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New exact analytical bound-state solutions of the radial Dirac equation in 3 + 1 dimensions for two 
sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-
state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in 
terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions 
of equations that can be transformed into polynomial equations. Several analytical results found in the 
literature, including the Dirac oscillator, are obtained as particular cases of this unified approach.
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1. Introduction

In nonrelativistic quantum mechanics there are several poten-
tials with physical interest that allow for exact solutions, thus of-
fering the possibility of extracting physical information in a way 
which is not possible otherwise. Among them is the generalized 
Morse potential Ae−αx + Be−2αx [1–6], the singular harmonic os-
cillator (SHO) Ax2 + Bx−2 [3,7–22], and the singular Coulomb po-
tential (SCP) Ax−1 + Bx−2 [3,7–10,19,21,23–29], which have played 
an important role in atomic, molecular and solid-state physics.

In a recent paper [30], it was shown that nonrelativistic bound-
state solutions of the well-known SHO and SCP in arbitrary di-
mensions can be systematically generated from the nonrelativistic 
bound states of the one-dimensional generalized Morse poten-
tial. The method amounts to a mapping via a Langer transfor-
mation [31]. Later, in [32] the method was extended to a modi-
fied D-dimensional Klein–Gordon equation featuring a vector in-
teraction nonminimally coupled. That extension of the method 
used in [30] provided a unified treatment of many known rela-
tivistic problems via a mapping onto a unique well-known one-
dimensional nonrelativistic problem, allowing to obtain exact an-
alytical bound-state solutions for a large class of problems such 
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a vector-scalar SHO plus nonminimal vector Cornell Ax + Bx−1

potentials and nonminimal vector Coulomb (space component) 
and harmonic oscillator (time component) potentials, vector-scalar 
Coulomb plus nonminimal vector Cornell potentials and nonmini-
mal vector shifted Coulomb potentials, vector-scalar SCP plus non-
minimal vector Coulomb potentials, and also the curious case of a 
pure nonminimal vector constant potential.

In the present paper, the mapping onto the nonrelativistic 
bound states of the one-dimensional generalized Morse potential 
via a Langer transformation is extended to the Dirac equation in 
3 + 1 dimensions with scalar, vector and tensor radial potentials. 
This extension allows to obtain exact analytical bound-state so-
lutions for vector-scalar SHO plus tensor Cornell potentials and 
vector-scalar SCP plus tensor shifted Coulomb potentials. In many 
cases these represent new solutions, not found before. In all those 
circumstances the eigenfunctions are expressed in terms of the 
generalized Laguerre polynomials and the eigenenergies are ex-
pressed in terms of irrational equations, which can be cast into 
polynomial equations. Furthermore, a plethora of results found in 
the literature obtained through a large variety of methods can now 
be seen as particular cases of the present method, which is much 
more straightforward.

The paper is organized as follows. In Sec. 2 we review, as a 
background, the generalized Morse potential in the Schrödinger 
equation. The Dirac equation with vector, scalar and tensor cou-
plings and its connection with the generalized Morse potential and 
the proper form for the potential functions, are presented in Sec. 3

http://dx.doi.org/10.1016/j.physleta.2017.04.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:marcelogarcia82@gmail.com
mailto:castro@pq.cnpq.br
mailto:pedro.alberto@uc.pt
mailto:luis.castro@pq.cnpq.br
http://dx.doi.org/10.1016/j.physleta.2017.04.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2017.04.037&domain=pdf


M.G. Garcia et al. / Physics Letters A 381 (2017) 2050–2054 2051
and two different classes of bound solutions are discussed. The 
isolated solutions out of the Sturm–Liouville problem are also dis-
cussed in this section. In Sec. 4 we draw some conclusions.

