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Abstract – Friedel oscillations are ubiquitous features seen in all impurity-doped metallic struc-
tures but in the case of graphene-like materials they are not so evident because the relevant
wavelengths are perfectly commensurate with the lattice parameter. Here we demonstrate that
this commensurability effect leads to a slow convergence of supercell-based total energy calcula-
tions in impurity-doped carbon nanotubes. We derive a mathematically transparent expression
for the formation energy and identify a very distinctive dependence on the size of the supercell
unit. We make use of this dependence through a simple extrapolation scheme to obtain density
functional theory results with accuracy levels that would otherwise require enormously large unit
cells.

Copyright c© EPLA, 2017

Introduction. – One of the signatures of a symmetry-
breaking perturbation in solids is the appearance of spa-
tial fluctuations in quantities such as the local density of
states (LDOS) and the carrier density, both of which os-
cillate away from the perturbation. Commonly known as
Friedel oscillations (FO) [1], these are seen in all impurity-
doped metallic systems. In the case of hosts made of ei-
ther graphene [2,3] or its derivatives [4], such oscillations
are hidden by a simple commensurability effect that sup-
presses this otherwise ubiquitous feature [5]. Because the
characteristic wavelengths are identical to the spacing be-
tween equivalent carbon sites, one has the impression that
there are no FO in graphene-based materials [6].

This apparently innocuous effect has an impact on sev-
eral fronts. For a start, it explains the sublattice asym-
metry seen in impurity-doped graphene where dopants
favour one of the two sublattices of graphene even though
both are absolutely equivalent [7–9]. Originally seen in
graphene substitutionally doped with nitrogen [10,11],

(a)E-mail: ferreirmtcd.ie

sublattice asymmetry has also been reported in graphene
samples adsorbed with hydrogen [12], molybdenum [13]
and boron [14]. Another consequence of having local fluc-
tuations with exactly the same wavelength as the carbon-
carbon spacing is that the bonding symmetry with which
a dopant binds to graphene may determine how strong
a scatterer this dopant is. As a result, centre-bonded
impurities tend to be completely invisible causing no scat-
tering whatsoever [15,16]. In addition, the commensura-
bility effect is again the key behind the prediction that
magnetic impurities couple ferromagnetically or antiferro-
magnetically depending exclusively on whether they are
located on the same or on distinct sublattices [6,17–20].
Finally, another important consequence of this effect is the
extra care needed for calculations of magnetically doped
graphene when there is a natural tendency for anti-parallel
alignment between the magnetic moments [21,22].

One simple way of explaining the existence of such
a commensurability effect is to remember that dopant-
induced FO are determined by the geometry of the host’s
Fermi surface. In the case of graphene-based materials,
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the Fermi surface consists of six points on the corners of
the hexagonal Brillouin zone (BZ). In this case, the pres-
ence of a symmetry-breaking dopant generates FO with
wave vectors that span the BZ and when that happens
the corresponding wavelengths become identical to the pe-
riodicity of the underlying lattice. In other words, FO
are perfectly commensurate with the lattice parameter of
graphene simply because of the peculiar Fermi surface of
this material.

Here we demonstrate another important case in which
the commensurability effect in graphene-based materials
may have a very strong repercussion, this time on im-
proving the accuracy of total energy electronic structure
calculations that are carried out in the so-called supercell
representation. It is worth remembering that most den-
sity functional theory (DFT) [23,24] implementations are
indeed based on this representation and for that reason
will serve as the main testbed of our study. We shall fo-
cus on carbon nanotubes (CNT) because the impact of the
commensurability effect is more pronounced as the system
dimensionality is reduced [25].

