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Abstract: This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner,
failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-
impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers.
The intelligent systems combine the wavelet transform, Dempster–Shafer evidence theory, voting scheme, fuzzy inference
system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology,
allowing its real-time application.

1 Introduction
Expansions in the electrical system, due to urban growth, have led
to an increase in investments applied to developing new
techniques/technologies and protection philosophy. These
investments aim to provide automation to electrical distribution
systems; i.e. their devices and operations [1, 2]. Devices
automation is related to the use of artificial intelligence concepts,
enabling the device to detect, classify, locate, and eliminate
abnormalities without operator intervention [3]. The automation of
operations, which is a result of the devices automation, intends to
render the system proactive; i.e. the maintenance process becomes
more direct and efficient due to the anticipation of information
related to failures identified on the feeder [2]. Thus, the operation
centre, based on the additional information, can inform the
maintenance group in advance, reducing the time necessary to
restore the normal operating state, which thus increases the
reliability and power quality indices [1, 4, 5].

In its current state, the distribution system has low monitoring
and reliability levels for the services available to consumers. The
low monitoring level is related to the information acquired from
the feeder; e.g. voltage and current, which are, in most cases,
measured only at the main substation. On the other hand, the low
reliability is due to the diagnosis methods, which are based on the
visual inspection of oscillographs by the operators and, therefore,
are strongly dependent on their analysing experience. When the
management centre relies only on human operators, the process is
liable to errors, which, in an extreme case, can cause power supply
interruption. Thus, without detailed and complete information
about each part of the feeder, the role of the operator in
determining possible failure events becomes even more complex,
leading to losses for the utilities and consumers [6].

The electric power distribution system, in comparison with the
transmission system, presents a predominantly radial topology with
several branches, which makes it more susceptible to failures.
These failures can be caused by animals touching energised parts
of the network, wildfire, lightning, or human action; e.g. vandalism
and depredation. In several cases, failures are easily detected and
located. For example, short circuits on the feeder are identified in a
reactive way; i.e. consumers who observe an abnormality in the
energy supply communicate this event to the utility. Then, after

mapping of the telephone calls, a maintenance group is sent to the
probable failure area to restore the feeder operation to its normal
state. However, there are failures that cannot be identified by the
protection systems due to their singular behaviour, e.g. high-
impedance faults (HIFs). Usually, this kind of failure is classified
as normal operation; i.e. a feeder operating with an HIF does not
show any evidence of defect or interruption in the energy supply.
An HIF occurs when an energised conductor, whether broken or
not, comes into contact with high-impedance surfaces (e.g.,
asphalt, sidewalk, and sand) or high-impedance objects (e.g., tree
branches). The HIF limits the fault current to values below those
detected by the protection devices, persisting on the feeder for
hours, days, or weeks, which causes high power drain in the
distribution system. Moreover, the current and voltage signals of
the HIF have a random behaviour due to non-linearity and the
possible presence of an electrical arc. Studies have described the
distribution feeder operating in the presence of an unobserved/
undetected HIF, which is identified only when it has evolved into a
critical failure, damaging many devices connected to the electrical
network and interrupting the energy supply [7–9].

Thus, considering the technical and philosophical restructuring
of the distribution system, utilities must aim for the development
and implementation of methodologies to identify HIFs when other
kinds of failures; e.g. short circuits and voltage disturbances, have
been ruled out as the principal cause of problems in the energy
supply. To this end, studies have been performed combining signal
processing techniques, intelligent systems, and data fusion
concepts. Below, the main proposals available in the specialised
literature are highlighted.

A model description for representing HIFs in electrical
distribution systems is presented in [10]. The model is based on a
non-linear resistance representing the high impedance path during
the critical event. An algorithm for HIF detection in electrical
distribution systems evaluated taking into account several electric
variables associated to HIFs. Field measurement and computer
simulations validate the HIF model and the proposed detection
algorithm.

A new HIF detection method using time–frequency analysis for
feature extraction is proposed in [11]. A pattern classifier is trained,
which feature set consists of current waveform energy and
normalised joint time–frequency moments. The proposed method

IET Gener. Transm. Distrib., 2017, Vol. 11 Iss. 6, pp. 1557-1565
© The Institution of Engineering and Technology 2017

1557



shows high efficacy in all of the detection criteria. The
performance was verified using real-world data, acquired from HIF
tests on three different materials (concrete, grass, and tree branch)
and under two different conditions (wet and dry).

