with the scaling b
N
2

n+9
n+3

g eNbg δc/2 ∼ (
P 1h

)N
.

Hence, we conclude that for highly biased tracers not only the
power spectrum, but also the higher-order statistics, are increasingly
affected by intrahalo statistics, and may become effectively limited
not only by the counts of the tracers, but by the counts of the haloes
as well.

3.2 ST mass function and a simple HOD

In this section, we still consider, as before, a simplified HOD which
does not distinguish between central and satellite galaxies. However,
we now consider a cut-off mass for the halo richness, Mc, which is
different from the mass scale M1 (in fact, typically Mc < M1 – see
e.g. Tinker et al. (2008)). Hence, our HOD is

N̄(M) =
(

M

M1

)α

θ (M − Mc). (39)

Defining the variable:

x = a

2
ν2 → a

2

(
M

M∗

) n+3
3

, (40)

and the cut-of

xc = a

2

(
Mc

M∗

) n+3
3

, (41)

the calculations of the previous section can now be performed in
basically the same fashion. The number density of haloes that can
host galaxies is

n̄h,g = ρm

M∗

A√
π

(
2

a

)λ0 ∫ ∞

xc

dx xλ0
[
1 + (2x)−p

]
e−x

= n̄0

(
2

a

)λ0 [
�(1 + λ0, xc) + 2−p�(1 + λ0 − p, xc)

]
, (42)

Figure 3. Galaxy bias obtained using the ST formalism (blue lines and filled
region), and in the PS formalism (red, long-dashed lines and filled region),
as a function of the cut-off scale xc [see equation (41)]. The parameters were
allowed to range in the intervals 0.9 < α < 1.1, and −2 < n < −1. The
black (short-dashed) line shows the approximation of equation (45).

where, as previously, λ0 = −1/2 − 3/(3 + n), and we have defined
n̄0 = ρmA/M∗

√
π .

A similar calculation leads to the mean number density of
galaxies:

n̄g = n̄0

(
M∗
M1

)α (
2

a

)λ1

× [
�(1 + λ1, xc) + 2−p�(1 + λ1 − p, xc)

]
, (43)

and the galaxy bias becomes

bg = 1 − δ−1
c + 2δ−1

c

�(1 + λ1, xc) + 2−p�(1 + λ1 − p, xc)

× [
�(2 + λ1, xc) + 2−p�(2 + λ1 − p, xc)

+ p 2−p�(1 + λ1 − p, xc)
]
. (44)

In the limit of xc � 1 the galaxy bias can be considerably simplified,
in fact

lim
xc=∞

bg → 1 − δ−1
c + 2δ−1

c xc, (45)

which is basically the approximate expression we obtained in the
PS case, where x1 played the role of the cut-off mass scale. This
relationship between the cut-off scale and the bias allows us to
write, in the limit of high biases, xc 	 δc(bg − 1 + δ−1

c )/2. This
turns out to be a fairly good approximation as can be seen from
Fig. 3. Notice that we do not expect the model of equation (39)
to hold for low-biased galaxies, when the small-halo mass limit is
critical.

After some algebra, the 1-halo term can be expressed in the same
way as was done for the PS case:

P 1h = q
1

n̄h,g
, (46)

where

q = �(1 + λ0, xc) + 2−p�(1 + λ0 − p, xc)

[�(1 + λ1, xc) + 2−p�(1 + λ1 − p, xc)]2

× [
�(1 + λ2, xc) + 2−p�(1 + λ2 − p, xc)

]
. (47)
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Scaling of the 1-halo terms with bias 2851

In the limit of xc � 1 we can use the series expansion of
equation (29) to show that, as in the PS case, the pre-factor q → 1.2

In this limit P1h reduces to the following expression:

P 1h 	
[
n̄0

(
2

a

)λ0

xλ0
c

(
1 + 2−px−p

c

)
e−xc

]−1

(48)

with xc depending on the bias in the following way:

xc = δc

2
(bg − 1 + δ−1

c ). (49)

Conversely, in the limit xc � 1, we obtain the following scaling for
the one-halo term:

P 1h 	 �(1 + λ2) + 2−p�(1 + λ2 − p)

n̄0

(
2
a

)λ0 [�(1 + λ1) + 2−p�(1 + λ1 − p)]2
. (50)

Comparing equation (36) and equation (48), we see that, for high
values of the bias, the 1-halo term in the ST model behaves in
basically the same way as was found for the PS formalism.

