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1.  Introduction

A one-dimensional (1D) bright soliton with cubic nonlinear-
ity, capable of moving at a constant velocity [1, 2], has been 
observed in nonlinear optics [1, 2] in both temporal [3] and 
spatial [4] varieties. Although a three-dimensional (3D) spa-
tiotemporal soliton cannot be formed with a cubic nonlinear-
ity due to collapse [1, 5], the soliton can be stabilized in higher 
dimensions with a saturable [5, 6] or a modified nonlinearity 
[7], with a cubic-quintic nonlinearity [8], or with a modified 
dispersion. A two-dimensional (2D) spatiotemporal optical 
soliton has been observed [9] in a saturable nonlinearity gen-
erated by the cascading of quadratic nonlinear processes. A 2D 
spatial soliton in a cubic-quintic medium has been suggested 
[10] and realized experimentally [11]. The generation of a 
stable 2D vortex soliton in a cubic-quintic medium has been 
suggested [12]. There has also been a study of the dynamics 
of the vortex pulsed beam in a medium with nonlinearities of 

opposite sign [13] and of interacting vortices in Bose–Einstein 
condensates (BEC) [14].

A 3D spatiotemporal optical soliton, commonly known as 
a light bullet, was realized experimentally in arrays of wave 
guides [15]. There are many theoretical—numerical and 
analytical—studies on light bullets using the 3D nonlinear 
Schrödinger (NLS) equation  [1] with a modified nonlinear-
ity [6, 7], nonlinear dissipation [16], and/or dispersion [17]. 
Dispersion and nonlinearity management can stabilize light 
bullets in a medium with cubic nonlinearity [18]. Solitons have 
also been studied in the coupled NLS equation [19]. Recently, 
we studied [8] the formation of a 3D spatiotemporal light bul-
let [5, 6] in a cubic-quintic medium for a defocusing quintic 
nonlinearity and a focusing cubic nonlinearity. A cubic-quintic  
medium is also of experimental interest. A study featuring 
a polydiacetylene paratoluene sulfonate crystal in the wave-
length region near 1600 nm shows that the refractive index 
versus input intensity correlation leads to a cubic-quintic form 

Laser Physics Letters

S K Adhikari

Elastic collision and breather formation of spatiotemporal vortex light bullets in a cubic-quintic nonlinear medium

Printed in the UK

065402

LPLABC

© 2017 Astro Ltd

14

Laser Phys. Lett.

LPL

10.1088/1612-202X/aa6c1c

6

Laser Physics Letters

Elastic collision and breather formation of 
spatiotemporal vortex light bullets  
in a cubic-quintic nonlinear medium

S K Adhikari

Instituto de Física Teórica, UNESP—Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, 
Brazil

E-mail: adhikari44@yahoo.com

Received 6 February 2017, revised 31 March 2017
Accepted for publication 5 April 2017
Published 4 May 2017

Abstract
The statics and dynamics of a stable, mobile three-dimensional (3D) spatiotemporal vortex 
light bullet in a cubic-quintic nonlinear medium with a focusing cubic nonlinearity above 
a critical value and any defocusing quintic nonlinearity are considered. The present study 
is based on an analytic variational approximation and a full numerical solution of the 3D 
nonlinear Schrödinger equation. The 3D vortex bullet can propagate with constant velocity. 
Stability of the vortex bullet is established numerically and variationally. Collision between 
two vortex bullets moving along the angular momentum axis is considered. At large velocities 
the collision is quasi-elastic, with the bullets emerging after collision with practically no 
distortion. At small velocities two bullets coalesce to form a single entity called a breather.
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of nonlinearity in the NLS equation  [1, 20]. Such a cubic-
quintic nonlinearity also arises in a low intensity expansion 
of the saturable nonlinearity used in the pioneering study of 
light bullets [6].