Macedo et al. in [12] present a new methodology for HIFs
detection in distribution systems based on interharmonic current
signatures. The functionality of the proposed methodology was
carried out with field tests on different types of soil. Results show
great promise when it comes to detecting this disturbance.

The main aim of Batista et al. in [13] was to present a method
for analysis of power systems transient events. The orthogonal
component decomposition technique was tested aided by a real
fault oscillogram recorded at a power distribution substation.
Computer simulations showed that decomposition by orthogonal
components was able to extract great qualitative information of
fault occurrence and location with immunity to fault resistance
effect.

A real-time methodology development is discussed in [14].
Using the energy of wavelet coefficients with border distortions,
the HIFs are detected by its generated transients. The performance
of the proposed wavelet-based method was assessed with compact
and long mother wavelets by using data from staged HIFs on an
actual energised power system, taking into account different fault
surfaces, as well as simulated HIFs. Results show that the proposed
method is reliable and accurate than other evaluated wavelet-based
algorithms.

From this perspective, this work presents two methodologies for
the diagnosis of HIFs in electric power distribution systems,
combining three key concepts: signal processing techniques,
intelligent systems, and sensor/data fusion. The employment of the
wavelet transform focuses on the time–frequency domain
signatures extraction, where peculiar transients generated by HIF
are easily observed. Therewith, the two presented methodologies
become robust and reliable even when occur minimal
(unidentified) variations in the distribution feeder caused by an
HIF. Besides that, the use of intelligent systems aims to automate
the diagnosis process. Fuzzy based methods were chosen due to the
following characteristics when applied to failure detection and
classification: efficiency, robustness, reliability, and low
computational effort, highlighting the possibility to incorporate
new patterns, i.e. inclusion new information different from those
previously acquired without needing to reinitialise the training step.
Furthermore, the small number of indices used as input in the
diagnosis procedure reduces the implementation costs and simplify
its application in real time. Lastly, the theory of evidence
aggregates the final results making the methodologies immune to
human errors in decision-making process.

The first diagnosis methodology uses current oscillographies
from different busses of the feeder. Multiresolution analysis and the
energy concept are combined to extract the signals characteristics.

Therefore, signal representative indices compose the input vector
of multiple fuzzy inference systems (FISs), which carry out a
diagnosis of the system operating state. This multiple analysis
provides greater robustness to the diagnosis process. Then, the
evidence theory is used to aggregate all information produced by
each FIS, providing probabilities referring to the possible system
operating state, i.e. normal operation or HIF presence.

In the second methodology, the signal characteristic index is
employed as input of multiple fuzzy-ARTMAP neural network
(FANN), which provides the system operating state. The final
probability of each of the operating states is generated by a voting
process.

Then, the main objective of this paper is to provide a detailed
evaluation considering the advantages and the disadvantages of the
diagnosis techniques, which employs fuzzy concepts, and its
influence in the final result, taking into account the principal
attributes for the distribution system automation process:
efficiency, reliability, processing time, possibility of including new
patterns, among others.

2 HIF diagnosis
Alternatives methodologies have been developed to reduce the
operator's dependence on the HIF identification process. Besides
carrying out the detection, these methodologies indicates in which
phase the HIF occurred, e.g. phases a, b, or c, aiding the posterior
elimination by the maintenance group. In this paper, the
methodologies use signal processing techniques, however the first
uses the FIS and the Dempster–Shafer evidence theory to detect
and classify HIF, whilst the second uses FANN and a voting
scheme. Fig. 1 presents the procedures flowchart. 

2.1 Multi-resolution analysis and the energy concept

One of the most important steps in the failure detection and
classification process is the extraction of characteristics. Due to the
HIFs present random behaviour and low fault current, several
signal processing techniques have been employed to allow its
diagnosis. These techniques must be able to highlight singularities
to distinguish normal operation of HIFs. To illustrate the
affirmative above, Fig. 2 shows the current oscillographies of
system's normal operation and an HIF. 