3.3 Semi-analytical model: Tinker mass function and
realistic HOD

The analytical approximations of the previous sections have allowed
us to obtain simple expressions for the number densities of galaxies
and haloes, the bias, and the 1-halo terms, but we made some
strong assumptions – in particular, about the simple scaling of halo
richness, about the assumption of self-similarity which fixed the
scaling of ν with mass, and about the way in which we cut off
the halo richness below some given mass scale. Although the final
results may have seemed natural and physically sensible, they could
have been influenced or even driven by these simplifications.

In this section, we argue that these results are robust. We show
this by improving the modelling of the previous sections in a
number of ways: first, we calculate the mass variance σ (M) of
equation (1) from the power spectrum of a vanilla-�CDM model;
secondly, we employ the Tinker et al. (2008) mass function and
halo bias of equations (22)–(23), which are a slightly better fit to
the N-body simulations compared to the PS or ST expressions; and
thirdly, we use a class of HODs which is inspired and calibrated by
observations (Zheng et al. 2005, 2007, 2009). We also distinguish
between central and satellite galaxies – whereas in the preceding
sections we implicitly assumed that all galaxies were satellites.

As for the HOD, we have used the formulas of equations (6)–(7)
for the halo richness of central and satellite galaxies. Typical values
for these parameters are Mc 	 1013.5 h−1 M
, M1 	 1014. h−1 M
,
α 	 0.9, κg 	 1.1, and σ g 	 1 (Zheng et al. 2009).

In contrast to the previous sections, where all calculations could
be carried out exactly, here we instead compute numerically the
galaxy number density of equation (9), the bias of equation (10),
and the 1-halo term of equation (12). In this way we can explore
basically any point in parameter space, and compute the properties
of the galaxy models corresponding to those points.

2 In this limit, we see from equation (46) that the 1-halo term of the power
spectrum inherits a dependence on the number density of the haloes that
contain at least one galaxy. However, the HOD we used in this section
and in the previous one make no distinction between central and satellite
galaxies – in fact, we have simply used the typical parametrizations used
for satellites. Hence, in this context, n̄h,g should be regarded as the number
density of haloes containing more than one galaxy.

Figure 4. Top panel: 1-halo term in the HOD of equations (6)–(7).
The models were split according to the number density of galaxies.
From left to right, and from the bottom up, the models shown have
10−3.15 ≥ n̄g ≥ 10−3.45, 10−3.45 ≥ n̄g ≥ 10−3.75, 10−3.75 ≥ n̄g ≥ 10−4.05,
and 10−4.05 ≥ n̄g ≥ 10−4.35. In each case, the horizontal shaded area marks
the corresponding range of 1/n̄g. The dashed black line is the power law
b4.5

g . The stripes seen mostly in the lower-right corner are just an artefact of
the grid we used to explore the HOD parameter space. Bottom panel: 1-halo
term of the trispectrum for the same class of HODs. The dashed black line
is the power law b13.5

g . The horizontal shaded areas mark the corresponding

ranges of 1/n̄3
g.