2. Nonrelativistic bound states in a one-dimensional generalized 
Morse potential

The time-independent Schrödinger equation is an eigenvalue 
equation for the characteristic pair (E, ψ) with E ∈ R. For a par-
ticle of mass M embedded in the generalized Morse potential it 
reads

d2ψ (x)

dx2
+ 2M

�2

(
E − V 1e−αx − V 2e−2αx

)
ψ (x) = 0, (1)

where α > 0. Bound-state solutions demand 
∫ +∞
−∞ dx |ψ |2 = 1 and 

occur only when the generalized Morse potential has a well struc-
ture (V 1 < 0 and V 2 > 0). The eigenenergies are given by (see, e.g., 
[30,33])

En = − V 2
1

4V 2

[
1 − �α

√
2M V 2

M|V 1|
(

n + 1

2

)]2

, (2)

with

n = 0,1,2, . . . <
M|V 1|

�α
√

2M V 2
− 1

2
. (3)

This restriction on n limits the number of allowed states and 
requires M|V 1|/ 

(
�α

√
2M V 2

)
> 1/2 to make the existence of a 

bound state possible. On the other hand, on making the substi-
tutions

�αsn = √−2M En, �αξ = 2
√

2M V 2 e−αx, (4)

the eigenfunctions are expressed as

ψn (ξ) = Nn ξ sn e−ξ/2L(2sn)
n (ξ) , (5)

where Nn are arbitrary constants, and

L(b)
n (x) =

n∑
j=0

� (n + b + 1)

� ( j + b + 1)

(−x) j

j! (n − j)! , b > −1 (6)

are the generalized Laguerre polynomials (see, e.g., [34,35]).

3. The Dirac equation

The time-independent Dirac equation for a spin 1/2 fermion 
with energy ε and with mass m, in the presence of a potential 
reads (with � = c = 1)(�α · −→p + βm + V

)
� = ε�, (7)

where −→p is the momentum operator and �α and β are 4 × 4 ma-
trices which, in the usual representation, take the form

�α =
(

0 −→σ−→σ 0

)
, β =

(
I2 0
0 −I2

)
. (8)

Here −→σ is a three-vector whose components are the Pauli matri-
ces, and IN stands for the N × N identity matrix. In the following, 
we consider

V (r) = V v (r) + βV s (r) + iβ �α · r̂U (r) . (9)

In the last term, r̂ = �r/r, and the radial functions in Eq. (9) are 
named after the properties their respective terms have under 
Lorentz transformations: V v corresponds to the time component 
of a vector potential, V s is a scalar potential, and U is a tensor po-
tential [36]. In spherical coordinates, � is expressed in terms of 
spinor spherical harmonics
�
(�r) =

⎛⎜⎝ i
gκ (r)

r
Yκm j

(
r̂
)

− fκ (r)

r
Yκ̃m j

(
r̂
)
⎞⎟⎠ , (10)

where κ = ± ( j + 1/2) = −κ̃ are eigenvalues of the spin-orbit op-

erator K = −β
(

2�S · �L + I4

)
, j is the total angular momentum 

quantum number (m j refers to its third component), and �S and �L
are the spin and angular momentum operators, respectively. More 
explicitly, the spin-orbit coupling quantum number κ is related to 
the upper component orbital angular momentum quantum num-
ber l by

κ =
{ − (l + 1) = − ( j + 1/2) , j = l + 1/2 (κ < 0)

l = + ( j + 1/2) , j = l − 1/2 (κ > 0).
(11)

The upper and lower radial functions obey the coupled first-order 
equations:[

d

dr
+ κ

r
+ U (r)

]
gκ (r) = [m + ε − V� (r)] fκ (r)

(12)[
d

dr
− κ

r
− U (r)

]
fκ (r) = [m − ε + V� (r)] gκ (r) ,

where we have introduced the “sum” and the “difference” poten-
tials defined by V� = V v + V s and V� = V v − V s .

It is instructive to note that the charge-conjugation operation 
is accomplished by the changes of sign of ε, V v , U and κ . In turn, 
this means that V� turns into −V� , V� into −V� , gκ into fκ and 
fκ into gκ . Therefore, to be invariant under charge conjugation, the 
Dirac equation must contain only a scalar potential. Furthermore, 
gκ and fκ should be square-integrable functions for bound states.