As can be observed, if the operator executes a visual inspection
in these oscillographies, a correct diagnosis is not possible to be
provided. Thus, applying signal processing techniques is
fundamental for a correct diagnosis. The Fourier transform [15]
and the wavelet transform [16, 17] are among the most common
techniques used to signal analysis encountered in the specialised
literature. Although the Fourier transform is widely used in signal
processing, it has limitations that prevent its use in modern

Fig. 1  Structure of the HIF diagnosis modules
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systems; for instance, it does not provide the temporal evolution of
frequency transients. In this context, the wavelet transform
overcomes the limitations of methods based on the Fourier
transform.

Multi-resolution analysis (MRA) corresponds to a particular
application of the discrete wavelet transform aimed at extracting
the signal characteristics. By using a set of filters, the signal is
analysed at different resolution levels. At each level, coefficients
that describe the signal behaviour at high and low frequencies are
obtained [18]. Basically, MRA consists in determining the
approximation and detail coefficients. Discrete signal convolution
with a low-pass (h) and a high-pass (g) filter generates the

approximation and detail coefficients, respectively. The
approximation coefficients are described as the high-scale and low-
frequency components of the signal, whereas the detail coefficients
are the low-scale and high-frequency components [16]. Fig. 3
shows the application of MRA in current oscillographies referred
to the system's normal operation and under HIF. 

When applying the MRA, the singularities of the HIF, i.e. the
amplitude of high frequency transients are emphasised. Therefore,
it is possible to distinguish the normal operation from an HIF,
making the diagnosis process more simple, reliable and efficient.

The application of MRA in decomposing a signal generates a
considerable number of wavelet coefficients. However, to minimise

Fig. 2  Current oscillographies of system's normal operation and an HIF
 

Fig. 3  MRA applied for current oscillographies referred to the system's normal operation and under HIF
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the number of coefficients and improve the methodology
efficiency, the energy concept is applied to aggregate the
information present in these coefficients [18]. The energy concept
is defined by the following equation [15]:

E = ∑
n = 1

Z
x n 2 (1)

2.2 Fuzzy inference system

The FIS performs the mapping of a crisp input vector in a crisp
output, i.e. it maps numbers in numbers. It is based on the human
capacity in taking decisions in situations where uncertainties and
imprecision overcome [19]. The FIS is composed by four
components: fuzzyfication, base rules, inference, and
defuzzyfication, as shown in Fig. 4. 

The presence of the fuzzyfier and defuzzyfier allows the user to
work with input and output variables that have real values. All the
processes are realised with linguistic variables. In [19–21] can be
found a brief explanation about each step of the diagram presented
in Fig. 4.

2.3 Fuzzy-ARTMAP neural network

The FANN consists of a supervised learning system composed by a
pair of adaptive resonance theory [22] modules, fuzzy-ARTa
(responsible for the FANN processing input (vector a)) and fuzzy-
ARTb (responsible for the FANN processing output (vector b)),
connected by an associative memory module called inter-ART,
which is responsible for verifying if there is a match between the
FANN input (a) and output (b). The weight matrices associated
with the fuzzy-ARTa modules (Wa) and fuzzy-ARTb (Wb), as well
as the inter-ART (Wab) module, are initialised with values equal to
1, i.e. every activity is inactive. These activities are activated while
occurring the resonance with the input and output patterns. The
FANN system presents characteristics of stability, i.e. capacity of
learning by adjusting the weights, and plasticity, i.e. capacity of
continuing learning when including new patterns without losing the
previously acquired knowledge. Therefore, it is possible to enable
the continuous training module, allowing the neural system to
include new patterns to its memory without needing to reinitialise
the training process [23].

Appendix presents a brief description of FANN architecture.
Meanwhile, the more complete FANN theory is presented in [22];
the algorithm can be found in [18], and the neural network training
flowchart is shown in [24].

2.4 Evidence theory

Dempster–Shafer evidence theory [25] is based on probabilistic
reasoning and evidence combinations. It is called evidence theory
because it deals with the evidence portion and its respective
supporting numerical values, associating the relevant portion of a
given hypothesis to determine its truth. The computational
methodology was developed by Jeffrey Barnett and is presented as
follows [26].