We allow the parameters to vary in the following ranges, while
keeping always Mc ≤ M1:

12.75 < log10 Mc h/M
 < 14.25, (51)

13.2 < log10 M1 h/M
 < 15.0, (52)

0.85 < α < 1.15, (53)

0.85 < σg < 1.15, (54)

1.0 < κg < 1.3. (55)

The results for the 1-halo term of the power spectrum are shown in
the top panel of Fig. 4. We have split the different HOD models in
four groups, according to the number densities of galaxies. From
the bottom, the horizontal shaded areas correspond to HODs whose
ranges of n̄−1

g fall in the intervals 10−L+0.15 ≥ n̄g (h3 Mpc−3) ≥
10−L−0.15, for L = 3.3, 3.6, 3.9, and 4.2. The values of P1h for mod-
els in those four groups are shown as points of the same colours as
the shaded areas, from lower-left to upper-right, respectively. The
dashed black line is the power law b4.5

g .
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2852 L. R. Abramo et al.

Figure 5. 1-halo term of the trispectrum plotted against the 1-halo term of
the power spectrum, for the HOD of equations (6)–(7). The dashed black
line is the power law (P1h)2.5. The models were split according to bias: from
lower-left to upper-right, the different colours indicate models with 1.0 ≤
bg ≤ 1.5, 1.5 ≤ bg ≤ 2.0, 2.0 ≤ bg ≤ 2.5, and 2.5 ≤ bg ≤ 3.0.

We saw in Sections 3.1 and 3.2 that the 1-halo term evolves like
a power-law in bg for intermediate values of the galaxy bias. This
is again what we observe here: the asymptotic behaviour of the
one-halo follows a steep power law as a function of galaxy bias.
The growth of the 1-halo term is constrained by the requirement
that Mc ≤ M1, which limits the number of galaxies in haloes, and
imposes an upper limit on the bias and the 1-halo term. If we relax
this physical requirement, the power-law evolution of the 1-halo
term continues at higher bias.

The results obtained in Sections 3.1 and 3.2 were derived under
the assumption that all galaxies are of the ‘satellite’ type – an ap-
proximation that we did not use here. For highly biased tracers the
1-halo term can be comparable to Poisson shot noise, which shows
that the ‘central’ galaxies are less relevant in that limit, providing
a motivation for that approximation in Sections 3.1 and 3.2. Con-
versely, the fact that P1h drops well below the level of galaxy shot
noise for low values of the bias shows that, for such types of objects,
the central galaxy plays an important role, as many (or most) haloes
host a single central galaxy.

In the bottom panel of Fig. 4, we show the results for the 1-halo
term of the trispectrum of equation (14), in the limit k → 0, k′ → 0,
for the same range of HOD parameters used in the top panel. Again,
we separate the models in groups, according to the number density
of galaxies, and the horizontal shaded areas denote the different
values of n−3

g for each group. The dashed line is the power law
b13.5

g .
As argued above, the 1-halo term of the trispectrum also scales

rapidly with bias, approximately as (P1h)3. In Fig. 5, we show the
1-halo term of the trispectrum [equation (14)] against the 1-halo
term of the power spectrum. The dashed line indicates the scaling
(P1h)2.5.

3.4 Simulations

We further test the results from the previous sections in a fully
numerical setup, by using a catalogue of haloes from the DEUS
simulations3 (Alimi et al. 2010; Rasera et al. 2010; Courtin et al.
2011). We use haloes detected with the Friends-of-Friends algo-
rithm in a box of 648h−1 Mpc, containing 10243 DM particles, in

3 http://www.deus-consortium.org

a �CDM cosmology in agreement with WMAP5 (Komatsu et al.
2009). We should note that the DEUS mass function is very well fit
by the Tinker mass function, and that the DEUS halo bias is also
well fit by the Tinker halo bias.

We populate the haloes using the HOD formalism presented in
equations (6) and (7), with fixed parameters α = 0.9, σ g = 1.0 and
κg = 1.1. The Mc and M1 parameters are allowed to vary in the
ranges given in equations (51)–(52).

The number Nc of central galaxies is either 0 or 1, and is drawn
from a nearest-integer uniform distribution with mean N̄c. For
haloes containing a central galaxy, the number of satellite galaxies
is then drawn from a Poisson distribution with mean Ñs (since we
are taking the k → 0 limit for the 1-halo term, it is irrelevant where
in the halo those satellite galaxies are placed). Obviously, haloes
that do not contain a central galaxy have no satellite galaxies.