Due to charge conjugation, solutions for V� = 0 can be con-
veniently obtained from those ones for V� = 0, provided those 
solutions are analytical. These correspond, respectively, to so-called 
pseudospin and spin symmetry conditions of the Dirac equation 
(see [37] for a recent review). Therefore, we concentrate our atten-
tion to the case V� = 0. In this case, one obtains a second-order 
differential equation for gκ when ε �= −m and a first-order differ-
ential equation for gκ when ε = −m.

3.1. The Sturm–Liouville problem for V� = 0 (ε �= −m)

For V� = 0 and ε �= −m,

fκ (r) = 1

ε + m

[
d

dr
+ κ

r
+ U (r)

]
gκ (r)

d2 gκ (r)

dr2
+ 2M

[̃
ε − V (r) − κ (κ + 1)

2Mr2

]
gκ (r) = 0. (13)

The effective energy ̃ε and the effective potential V are expressed 
by

2Mε̃ = ε2 − m2

(14)
2M V (r) = (ε + m)V�(r) − dU (r)

dr
+ 2κ

U (r)

r
+ [U (r)]2,

and gκ → 0 as r → ∞ for bound-state solutions. The positive pa-
rameter M has dimension of mass and no effect on ε, V , fκ and 
gκ , and its presence is justified for comparison with eq. (1).

Following Ref. [30], with effective potentials expressed by

V (r) = Arδ + B

r2
+ C, (15)

the Langer transformation [31]

gκ (r) = √
r/r0 φκ(x) , r/r0 = e−�αx , (16)
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with r0 > 0, � > 0 and α being as in eq. (1), transmutes the radial 
equation (13) into

d2φκ (x)

dx2
+ 2M

{
− (�αS)2

2M
− (�αr0)

2
[

Arδ
0e−�α(δ+2)x

+ (C − ε̃) e−2�αx
]}

φκ (x) = 0, (17)

with

S =
√

(κ + 1/2)2 + 2M B. (18)

Comparison of eqs. (17) and (1) shows that for δ = 0 or δ = −2, 
i.e., a pure inversely quadratic potential, bound solutions are not 
allowed. A connection with the bound states of the generalized 
Morse potential of eq. (1) is obtained only if the pair (δ, �) is equal 
either to (2, 1/2) or (−1, 1), and, as an immediate consequence of 
the reality of S , i.e., S2 > 0, one must have

2M B > −(κ + 1/2)2. (19)

Actually, if 2M B > −1/4, the above condition will be satisfied for 
all values of κ , so that the term inversely quadratic in (15) cannot 
be strongly attractive. Furthermore, since the asymptotic behaviour 
of (17) implies that φκ (x) →

x→+∞ e−�αSx and therefore, from (16), 
one has

gκ (r) →
r→0

r1/2+S . (20)

At this point it is already worthy remarking that the fact that 
i) there are no bound solutions for a pure effective inversely 
quadratic potential; ii) the determination of the critical strength of 
the term containing the effective inversely quadratic potential; iii) 
the boundary condition gκ (0) = 0, all emerge naturally as a conse-
quence of the mapping onto the one-dimensional Morse problem.

Effective potentials with the general form (15) are achieved by 
choosing the potentials in the Dirac equation as follows

V� (r) = α�

r2
+ β�

r
+ γ�r2,

(21)

U (r) = βu

r
+ γurδu , δu = 0 or 1 .

In these last expressions, when δ = 2 one must have β� = 0, δu =
1 and when δ = −1 one has γ� = 0, δu = 0.