This concept considers pieces of evidence in favour and against
a given hypothesis to define the accumulated evidence in favour
and against the analysed hypothesis. Then, it is possible to define
the confidence interval, which is given as

m({i}), 𝔅∗({i}) (2)

The probability value m({i}) represents the veracity of hypothesis
i, and the superior probabilistic quantity 𝔅∗({i}) represents the
chances of failure when one doubts the veracity of hypothesis i.
The higher the value of 𝔅∗({i}), the greater will be the reliability of
the tested hypothesis (true or false), which is represented by the
value of m({i}). Therefore, for any hypothesis tested wills high
values for 𝔅∗({i}). These values are obtained by using the
equations presented in [18, 27, 28].

2.5 Voting scheme

The voting scheme is a simple method that combines the output of
a given procedure. A decision is made based on which operating
state receives the higher number of votes. The confidence of the
decision is represented by the agreement level defined as the ratio
between the total number of votes received and the total number of
votes [27, 29].

2.6 Detection and classification

The three-phase current signals of multiple meters allocated along
the feeder are decomposed in three levels by multi-resolution
analysis, in which the signal windowing and analysis step are
defined in one cycle. Due to the great number of coefficients
produced in multi-resolution analysis, the energy concept is applied
to the third-level detail coefficients, reducing the set to a few
scalars. For each measurement bus, the following vector is
composed:

EI, bus = Edet3

Ia, busEdet3

Ib, busEdet3

Ic, bus
(3)

where Edet3

Ia, bus, Edet3

Ib, bus, and Edet3

Ic, bus denote the energy of the third-level
detail coefficients obtained from the current signals (phases a, b,
and c) acquired at the measurement point bus; i.e. buses 149, 13,
18, 47, 54, 60, 67, 76, and 97.

2.6.1 Methodology based on FIS: On each bus where the
signals are acquired there is an FIS responsible for the
identification and qualification of the feeder operating state. The
input of each FIS (FISinput

bus ) is formed by the vector obtained in (3)
from the respective measurement point bus:

FISinput
bus = EI, bus (4)

As an example, the FIS in bus 18 has the vector FISinput
18 = EI, 18

as input; i.e. it uses only the information about the current of bus
18.

After the calculus and evaluations by fuzzy rules, the FIS
provides as an output a scalar. To determine the operating state, the
membership obtained at the output must be verified by each of the
fuzzy sets of its respective FIS. Thus, the obtained result presents a
combination of four membership values, i.e. normal operation, HIF
at phase a, HIF at phase b, and HIF at phase c, which can be used
separately or together.

Fig. 4  Fuzzy inference system components
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Considering the difficulty presented by the human operators in
analysing great quantity of information and, consequently, taking
decisions, the evidence theory is used to aggregate the four
memberships of the nine FIS. This application simplifies the
diagnosis, i.e. the possible operating states contain a probability
value and a value indicating its reliability. Therefore, the diagnosis
process becomes efficient and reliable, minimising the participation
of the human in decision-making event, which provides greater
simplicity to the operators’ daily routine.

2.6.2 Methodology based on FANN: In this methodology, the
vectors obtained in (1) are normalised for use as inputs to multiple
neural networks. This normalisation is done by identifying the
maximum current value of each analysed vector. This
normalisation produces new vectors according to the following
equation:

ψ I, bus = ψ1
I, bus ψ2

I, bus ψ3
I, bus (5)

where ψ p
I, bus = (Ep

I, bus/Emax
I, bus) for p = 1, 2, …, 3 with

Emax
I, bus = max Ep

I, bus, p = 1, 2, …, 3 .
In each bus from which the signals are acquired, there is an

FANN, which identifies and qualifies the feeder operating state.
The input of each network (ainput) is formed by the vector ψ I, bus of
the respective measurement point bus

ainput
bus = ψ I, bus (6)

As an example, the FANN in bus 47 has the vector ainput
47 = ψ I, 47

as input; i.e. it uses only the information about the current of bus
47.

The neural networks provide the system operating state as
output (boutput); e.g. normal operation or operation under an HIF,
and the phase in which the failure is present. To represent each
operating state, a predefined codification is used according to
Table 1. 