General theory. – Let us start by defining the model
Hamiltonian that will guide us throughout the manuscript.
The system consists of a single substitutional impurity in-
serted into an otherwise crystalline carbon nanotube. The
system is fully described by the Hamiltonian Ĥ = Ĥ0 + V̂ ,
where

Ĥ0 =
∑
〈i,j〉

|i〉ti,j〈j| (1)

corresponds to the pristine nearest-neighbour tight-
binding Hamiltonian of the nanotube and the operator
V̂ = |0〉λ〈0| represents a mere shift in the on-site poten-
tial where the impurity is located (site i = 0). The matrix
elements ti,j = t when i and j label nearest-neighbour sites
and vanish otherwise. The value of t is arbitrary and will
hereafter serve as our energy unit. It is worth emphasiz-
ing that the simplicity of this single-orbital Hamiltonian
is in no way a limiting factor since it can be easily general-
ized to a multi-orbital representation which may account
for further nearest-neighbour couplings as well. Likewise,
the premise that the introduction of a substitutional im-
purity impacts only the on-site potential on the impurity
site is a consequence of the screening and can be easily
relaxed without any qualitative change to our results and
conclusions.

Associated with the Hamiltonian Ĥ0, we assign the
single-particle Green function (GF) defined as Ĝ = (E −
Ĥ0)−1, being E the energy. The LDOS ρ� at an arbitrary
site � can be easily expressed in terms of Ĝ as follows:

ρ� = − 1
π

{
Im[G�,�] + Im[G�,0λ(1 − G0,0λ)−1G0,�]

}
, (2)

where the first term on the r.h.s of the equation above
represents the LDOS of the impurity-free system. Note
that the position dependence of the LDOS in eq. (2) is
entirely contained in the product G0,�×G�,0. This position

dependence is bound to manifest itself in other quantities
as well, one of them being the integrated LDOS, i.e., the
charge density.

Rather than writing the charge density itself, it is con-
venient to express the change in this quantity as a result
of the introduction of the impurity and how it depends on
the LDOS variation. It is given by

Δn� =
∫ +∞

−∞
dEf(E)Δρ�, (3)

where f(E) is the Fermi-Dirac distribution function and
the quantities Δn� and Δρ� correspond to the changes in
charge density and in LDOS at site �, respectively.

In addition, the energy cost associated with the intro-
duction of the impurity can be expressed as the change in
total energy, i.e.,

ΔE1 =
∑

�

∫ +∞

−∞
dEf(E)EΔρ�, (4)

where the subscript 1 refers to the introduction of a single
impurity. ΔE1 is associated with the energy-band con-
tribution to the total energy variation and is present in
quantities like the binding energy and formation energy,
for instance. Fortunately, there are certain sum rules that
permit eq. (4) to be rewritten in a far more convenient
form, namely [7]

ΔE1 =
1
π

∫ +∞

−∞
dEf(E)Im ln[1 − G0,0λ]. (5)

Whereas Δρ� obviously depends on �, the quantity ΔE1

is not position dependent. Indeed, eq. (4) contains a sum
over all sites � and eq. (5) involves only the diagonal ma-
trix element G0,0 which is identical to any other diago-
nal element G�,� and therefore carries no dependence on
position.

We now turn our attention to the energy cost ΔE2 as-
sociated with the introduction of two impurities, one at
site 0 and the other at site � a distance D apart. In this
case the potential V̂ simply acquires another term, i.e.,
V̂ = |0〉λ〈0|+ |�〉λ〈�|. The energy cost in this case is given
by [7]

ΔE2 = 2ΔE1 + C(D), (6)

where

C(D) =
∫ +∞

−∞
dEf(E)Im ln

[
1 − λ2G0,� G�,0

(1 − λG0,0)2

]
. (7)

Note that the only position-dependent part of the inte-
grand above is contained in the product G0,� × G�,0, simi-
larly to the case seen in eqs. (2) and (3). For that reason,
the quantity C(D) is expected to display the same position
dependence as the charge density Δn�.

To generalize the energy cost expression in eq. (6) be-
yond a single pair of impurities we define the energy cost
ΔEN associated with the introduction of N impurities,

ΔEN = NΔE1 +
∑
�,m

C(D�,m), (8)
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where the sum now runs over all possible impurity pairs
and D�,m represents the separation between impurities at
sites � and m. Note that any contribution beyond the
pairwise interaction terms contained in C(D) have been
neglected. It is worth pointing out that any ionic contri-
bution contained in the relaxation around the impurity is
very localized and somewhat similar whether one calcu-
lates ΔEN/N or ΔE1.