3.1.1. The effective singular harmonic oscillator
With (δ, �) = (2, 1/2) plus the definition A = Mω2/2, the iden-

tification of the bound-state solutions of Eq. (13) with those ones 
from the generalized Morse potential is done by setting V 1 =
−α2r2

0 (̃ε − C) /4 and V 2 = α2r4
0 Mω2/8, with ε̃ > C and ω2 > 0, 

since V 1 < 0 and V 2 > 0. With ω > 0 one can write

ξ = Mωr2. (22)

Furthermore, (3) implies ̃ε > C +ω(2n + 1). Using (2) and (18) one 
can write the complete solution of the problem as

ε̃ = C + ω(2n + 1 + S)

(23)
gκ (r) = Nr1/2+Se−Mωr2/2L(S)

n

(
Mωr2

)
.

The condition (3) means that

n ≤
[
ε̃ − C − ω

]
, (24)
2ω
where [x] stands for the largest integer less than or equal to x. 
Since ̃ε depends quadratically on ε from eqs. (14) and ω may de-
pend at most on 

√
ε (see eq. (26) below), the condition (24) means 

that there is no limitation on the value of n, because it can be as 
large as the energy can, which in turns means that n in (23) has 
no upper bound.

Examples of this class of solutions can be reached by choosing

V� (r) = α�

r2
+ γ�r2, U (r) = βu

r
+ γur. (25)

This is the vector-scalar SHO potential plus the tensor potential 
Cornell potential [38], which under appropriate conditions can de-
scribe particular cases like the harmonic oscillator plus a tensor 
linear potential [39], the harmonic oscillator plus a tensor Cornell 
potential [40,41], the SHO plus a tensor linear potential [42], the 
SHO [43,44], the tensor Cornell potential [45] and the Dirac oscil-
lator [46].

The complete identification with the generalized Morse poten-
tial is done with the equalities

Mω =
√

γ 2
u + γ� (ε + m)

2M B = (βu + κ + 1/2)2 − (κ + 1/2)2 + α� (ε + m) (26)

2MC = γu (2βu + 2κ − 1) ,

which lead, in general, to an irrational equation in ε:

(ε + m) (ε − m) − γu (2βu + 2κ − 1)

= 2 (2n + 1 + S)

√
γ 2

u + γ� (ε + m)

= 2

(
2n + 1 +

√
(βu + κ + 1/2)2 + α� (ε + m)

)
×

√
γ 2

u + γ� (ε + m). (27)

We note that if α� > 0, γ� > 0 and βu = 0, one gets a har-
monic oscillator type energy spectrum for positive energy states 
with ε > m, but there are also states with negative energy, al-
though there would be a minimum value for that energy, because 
one must have (κ + 1/2)2 + α� (ε + m) ≥ 0. If in addition α� = 0, 
one has the (positive energy) generalized relativistic harmonic os-
cillator with γ� = 1/2 mω2

1, γu = mω2 where ω1 and ω2 are the 
frequencies defined in [39].

Squaring Eq. (27) successively results into a nonequivalent alge-
braic equation of degree 8. Solutions of this algebraic equation that 
are not solutions of the original equation can be removed by back-
ward substitution. A quartic algebraic equation is obtained when 
α� = 0. For α� = γu = 0 one obtains a cubic algebraic equation. 
However, (27) can be written as a quadratic algebraic equation ren-
dering two branches of solutions symmetrical about ε = 0 in the 
case of a pure tensor Cornell potential (γu �= 0):

ε = ±
√

m2 + γu (2βu + 2κ − 1) + 2|γu| (2n + 1 + S)

= ±
√

m2 +γu (2βu +2κ −1) +2|γu| (2n +1+|βu +κ +1/2|).
(28)

3.1.2. The effective singular Coulomb potential
To get the bound states of eq. (13) from those of the generalized 

Morse potential equation eq. (17) with the pair (δ, �) = (−1, 1)

one must choose V 1 = α2r0 A and V 2 = α2r2
0 (C − ε̃), with A < 0

and ̃ε < C . Now,

ξ = 2
√

2M (C − ε̃) r (29)

and (3) implies ̃ε > C − M A2/[2 (n + 1/2)2]. Using (2) and (18) one 
can write
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ε̃ = C − M A2