The output codification is defined as follows: the first bit shows
the operating state, and the last two shows the phase under
abnormal operation. Since there are two possible operation states,
the first bit represents both states; i.e. normal operation ([0]) and
HIF ([1]). Similarly, the last two bits show the four combinations
of phases under failure; i.e. without the presence of phases ([0 0]),

presence of phase a ([0 1]), presence of phase b ([1 0]), and the
presence of phase c ([1 1]).

Lastly, a simple voting system is used to aggregate the
information coming from the intelligent systems presented at the
supervised busses, where the final diagnosis will be that
predominant at the neural networks output.

3 Test system and simulations
Usually, the research centres and utilities do not have a
representative database of the distribution system operating under
failures. Due to the lack of these information, it is necessary to use
a test system to simulate failures, allowing, then, the extraction of
pertinent information and the validation of diagnosis and prognosis
methodologies.

3.1 Test system

This paper is employed the IEEE-123 distribution feeder [30] as
test system, which is strongly characterised by the unbalance
between phases. Fig. 5 shows the IEEE-123 distribution feeder,
modelled with EMTP-RV software. 

The current signals acquisition in the distribution feeder above
is performed only in the main substation as in other distribution
systems. Considering it is a normal practice, one characteristic of
the smart grids is the presence of innumerous meters along the
feeder. The busses where intelligent meters were allocated are
shown in grey in Fig. 5. They were defined after eliminating the
single and two-phase sections, remaining only the three-phase
sections, and inserting the meters into busses with two or more
branches. Therewith, it is possible to evaluate if the bus, where the
measurement is realised, interferes on the final result obtained by
applying the proposed methodology.

3.2 Simulations

A total of 963 HIFs simulations were performed, with a sample
frequency of 15.36 kHz (256 samples per cycle), which is
commonly used for the measurement/acquisition equipment. The
following variables were considered: the failure insertion angle (0°,
45°, and 90°), failure incidence phase (a, b, and c), failure bus, and
failure behaviour.

Since there is no precise model to represent HIFs, many
publications in the literature have proposed models for use in the
analysis of such failure [7, 8, 31]. This study used the classical HIF
model proposed by Emanuel and Gulachenski [31], which has two
direct voltage sources, V p and Vn, connected in an antiparallel
manner by two diodes, as well as a series impedance that controls
the arc current magnitude. The HIF model parameters were varied
in the following manner: V p from 500 up to 2000 V; Vn from 2000
up to 2500 V; series resistance from 20 up to 100 Ω; and series
inductive reactance from 150 up to 300 Ω. This variation is
necessary to obtain different behaviours of HIFs and its impact in
the electric power distribution system.

Neural networks are essential in the proposed methodology.
However, if the weights are not adjusted correctly, such as in a
previous training, the results produced by the neural networks may
not be satisfactory. Then, the selection of patterns to train all neural
networks becomes necessary. The simulation pattern set was
pseudorandom divided into two: a training set and a test set, as
shown in Table 2. 

The pattern set used for training the neural networks was also
used for validating each FIS, i.e. fuzzy sets and rules.

Table 1 Operating state output codification
Operation state Output codification
normal operation [0 0 0]
HIF on phase a [1 0 1]
HIF on phase b [1 1 0]
HIF on phase c [1 1 1]

 

Fig. 5  IEEE-123 distribution feeder
 

Table 2 Training and test sets
Failure Pattern set

Training Test Total
HIF at phase a 272 66 342
HIF at phase b 234 54 288
HIF at phase c 264 73 333
total 770 193 963
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4 Conception of the HIF diagnosis modules
The diagnosis modules’ rules and input fuzzy sets of the first
methodology, and neural networks parameters of the second
methodology were defined based on the 963 HIF simulated cases.

Table 3 presents the fuzzy sets quantity for each input and the
quantity of rules, considering the measurement bus. 

In the output of each FIS was employed four fuzzy sets; i.e.
normal operation, HIF phase a, HIF phase b, and HIF phase c;
which are the same for all the measurement points. It should be
highlighted that the fuzzy set and rules definition are dependent on
the operators’ analysis experience.

The values of the neural networks parameters used, considering
each measurement bus, are presented in Table 4. The parameter ρa
is named ρ baseline and is adapted using successive increment ε
until it reaches maximum similarity (MS). MS occurs when (14) is
satisfied [22]. 