In the case of hosts whose energy cost for adding impuri-
ties is described by an oscillatory function C(D), the sum
in eq. (8) is likely to be averaged out. Whether the impuri-
ties are orderly spaced or randomly distributed, whenever
the function C(D) is oscillatory the single-impurity con-
tribution to the energy cost ΔEN will dominate over the
impurity-interaction contributions, i.e., ΔEN ≈ NΔE1.
Bearing in mind that the oscillatory form of C(D) results
from the existence of FO, this behaviour is expected to
be prevalent in most materials. However, as previously
explained, FO are hidden by the commensurability effect
in carbon because the FO wavelengths coincide exactly
with the nanotube lattice parameter [5,25]. Therefore, this
suggests that a large number of impurities inserted in a
nanotube will impact the energy balance of the system
because the sum on the r.h.s. of eq. (8) will not be av-
eraged out but may yield a contribution comparable to
NΔE1.

In order to proceed, we require a more quantitative de-
scription of the function C(D). Lawlor et al. [5,8] have
shown that C(D) is in general oscillatory and obeys the
following functional form C(D) ∝ cos(QD)/Dα, where Q
and α are constants that depend on the geometry of the
Fermi surface and on the system dimensionality, respec-
tively. Mathematically, the explanation for the absence
of FO in graphene-related materials lies in the fact that
the commensurability effect makes the product QD = 2π,
which suppresses the oscillatory character of the function
C(D). With that in mind, we must revisit the energetics
of a graphene-related material with a large number of im-
purities. Described by eq. (8), the energy balance becomes

ΔEN

N
= ΔE1 +

1
N

∑
�,m

γ

(D�,m)α
, (9)

where ΔEN

N is the energy cost per impurity and γ is a con-
stant. Note that even though the individual terms in the
summation may be substantially smaller than ΔE1, their
addition may add up to a sizable contribution because
without oscillations all terms have the same sign. In this
case the interaction between impurities can certainly im-
pact the overall energy balance of the system, leading to
ΔEN/N �= ΔE1.

One striking consequence of the absence of FO is what
happens when impurities are orderly distributed. Con-
sider, for example, a carbon nanotube with substitu-
tional impurities placed homogeneously along its length.
Although it might not seem like a realistic setup, this is the
typical spatial arrangement in the supercell representation

commonly used in most ab initio computational methods
for materials [26–28]. The rationale behind the use of a
supercell in the study of doped systems is that total energy
evaluations converge when the cells are large and impuri-
ties are sufficiently far apart [29,30].

In the case of an infinitely long nanotube doped with
one impurity per unit cell of size L, the energy balance
equation above can be rewritten as

ΔEN

N
= ΔE1 +

+∞∑
m=1

2γ

(mL)α
, (10)

where the summation index m is an integer running from
1 to +∞ and the factor 2 accounts for the 1-dimensional
symmetry of the host. By factoring the unit cell size L
out of the summation, the change in total energy per unit
cell acquires a simple form given by

ΔEN

N
= ΔE1 +

β

Lα
, (11)

where β ≡ 2γ
∑

m m−α.
Equation (11) is the key result of this manuscript and its

interpretation is as follows. When calculating total energy
variations of impurity-doped systems within the supercell
representation, the quantity that is usually obtained is the
energy change per unit cell ΔEN/N . This value is expected
to coincide with the real quantity of interest, namely ΔE1,
because β ≈ 0 in the limit of sufficiently large values of
L. This is indeed the case for the vast majority of mate-
rials that display FO. However, β �= 0 in the absence of
FO and the calculation of ΔEN/N alone is not sufficient
to give direct information about ΔE1. In this case the
last term on the r.h.s of eq. (11) must also be taken into
account.

Far from invalidating the supercell methodology, we ar-
gue that the lack of FO offers a great opportunity to en-
hance the accuracy of such calculations. By making use
of the functional form shown in eq. (11), a plot of ΔEN/N
as a function of L−α should generate a distinctive straight
line with the slope described by β and with the intercept
given by ΔE1.