2ζ 2
(30)

gκ (r) = Nr1/2+S e−M|A|r/ζ L(2S)
n

(
2M|A|r

ζ

)
,

with

ζ = n + 1/2 + S = n + 1/2 +
√

(κ + 1/2)2 + 2M B. (31)

Again for this class of effective potentials, condition (3) implies 
that there is no upper bound for n. This class of solutions can be 
obtained by choosing

V� (r) = α�

r2
+ β�

r
, U (r) = βu

r
+ γu, (32)

which is the vector-scalar SCP plus a shifted Coulomb tensor po-
tential. There results

2M A = β� (ε + m) + 2γu (βu + κ)

2M B = (βu + κ + 1/2)2 − (κ + 1/2)2 + α� (ε + m) (33)

2MC = γ 2
u .

Subject to appropriate constraints, one finds the irrational equation 
in ε

(ε + m) (ε − m)

= γ 2
u −

⎡⎢⎢⎣ 2γu (βu + κ) + β� (ε + m)

2

(
n + 1/2 +

√
(βu + κ + 1/2)2 + α� (ε + m)

)
⎤⎥⎥⎦

2

.

(34)

One example of solutions for these type of radial potentials in the 
Dirac equation is the Coulomb potential plus a tensor Coulomb po-
tential [47], and the SCP plus a tensor Coulomb potential [48,49].

The very special case α� = γu = 0, necessarily with β� < 0, 
holds a spectrum given by

ε = m
1 − [β�/ (2ζ )]2

1 + [β�/ (2ζ )]2
, (35)

with ζ = n + 1/2 + |βu + κ + 1/2|. It is interesting that the 
dependence on the tensor potential parameter βu is done only 
through ζ , which contains the quantity 2M B . Therefore, the spec-
trum is formally similar to the solution of pure (βu = 0) Coulomb 
scalar and vector potentials in spin symmetry conditions [50]. It 
amounts to have an effective value of κ , given by κ̄ = κ + βu .

It is also interesting to see that the special case α� = β� =
βu = 0 gives a spectrum for either spin aligned or spin antialigned, 
depending on the sign of γu .

3.1.3. Summary of results
In Table 1 we summarize the conditions for the potential pa-

rameters which allow for analytical solutions.

3.2. Isolated solutions for V� = 0 (ε = −m)

We shall now deal with possible solutions for potentials ex-
pressed by (21) that can not be expressed by means of the Sturm–
Liouville problem. For V� = 0 and ε = −m, one can write

dgκ (r)

dr
+

[κ

r
+ U (r)

]
gκ (r) = 0

(36)

dfκ (r) −
[κ + U (r)

]
fκ (r) = [2m + V� (r)] gκ (r) ,
dr r
Table 1
General conditions for the potential parameters of eq. (21) in order to have an-
alytical solutions and radial functions gκ (r) for δu = 1 (harmonic oscillator type 
potentials) and for δu = 0 (Coulomb type potentials). ζ is given by (31).

δu = 1 δu = 0

β� = 0 γ� = 0

M2ω2 = γ 2
u + γ�(ε + m) > 0 2M A = β�(ε + m) + 2γu(βu + κ) < 0

S = (βu + κ + 1/2)2 + α�(ε + m) > 0 S = (βu + κ + 1/2)2 + α�(ε + m) > 0

gκ (r) = Nr1/2+S e−Mωr2/2 L(S)
n

(
Mωr2

)
gκ (r) = Nr1/2+S e−M|A|r/ζ L(2S)

n

(
2M|A|r

ζ

)

which arise from (12). Hence,

gκ (r) = Nge−v(r), (37)

with

v (r) =
r∫

dy

[
κ

y
+ U (y)

]
. (38)

There is no need to use a lower limit on the integral in (38) be-
cause the resulting constant of integration can be lumped in the 
constant Ng . On the other hand, the nonhomogeneous differential 
equation for fκ yields the general solution

fκ (r) = [
N f + Ng I (r)

]
e+v(r), (39)

where N f is a constant associated to the homogeneous equation 
for fκ , and

I (r) =
r∫

dy [2m + V� (y)] e−2v(y). (40)

It is also worthwhile to note that this sort of isolated solution can 
not describe scattering states.