5 Results and discussion
There are two fundamental steps in the development of an efficient
failure diagnosis system: signature extraction and the use of
modern tools for data analysis.

In the first step of the failure diagnosis process, i.e. the
extraction of current singularities, the Daubechies mother wavelet
with a fourth-order filter (db4) is applied. The use of the wavelet
transform allows the identification of frequency transients of HIF.
It was only selected the characteristics obtained from three-phase
current signals to become the methodology simple and reduce its
costs inherent to the real-time implementation, i.e. cheaper data
acquisition and processing modules. The use of multiple
characteristics, e.g. voltage, is possible and can improve the
diagnosis system reliability, however it elevates utilities’ initial
investments. The behaviour indices extracted from the
oscillographies are evaluated by multiple FIS and multiple FANNs.
Table 5 presents the accuracy rate of the two methodologies
developed for the detection and classification of HIF in electric
power distribution systems. 

Regarding the normal system operation, it is emphasised that
the two methodologies presented 100% accuracy in diagnosis.

The principal objective of this paper is to develop efficient
systems to aid the operators in HIF diagnosis process and carefully
analyse the relevant characteristics for the automation process.
Table 6 presents an evaluation of the essential attributes for real-
time applications in modern electrical distribution systems. After,
these characteristics are carefully discussed. 

Table 3 Fuzzy sets and rules for each measurement point
Measurement point Fuzzy sets quantity Quantity of rules

Input 1 Input 2 Input 3 HIF phase a HIF phase b HIF phase c
bus 149 20 14 20 63 45 61
bus 13 18 11 15 53 44 60
bus 18 16 9 11 55 37 45
bus 47 12 14 20 59 46 55
bus 54 19 22 21 61 54 74
bus 60 20 20 22 57 57 76
bus 67 20 17 19 63 52 62
bus 76 16 17 16 60 59 65
bus 97 18 14 19 65 54 65

 

Table 4 FANN parameters for each measurement point
Measurement point Parameters

α β ρa ρb ρab ε

bus 149 0.01 1.00 0.20 1.00 0.95 0.000001
bus 13 0.01 1.00 0.20 1.00 0.95 0.00001
bus 18 0.01 1.00 0.20 1.00 0.95 0.000001
bus 47 0.01 1.00 0.20 1.00 0.95 0.000001
bus 54 0.01 1.00 0.20 1.00 0.95 0.0001
bus 60 0.01 1.00 0.20 1.00 0.95 0.000001
bus 67 0.01 1.00 0.20 1.00 0.95 0.00001
bus 76 0.01 1.00 0.20 1.00 0.95 0.00001
bus 97 0.01 1.00 0.20 1.00 0.95 0.00001

 

Table 5 Accuracy rate of the diagnosis module for the two
methodologies
Measurement bus Accuracy rate, %

FIS Fuzzy-ARTMAP
bus 149 99.48 97.41
bus 13 100.00 98.96
bus 18 99.48 97.41
bus 47 97.41 95.85
bus 54 99.48 95.85
bus 60 99.48 98.96
bus 67 100.00 95.85
bus 76 97.93 98.96
bus 97 100.00 100.00

 

Table 6 Principal characteristics comparison between the
methodology employing FIS and the methodology using
FANN
Characteristic Intelligent tool

FIS Fuzzy-ARTMAP
dependency of human operator high low
Is it necessary a previous training? no yes
training time — 1.30 s
diagnosis time 27.17 ms 36.69 ms
Does it allow using the evidence theory
at the final?

yes no

Does it allow using new faults at the
future?

yes yes

difficulty in including new faults high low
generalisation capacity high high
global efficiency 99.25% 97.69%
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The human operators’ dependency is due to the necessity in
analysing oscillographies or characteristics index to determine the
operational conditions. This procedure demands time and can
generate errors caused by the human operators. In this item, the FIS
is more critical due to the great quantity of fuzzy rules, whilst the
FANN only needs the values of the parameters α, β, ρa, ρb, ρab, and
ε.

Although is easier to define the topology of a neural network, a
previous training is necessary to provide satisfactory final results.
However, the neural network function can be compromised if there
is not enough fault patterns, causing undesirable errors on
diagnosis. The training time of the FANN is around 1.30 s, which
can be reduced applying parallel processing technique, e.g. FPGA
and DSP.