With the DEUS halo catalogue, and the HOD implementation
described above, expressions such as that for the number density of
galaxies become:

n̄g =
∫ ∞

M1

d ln M
dn̄h

d ln M
× N̄ (M)

−→ 1

V

∑
h

{Nc[M(h)] + Ns[M(h)]}

= 1

V

∑
M

Nh(M) [N̄c(M) + N̄s(M)], (56)

where V is the volume of the simulation. In order to compute galaxy
bias, for simplicity we employ the Tinker bias, equation (23), in
equation (10).

The resulting scaling between the 1-halo term and the galaxy
bias is shown in the top panel of Fig. 6. The same type of scaling
found in the previous sections appears here – the grey line indicates
the power law P 1h ∝ b5

g. In order to check whether this scaling
is sensitive to the precise form of the HOD used, we also test a
different HOD prescription for which

N̄g ∝ log
M

Mc
for M > Mc. (57)

The number of galaxies in each halo is drawn from a Poisson distri-
bution with mean given by the formula above. The scaling obtained
in this case between the 1-halo term and the galaxy bias is shown on
the bottom panel of Fig. 6. The grey line now follows b4.5

g , a scaling
very similar to the one found in the previous cases.

As is the case in the original HOD of the previous sections, in this
alternative HOD prescription the richness is an increasing function
of halo mass. We also tested HOD models where the richness be-
comes constant, or even decreases, with increasing halo mass, and
in those cases we do not recover the same type of scaling between
bias and the 1-halo term of the power spectrum. However, we do
not consider this to be a limitation of our study, as we expect realis-
tic HODs to display an average number of galaxies monotonically
increasing with halo mass.

4 D I SCUSSI ON

We have shown that, when the galaxy bias is high enough (bg � 3),
the 1-halo term of the power spectrum grows faster as a function of
bias than the 2-halo term. We also showed that the 1-halo term of
the trispectrum grows much faster than the 4-halo term. We argue
that the 1-halo terms of all the N-polyspectra scale faster than the
N-halo terms of those polyspectra.
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Figure 6. 1-halo term and galaxy bias obtained from the DEUS simulated
halo catalogue populated with the HOD of equations (6)–(7) (top panel),
and with the test HOD of equation (57) (bottom panel). In the top panel, the
grey line shows the scaling b5

g, while in the bottom panel the scaling is b4.5
g .

We interpret these results in the following way. Galaxy bias pro-
vides an intuitive physical interpretation of the way in which the vis-
ible matter distribution is related to the underlying DM distribution.
Given a Gaussian field δG, taken from a distribution whose variance
(in Fourier space) is basically the matter power spectrum, the den-
sity contrast of a biased tracer on a grid of finite-volume cells can be
approximated by a lognormal field, δg = exp[bgδG − b2

gσ
2
G/2] − 1,

where bg is the bias of the tracer, and σ 2
G is the variance of the

Gaussian field on the volume of the cell of the grid (Coles & Jones
1990). As the bias increases, the number of particles found in the
density peaks grow very fast (Bardeen et al. 1986) – exponentially,
in the lognormal model – while most of the space is emptied.

In terms of the Halo Model, we can vary the HOD parameters
in such a way that the mean number density is kept fixed while
the bias increases. For highly biased galaxies we expect to find
more objects concentrated in fewer haloes. This implies that, for
very high values of the bias, the galaxy 2-point statistics can get
a large contribution from the statistics of haloes hosting two or
more galaxies. This argument extends to all the N-point statistics:
in the high-bias limit there will be many galaxies inside the same
few haloes, which means that all the 1-halo terms of the N-point
statistics will become increasingly important.