One finds

v (r) = ln r(βu+κ) + γu

δu + 1
rδu+1. (41)

Because gκ and fκ are square-integrable functions, N f = 0 for 
γu > 0, and Ng = 0 for γu < 0. Hence,

gκ (r) = Ngr−(βu+κ) exp

(
− |γu|

δu + 1
rδu+1

)
(42)

fκ (r) = Ng I (r) r+(βu+κ) exp

(
+ |γu|

δu + 1
rδu+1

)
,

for γu > 0, and

gκ (r) = 0
(43)

fκ (r) = N f r+(βu+κ) exp

(
− |γu|

δu + 1
rδu+1

)
,

for γu < 0.
When γu > 0, square integrability of fκ demands a good be-

haviour for I(r) at infinity. Calculation shows that

(δu + 1)

(
2|γu|
δu + 1

)−2(βu+κ)/(δu+1)

I (r)

= 2m

(
2|γu|
δu + 1

)−1/(δu+1)

�

(
1 − 2 (βu + κ)

δu + 1
,

2|γu|
δu + 1

rδu+1
)

+ α�

(
2|γu|
δu + 1

)+1/(δu+1)

�

(
−1 + 2 (βu + κ)

δu + 1
,

2|γu|
δu + 1

rδu+1
)

+ β��

(
−2 (βu + κ)

,
2|γu|

rδu+1
)

δu + 1 δu + 1
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+ γ�

(
2|γu|
δu + 1

)−3/(δu+1)

�

(
3 − 2 (βu + κ)

δu + 1
,

2|γu|
δu + 1

rδu+1
)
(44)

where � (a, z) is the incomplete gamma function [35]

� (a, z) =
∫ z

0
dt e−tta−1. (45)

Due to the behaviour of the integrand near the origin, this integral 
diverges if Re a is not positive. Furthermore, as z increases � (a, z)
approaches the limiting value � (a) when Re a > 0. Therefore, I(r)
diverges if the first argument of the incomplete gamma function 
of at least one of the terms of I(r) is not positive, and it tends 
to a constant as r tends to infinity if the first argument of the 
incomplete gamma function of all the terms of I(r) is positive. For 
these reasons, fκ is not a square-integrable function. An exception, 
though, occurs when m = α� = β� = γ� = 0 just for the reason 
that fκ vanishes identically. Therefore,

gκ (r) = Ngr−(βu+κ) exp

(
− |γu|

δu + 1
rδu+1

)
(46)

fκ (r) = 0,

only for γu > 0 and m = V� = 0.
In addition, a good behaviour of gκ and fκ near the origin, in 

the sense of normalization, forces one to the choice βu +κ ≶±1/2
for γu ≷ 0.

4. Concluding remarks

Based on Ref. [30], we have described a straightforward and ef-
ficient procedure for finding a large class of solutions of the Dirac 
equation in 3 + 1 dimensions with radial scalar V s vector V v and 
tensor U radial potentials, when V s = ±V v , some of which have 
never been obtained before. Their wave functions are all expressed 
in terms of generalized Laguerre polynomials and their energy 
eigenvalues obey analytical equations, either polynomial or irra-
tional which can be cast as polynomial. These include harmonic 
oscillator-type and Coulomb-type potentials and their extensions. 
Although the solutions for those systems could be found by stan-
dard methods, this procedure, based on the mapping from the 
one-dimensional generalized Morse potential via a Langer transfor-
mation to the radial Dirac equation in 3 + 1 dimensions, provides 
an easier and powerful way to find the solutions of a class of po-
tentials which otherwise one might not know that would have 
analytical solutions in the first place. We were able to reproduce 
well-known particular cases of relativistic harmonic oscillator and 
Coulomb spin-1/2 systems, when the scalar and vector potentials 
have the same magnitude, but there are a wealth of other particu-
lar cases with physical interest that are left for further study, one 
of them being solutions with Coulomb-type potentials with tensor 
components.