Analysing the two techniques used, the one that provided the
information of the system operating state in less time was the FIS.
Nevertheless, the FANN, even with processing time a little higher,
is a good option to real-time applications.

When using multiple measurement points, where each one
provides the feeder operational condition, the operator might not be
capable to aggregate such information and not take an adequate
preventive/corrective action as necessary. Thereby, fusion
information techniques must be applied to reduce the quantity of
diagnosis, and if possible, with a probabilistic value. The evidence
theory is an efficient tool with this characteristic. This work uses
the evidence theory only for FIS due to the way the results are
produced. An example showing how to proceed to apply the
evidence theory is presented below.

Firstly, consider the centre areas values generated by the FIS for
each bus, being them: 6.25 (bus 149), 6.25 (bus 13), 8.98 (bus 18),
6.88 (bus 47), 7.58 (bus 54), 7.59 (bus 60), 6.25 (bus 67), 6.36 (bus
76), and 6.25 (bus 97). Rebutting these values on the output fuzzy
sets, obtains the membership values as shown in Table 7. 

Then, the values presented at this table are aggregated by
evidence theory, producing the following confidence intervals: HIF
a 99.99% 99.99% , HIF b 0.00% 0.00% , and HIF c
0.00% 0.00% . Thus, the decision-making is based on the

intervals evaluation and not anymore dependent of the operators
experience.

Although is not possible to apply the evidence theory on the
results provided by the neural networks it is possible to generate a
confidence value by applying a voting scheme. The theory of
evidence is impossible to be applied with the FANN due to the
form how the neural system provides the final result, i.e. only one
diagnosis with an assurance of 100%, different from the FIS, which
provide respective probabilities for each of the three possible
diagnoses. Consider as an example an HIF at phase b where the
diagnosis results are shown in Table 8. 

Observing the results, the diagnoses have no probabilistic value,
which not allows to aggregate them. With the use of the scheme,

the operator is able to point the fault that is the most probably by
analysing a perceptual value of votes received for each one of the
possible states. The final result of the example is (considering
Table 8): phase a – 11.11%, phase b – 55.56%, and phase c –
33.33%.

Regarding the inclusion of new faults, both the techniques
allow this procedure to be done. The difference is in the way that
the inclusion is performed, once the neural network activates the
continuous training module, the FIS needs new fuzzy sets. The new
fuzzy sets inclusion demands time by the operators and can
generate rough errors. Thus, the continuous training module
consists in a robust and reliable tool compared to the FIS way of
including new faults.

Lastly, evaluating the global efficiency of each tool, is
concluded that both presents high generalisation capacity, once
they can distinguish faults in different phases (a, b, and c), with
different incidence angles (0°, 45°, and 90°), at distinct points of
the distribution feeder.

6 Conclusions
This paper compares two fuzzy based methodologies for failure
diagnosis in electric power distribution systems. The method was
developed to detect and classify HIFs, which represent a huge
problem for utilities due to the possibility of evolving into a critical
event that could cause energy supply interruption. Through the
application of the developed methods, it is possible to avoid major
prejudices to utilities and consumers.

For abnormality detection on the feeder, it is necessary to
extract the singularities present in current signals, allowing the
representation of the possible operating states of the feeders. As
stated in the smart grid paradigm, the method uses oscillographies
from different points along the feeder, providing complete and
comprehensive information in relation to the buses and their
operating states. Analysis of the diagnosis and prognosis system is
automatically carried out by using the wavelet transform, artificial
neural networks, and evidence theory. Through the combined use
of signal processing techniques, artificial intelligence algorithms,
and data fusion techniques, high generalisation capacity, flexibility,
robustness, and efficiency are obtained, which are important
characteristics that aid the decision-making process. First, to detect
and classify abnormalities, current oscillographies are evaluated in
the wavelet domain search of frequency transients. Nine FIS and
nine FANNs provide the system operating state, with the
Dempster–Shafer evidence theory and voting scheme generating
the final state, respectively.