DFT supercell calculations. – As previously antic-
ipated, the findings based on the simplified Hamiltonian
defined in eq. (1) are very robust and should be seen in
more realistic Hamiltonians [31,32]. With that in mind,
we perform DFT calculations of nanotubes doped with
substitutional impurities. Our goal is to show that DFT-
evaluated results for ΔEN/N plotted as a function of 1/Lα,
where L is the unit cell size, also give rise to a distinctive
straight line. Consequently, we are able to obtain ΔE1 by a
simple extrapolation mechanism with calculations involv-
ing only relatively small unit cell sizes.

Figure 1 shows the different structures considered in
our calculations. We use a (5, 5) carbon nanotube con-
taining either a single substitutional nitrogen or boron
atom. In all cases the length of the cell L is varied from
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Fig. 1: (Color online) Top (left panels) and side (right panels)
views of the structures considered in our calculations. A (5, 5)
armchair CNT with a substitutional (a) nitrogen, or (b) boron
impurity. In the figures, L indicates the length of the unit cell.

1 to 15 nanotube rings. The electronic structure simula-
tions were conducted with ab initio DFT as implemented
in SIESTA [28]. We used the generalized gradient ap-
proximation (GGA-PBE) [33] for the exchange-correlation
functional. The valence electrons are described by a
double-ζ polarized (DZP) basis set, and norm-conserving
pseudopotentials [34] were used. The cutoff for the real
space grid was fixed at 450Ry, and the number of k-points
in the Brillouin zone varied depending on the size of the
unit cell. For the smaller cell length 200 k-points were
used. In order to prevent spurious interaction between im-
ages a vacuum region of 20 Å in the transverse direction
was introduced. All structures were fully relaxed using a
conjugate gradient (CG) algorithm with residual forces in
each component of every atom smaller than 0.01 eV/Å.

For comparing our DFT calculation with those of
eq. (11) we consider the formation energy,

Ef (L) = Edef (L) − Epris (L) +
∑

i

niμi, (12)

where Epris(L) corresponds to the total energy of a pristine
nanotube with supercell length L, Edef(L) is the energy
of its counterpart containing the impurity, ni ∈ N is the
number of atoms of species i removed (ni > 0) or added
to the (ni < 0) to the system, and finally μi is the chem-
ical potential for the corresponding system. In the case
of carbon, μC is the cohesive energy of a (5, 5) nanotube,
and in the cases of nitrogen and boron, we considered the
chemical potential as half of the binding energy for the
corresponding diatomic molecule. Ultimately the choice
of chemical potential is somewhat arbitrary and will only
introduce a rigid shift on Ef as it is not dependent on the
size of the system.

Results. – The formation energy Ef for a (5, 5) nan-
otube doped with N and with B can be seen in figs. 2 and 3,
respectively. The top panels of both figures plot Ef as a

Fig. 2: (Color online) Formation energy for a carbon nanotube
with nitrogen substitutional doping as a function of (top panel)
unit cell size L (in units of the graphene lattice parameter, a)
and (bottom panel) 1/Lα, with α = 0.391. The intercept of
the linear function depicted by the dashed line gives ΔE1 =
0.233 eV.

Fig. 3: (Color online) Formation energy for a carbon nanotube
with boron substitutional doping as a function of (top panel)
unit cell size L (in units of the graphene lattice parameter, a)
and (bottom panel) 1/Lα, with α = 0.427. The intercept of
the linear function depicted by the dashed line gives ΔE1 =
−4.998 eV.

function of the supercell length L (in units of the nanotube
unit cell length, a), showing the typical behaviour of a
quantity that slowly approaches convergence. Upon fitting
the curve using eq. (11) we note that α < 1, which cor-
roborates this observation. Most importantly, when plot-
ted as a function of 1/Lα the formation energy indeed
falls onto a distinctive straight line, as shown in the bot-
tom panels of both figures. It is thus straightforward to
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obtain the formation energy through a simple extrapola-
tion scheme, since the intercept of the line corresponds
to ΔE1.