Acknowledgements

This work was supported in part by means of funds provided 
by CAPES and CNPq (grants 455719/2014-4, 304105/2014-7 and 
304743/2015-1). PA would like to thank the Universidade Estad-
ual Paulista, Guaratinguetá Campus, for supporting his stays in its 
Physics and Chemistry Department and CFisUC for travel support.

References

[1] C. Tezcan, R. Sever, Int. J. Theor. Phys. 48 (2009) 337.
[2] A.O. Barut, A. Inomata, R. Wilson, J. Math. Phys. 28 (1987) 605.
[3] V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations, 

Kluwer, Dordrecht, 1990.
[4] L. Chetouani, L. Guechi, T.F. Hammann, Helv. Phys. Acta 65 (1992) 1069.
[5] L. Chetouani, L. Guechi, T.F. Hammann, Czechoslov. J. Phys. 43 (1993) 13.
[6] A. Arda, R. Sever, Commun. Theor. Phys. 58 (2012) 27.
[7] L.D. Landau, E.M. Lifshitz, Quantum Mechanics — Non-relativistic Theory, Perg-

amon, New York, 1958.
[8] I.I. Gol’dman, V.D. Krivchenkov, Problems in Quantum Mechanics, Pergamon, 

London, 1961.
[9] F. Constantinescu, E. Magyari, Problems in Quantum Mechanics, Pergamon, Ox-

ford, 1971.
[10] D. ter Haar, Problems in Quantum Mechanics, Pion, London, 1975.
[11] C.J. Ballhausen, Chem. Phys. Lett. 146 (1988) 449.
[12] C.J. Ballhausen, Chem. Phys. Lett. 151 (1988) 428.
[13] G. Palm, U. Raff, Am. J. Phys. 71 (2003) 247.
[14] G. Palm, U. Raff, Am. J. Phys. 71 (2003) 956.
[15] S.-H. Dong, M. Louzada-Cassou, Int. J. Mod. Phys. B 19 (2005) 4219.
[16] S.-H. Dong, M. Louzada-Cassou, J. Yu, F. Jiménez-Ángeles, A.L. Rivera, Int. J. 

Quant. Chem. 107 (2006) 366.
[17] C.A. Singh, O.B. Devi, Int. J. Quant. Chem. 106 (2006) 415.
[18] S.-H. Dong, Factorization Method in Quantum Mechanics, Springer, Dordrecht, 

2007.
[19] S.-H. Dong, D. Morales, J. García-Ravelo, Int. J. Mod. Phys. E 16 (2007) 189.
[20] S.H. Patil, K.D. Sen, Phys. Lett. A 362 (2007) 109.
[21] S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. C 20 (2009) 361.
[22] D.R.M. Pimentel, A.S. de Castro, Rev. Bras. Ensino Fis. 35 (2013) 3303.
[23] E.U. Condon, P.M. Morse, Quantum Mechanics, McGraw–Hill, New York, 1929.
[24] R.L. Hall, N. Saad, J. Chem. Phys. 109 (1998) 2983.
[25] K.J. Oyewumi, Found. Phys. Lett. 18 (2005) 75.
[26] S.M. Ikhdair, Chin. J. Phys. 46 (2008) 291.
[27] D. Agboola, Acta Phys. Pol. 120 (2011) 371.
[28] D.R.M. Pimentel, A.S. de Castro, Rev. Bras. Ensino Fis. 36 (2014) 1307.
[29] T. Das, A. Arda, Adv. High Energy Phys. 2015 (2015) 137038.
[30] P.H.F. Nogueira, A.S. de Castro, J. Math. Chem. 54 (2016) 1783.
[31] R.E. Langer, Phys. Rev. 51 (1937) 669.
[32] M.G. Garcia, A.S. de Castro, L.B. Castro, P. Alberto, Ann. Phys. 378 (2017) 88.
[33] P.H.F. Nogueira, A.S. de Castro, D.R.M. Pimentel, J. Math. Chem. 54 (2016) 1287.
[34] N.N. Lebedev, Special Functions and Their Applications, Dover Publications, 