In Section 3.1, within the Press & Schechter (1974) formalism,
we used very simple formulas for the halo richness and for the

scaling of the mass variance (and peak height), to show that the 1-
halo term of the power spectrum grows very fast with bias. A more
refined analytical calculation, done in Section 3.2 using the Sheth &
Tormen (1999) framework, shows basically the same scaling. In
Section 3.3, we employed the Tinker et al. (2008) mass function,
realistic HODs, and an exact computation of the mass variance in
�CDM models, and confirmed that the 1-halo term of the power
spectrum scales at least as fast as P 1h ∼ b4−5

g . Similarly, we showed
that the 1-halo term of the trispectrum scales as fast as T 1h ∼ b12−15

g .
Finally, in Section 3.4 we used a halo catalogue derived from the
DEUS simulation, and two different kinds of HODs, and again
obtained the same scaling laws.

The fact that simple analytical arguments show the correct scal-
ing of the 1-halo terms with bias is a hint that these results should
be related to basic properties of Gaussian fields and the matter
power spectrum. In fact, tracers of different biases effectively probe
different scales in the power spectrum: higher/lower masses (and
higher/lower biases) are related to larger/smaller scales. Since the
matter power spectrum has a power index that ranges between
n 	 −1 at large scales, to n 	 −2 at small scales, the power index
which is relevant for the halo masses typical of a certain type of
galaxy is also an indicator of the bias of that galaxy. Conversely, bias
also tells us how galaxies are distributed among the DM haloes, and
about the typical peak height which corresponds to a galaxy with
that bias. In particular, a higher bias implies that galaxies will be
more concentrated on fewer haloes, enhancing the 1-halo terms.
Since all these properties can be traced back to the slope of the
power spectrum, it is not surprising to find that different types of
galaxies present the same scaling of the 1-halo term with bias.

Since the 1-halo terms are constant on large scales, for cosmo-
logical surveys that cannot resolve the inner structure of haloes,
these terms enter effectively as additional sources of noise and co-
variance. Conversely, very accurate and complete surveys will be
able to detect much better the amplitudes and scale dependences of
the 1-halo terms when the bias is sufficiently high, implying better
constraints on HOD parameters.

In particular, cosmological surveys targeting highly biased ob-
jects could be severely impacted by the effects of the statistics of
counts of the haloes hosting those objects. Measurements of the
power spectrum from these surveys should take into account not
only the higher effective shot noise coming from the 1-halo term
of the power spectrum, but also the additional contribution to the
power spectrum covariance coming from the 1-halo term of the
trispectrum. Similarly, measurements of the bispectrum which em-
ploy highly biased tracers should ensure that the relevant 1-halo
terms are properly taken into account.

Finally, although we worked at z = 0, it would be interesting
to find out what happens at high redshifts. On the one hand, the
bias of a given population of tracers is typically increasing as a
function of redshift; but on the other hand, linear theory should
become a better approximation, which means that the 1-halo term
should be less important. Therefore, at higher redshifts the form of
the scaling of the 1-halo term should depend sensitively not only
on the amplitude of the power spectrum, but also on the evolution
of the HOD parameters.

The cosmic infrared background (CIB) is a good example: in that
case (redshifts z ∼ 1 − 4), the 1-halo term has a higher amplitude
compared with shot noise, which helped constrain the HOD of the
sources the CIB (Thacker et al. 2013). A similar situation may arise
as galaxy surveys aim at deeper redshifts and higher number den-
sities with objects such as emission-line galaxies and quasars (e.g.
JPAS (Benı́tez et al. 2015); eBOSS (Dawson et al. 2015); DESI
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(Levi et al. 2013); PFS (Ellis et al. 2012)), HI intensity maps (with,
e.g. SKA4), etc.: the amplitude of the 1-halo terms should be kept
in check in order to ensure the reliability of the forecasts from
these surveys. We plan to examine in future work how extrapola-
tions of the existing HODs to higher redshifts impact the signal-to-
noise levels and the cosmological constraints for some future galaxy
surveys.
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