Remarkably, the difference between the extrapolated
values of Ef and those obtained from the top panels of
figs. 2 and 3 can be as large as 0.2 eV. First, we note
that for L = 15a the total number of atoms in the sys-
tem is 300. As the curve falls off very slowly, one would
require a calculation with an extremely long nanotube for
the changes in the formation energy to fall within kBT at
room temperature, being kB the Boltzmann constant and
T the temperature.

Thus, on the one hand we have shown that significantly
larger cells are required to make accurate predictions of
single impurities in carbon nanotubes due to the com-
mensurability effect. On the other hand, our deeper un-
derstanding of the effect has led to a very efficient way of
obtaining the formation energy of a single dopant, a result
that otherwise would be very slow to converge.

While the functional form shown in eq. (11) is confirmed
by DFT results, the actual value of the exponent α is a
lot more challenging to predict. Purely based on dimen-
sionality arguments, we expect α not to be larger than a
threshold. Therefore, we search for the correct exponent
by fitting the formation energy results with the function
shown in eq. (11) including the additional constraint that
α ≤ 1. This exponent can be determined with a number
of points that are associated with manageable supercell
sizes.

Conclusion. – In summary, we have shown that the
existing commensurability effect in the electronic struc-
ture of carbon nanostructures can be employed to de-
rive a useful expression for the formation energy of an
array of equally spaced substitutional impurities in one-
dimensional graphitic structures, namely a carbon nan-
otube. We have shown that it leads to a slow convergence
of the formation energy of nitrogen and boron substitu-
tional defects that can amount to ∼0.2 eV between the
typical supercell sizes used in calculations, and the result
for the actual infinite sytem. We also show that the func-
tional form of the expression allows us to manipulate the
DFT calculations in order to generate accuracy levels that
would otherwise require enormously large unit cells.
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[18] Power S. R., Guimarães F. S. M., Costa A. T.,

Muniz R. B. and Ferreira M. S., Phys. Rev. B, 85
(2012) 195411.

[19] Sherafati M. and Satpathy S., Phys. Rev. B, 83 (2011)
165425.

[20] Gonzalez-Herrero H., Gomez-Rodriguez J. M.,

Mallet P., Moaied M., Palacios J. J., Salgado

C., Ugeda M. M., Veuillen J.-Y., Yndurain F. and
Brihuega I., Science, 352 (2016) 437.

[21] Venezuela P., Muniz R. B., Costa A. T., Edwards

D. M., Power S. R. and Ferreira M. S., Phys. Rev.
B, 80 (2009) 241413.

[22] Zanolli Z. and Charlier J.-C., Phys. Rev. B, 81 (2010)
165406.

[23] Hohenberg P. and Kohn W., Phys. Rev., 136 (1964)
B864.

27005-p5



M. S. Ferreira et al.

[24] Kohn W. and Sham L., Phys. Rev., 144 (1965) A1133.
[25] Lawlor J. A. and Ferreira M. S., Phys. Rev. B, 92

(2015) 115405.
[26] Kresse G. and Furthmüller J., Phys. Rev. B, 54

(1996) 11169.
[27] Giannozzi P., Baroni S., Bonini N., Calandra M.,

Car R., Cavazzoni C., Ceresoli D., Chiarotti

G. L., Cococcioni M., Dabo I., Dal Corso A.,

de Gironcoli S., Fabris S., Fratesi G., Gebauer

R., Gerstmann U., Gougoussis C., Kokalj A.,

Lazzeri M., Martin-Samos L., Marzari N., Mauri

F., Mazzarello R., Paolini S., Pasquarello A.,

Paulatto L., Sbraccia C., Scandolo S., Sclauzero

G., Seitsonen A. P., Smogunov A., Umari P. and
Wentzcovitch R. M., J. Phys.: Condens. Matter, 21
(2009) 395502.

[28] Soler J. M., Artacho E., Gale J. D., Garćıa A.,
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