New York, 1972.
[35] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions, Dover 

Publications, New York, 1972.
[36] P. Alberto, R. Lisboa, M. Malheiro, A.S. de Castro, Phys. Rev. C 71 (2005) 034313.
[37] H. Liang, J. Meng, S.-G. Zhou, Phys. Rep. 570 (2015) 1.
[38] M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Int. J. Mod. Phys. A 26 (2011) 1363.
[39] R. Lisboa, M. Malheiro, A.S. de Castro, P. Alberto, M. Fiolhais, Phys. Rev. C 69 

(2004) 024319.
[40] H. Akcay, C. Tezcan, Int. J. Mod. Phys. C 20 (2009) 931.
[41] S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi, Ann. Phys. 325 (2010) 2522.
[42] O. Aydogdu, R. Sever, Few-Body Syst. 47 (2010) 193.
[43] S.M. Ikhdair, R. Sever, J. Math. Phys. 52 (2011) 122108.
[44] G. Chen Gang, Z.-D. Chen, Z.-M. Lou, Chin. Phys. Lett. 13 (2004) 279.
[45] H. Akcay, J. Phys. A 40 (2007) 6427.
[46] V.I. Kukulin, G. Loyola, M. Moshinsky, Phys. Lett. A 158 (1991) 19.
[47] M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Phys. Lett. A 374 (2010) 4303.
[48] M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Few-Body Syst. 48 (2010) 171.
[49] M. Eshghia, S.M. Ikhdair, Chin. Phys. B 23 (2014) 120304.
[50] A.S. de Castro, P. Alberto, Phys. Rev. A 86 (2012) 032122.

http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623274657As1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6234626172s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6234626167s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6234626167s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623463686531s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623463686532s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623461726431s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib62316C616Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib62316C616Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6231676F6Cs1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6231676F6Cs1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235636F6Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235636F6Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6231686161s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623562616Cs1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623562616C31s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623570616C31s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623570616C32s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235646F6Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235646F6E32s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235646F6E32s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623573696Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6231646F6E33s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6231646F6E33s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235646F6E31s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235706174s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235696B68s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6235617363s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib636F6Es1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib623668616Cs1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib62366F796532s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6236696B68s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6236616762s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6236617363s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib646173s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6E6577s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6C616E67s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib616F70s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6A6D63s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6C6562s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6C6562s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib616272616D6F7769747As1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib616272616D6F7769747As1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib7072635F74656E736F72s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib4C69616E675F4D656E675F5A686F755F726576s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib68616D32s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6861726D5F6F73635F7072635F32303034s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6861726D5F6F73635F7072635F32303034s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib616B6331s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib7A617232s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib417964696764755F53657665725F32303130s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib69736F746F6E69635F6F7363s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6C6F75s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib616B63s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib6B756B75s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib68616D34s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib68616D33s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib65736867686961s1
http://refhub.elsevier.com/S0375-9601(17)30420-6/bib636F756C6F6D625F707261s1

	Solutions of the three-dimensional radial Dirac equation from the Schrödinger equation with one-dimensional Morse potential
	1 Introduction
	2 Nonrelativistic bound states in a one-dimensional generalized Morse potential
	3 The Dirac equation
	3.1 The Sturm-Liouville problem for VΔ=0 (ε<>-m)
	3.1.1 The effective singular harmonic oscillator
	3.1.2 The effective singular Coulomb potential
	3.1.3 Summary of results

	3.2 Isolated solutions for VΔ=0 (ε=-m)

	4 Concluding remarks
	Acknowledgements
	References