To evaluate the performance of the proposed methodologies,
HIFs were simulated in a distribution feeder with 123 buses. The
results show that the algorithm is efficient, reliable, and robust,
mainly when applied to the diagnosis of HIFs; this represents an
advance in this context considering that such faults have complex
behaviours and characteristics.
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9 Appendix
 

9.1 FANN algorithm

The FANN architecture (Fig. 6) consists, basically, of the following
procedures [22]:

I. Fuzzy-ARTa and fuzzy-ARTb modules: The input data are
allocated in the vector a = a1 … aMa , i.e. vector a has Ma
components, and the output data compose the vector
b = b1 … bMb , i.e. vector b has Mb components. These vectors
are normalised in order to meet the criterion of fuzzy logic [32],
belonging to the interval [0, 1]. The input and output vectors are
denoted by the vectors Ia and Ib, respectively,

Ia = a ac = a1 a2 … aMa a1
c a2

c … aMa
c (7)

Ib = b bc = b1 b2 … bMb b1
c b2

c … bMb
c (8)

The encoding of the complement is performed to preserve the
amplitude information: ai

c = 1 − ai and bi
c = 1 − bi. 

II. Weights matrices: Initially, all weights of the fuzzy-ARTa,
fuzzy-ARTb and inter-ART matrices (W Nx2Ma

a , W Nx2Mb
b , and

W NxN
ab ) have a value equal to one, indicating that there is no

category active, where N is the number of training patterns.
III. Neural network parameters: Parameters used in the processing
of the FANN are:

• Choice parameter α (α > 0): selects the categories.
• Training rate β (β ∈ 0, 1 ): controls the network adaptation

velocity.
• Vigilance parameter ρ (ρ ∈ 0, 1 ): responsible for the number

of categories created, i.e. the resonance of the network.
• Increment parameter ε (positive and small): an internal

mechanism, denominated match-tracking, is responsible for the
network auto-regulator process, which maximises the
generalisation and minimises the error. If the network prognosis
is wrong, through an instructed associative connection, the
fuzzy-ARTa vigilance parameter is incremented by a minimal
value (ε) to correct the fuzzy-ARTb error.

IV. Choice of categories in fuzzy-ART modules: The fuzzy-ARTa
choice function (T j

a) is calculated:

T j
a =

Ia ∧ W j
a

α + W j
a (9)

where ∧ is the AND fuzzy operator, i.e. I ∧ W ≡ min Ii, Wi .
Choose the winner category of fuzzy-ARTa:

jw = arg max T j
a , for j = 1, 2, …, N; (10)

Fig. 6  FANN architecture
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The same procedure applies to the Fuzzy-ARTb module, using the
index k, instead of the index j, to identify the Fuzzy-ARTb module.
V. Activity vector: The activity vector on F2 layer is defined by
Yb = Y1

b … YN
b , where Ykw

b = 1 and Yk
b = 0 for k = 1, 2, …, N;

k ≠ kw.
VI. Vigilance criterions: The verification of vigilance criterions of
the fuzzy-ARTa, Fuzzy-ARTb, and inter-ART modules occurs
through (11)–(13), respectively,

Ia ∧ W jw
a

Ia ≥ ρa (11)

If not, perform the reset, i.e. attribute T jw
a = 0 and choose again the

winner category of fuzzy-ARTa

Ib ∧ Wkw
b

Ib ≥ ρb (12)

If not, perform the reset, i.e. attribute Tkw
b = 0 and choose again the

winner category of fuzzy-ARTb

Yb ∧ W jw
ab

Yb ≥ ρab (13)

If not, increment the vigilance parameter ρa,
ρa = Ia ∧ W jw

a / Ia + ε, attribute T jw
a = 0 and choose again the

winner category of fuzzy-ARTa.
VII. Weights adaptation: The weights adaptation of the fuzzy-ARTa
and fuzzy-ARTb modules is performed using (14) and (15),
respectively,

W jw
a(new) = β Ia ∧ W jw

a(old) + 1 − β W jw
a(old) (14)

Wkw
b(new) = β Ib ∧ Wkw

b(old) + 1 − β Wkw
b(old) (15)

Finally, the weights of inter-ART module are adapted

W jw
ab = W jw, 1

ab W jw, 2
ab … W jw, N

ab (16)

where W jw, kw
ab = 1 and W jw, k

ab = 0, for k = 1, 2, …, N; k ≠ kw.
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