In this Letter we demonstrate the stabilization of a 3D spa-
tiotemporal vortex (rotating) light bullet in a cubic-quintic 
medium and study its statics and dynamics, employing varia-
tional and numerical solutions of the 3D nonlinear Schrödinger 
equation. The vortex light bullet is capable of moving with-
out deformation with constant velocity. We study the collision 
between two vortex light bullets moving along the spinning 
axis. Such a collision in 3D is expected to be inelastic, with 
loss of energy. In the present numerical simulation of collision 
between two vortex light bullets in different parameter domains 
of nonlinearities and velocities three distinct scenarios are 
found to take place. At sufficiently large velocities, the col
lision is found to be quasi-elastic: the two bullets emerge after 
collision with practically no deformation. At small velocities, 
the collision is inelastic: the bullets form a single bound entity 
in an excited state, last for ever and execute oscillation. We call 
this a breather. In a small domain of intermediate velocities, 
the bullets coalesce to form a single entity that expands indefi-
nitely, leading to the destruction of the bullets.

We present the 3D NLS equation used in this study in sec-
tion 2. In section 3 we present the numerical results for sta-
tionary profiles of 3D spatiotemporal vortex light bullets, and 
numerical tests of stability of the vortex light bullet under a 
small perturbation. The quasi-elastic nature of collision of two 
vortex bullets at large velocities and formation of a breather 
at low velocities are demonstrated by realistic simulation. We 
end with a summary of our findings in section 4.

2.  Nonlinear Schrödinger equation: variational 
formulation

The 3D NLS equation we describe below to study vortex soli-
tons has application in two areas: in nonlinear optics, where the 
soliton is known as a spatiotemporal optical vortex bullet, and 
in BEC. In nonlinear fiber optics the 3D NLS equation is [1, 21]
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where the unit of the parameter γ is W −1m, that of κ is  
W −2m3, that of the intensity | |A 2 is W m−2, that of the disper-
sion parameter β2 is ps2 m−1, and that of the propagation con-
stant β0 is m−1. We define the diffraction length β ω≡LDF 0

2 
and dispersion length τ β≡ | |LDS

2
2/ , where ω is the width of 

the pulse, and τ is the time scale of the soliton [22]. Now one 
defines the following dimensionless variables [21]
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The scale P0 is chosen to yield unit norm: ∫ |Φ| =x y td d d 1.2  

Using dimensionless variables, one obtains the following NLS 
equation with self-focusing cubic and self-defocusing quintic 
nonlinearity [1]
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where ≡ x y tr , ,{ }, p and q are the coefficients of cubic and 
quintic nonlinearities respectively. In (3) x, y denote trans-
verse extensions, z the propagation distance, and t the time. 
The quintic nonlinearity of strength q with a negative sign 
denotes self-defocusing. The plus sign before |Φ|2 denotes a 
self-focusing cubic nonlinearity.

For a vortex of charge L with circular symmetry in the 
x  −  y plane, we can write ( ) ( ) ( )φ ρ θΦ =z t z Lr, , , exp i ,L   

ρ ρ θ ρ θ= + = =x y x y, sin , cos2 2 , where the function 
φ ρ t z, ,L( ) is real with the property ( )→ φ ρρ t zlim , ,L0 → ρ .L  This 
generates an optical pulse with a dark spot at the center 
(ρ = 0) and is called an optical vortex [23]. The wave function 
Φ zr,( ) is periodic in θ with period π2  (rotational symmetry). 
Consequently, recalling
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for unit charge L  =  1, (3) becomes [23]

( )

ρ ρ ρ ρ

φ φ φ ρ

∂
∂
+

∂
∂
+

∂
∂
+
∂
∂

−

+ | | − | | =

⎡
⎣⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦⎥

z t

p q t z

i
1

2

1 1

2

, , 0,

2

2

2

2 2

2 4

�
(5)

where we have dropped the L  =  1 index from the wave 
function.

To estimate the order of magnitude of different variables, 
we consider an infrared beam of wavelength λ = 1 μm in a 
nonlinear medium of β = −102

2 ps2 m−1, with the time scale 
τ = 60 fs. Then the beam width ω≈ 239 μm and the disper-
sion length =L 36DS  cm. These numbers are quite similar to 
those in an experiment on spatiotemporal optical bullets in a 
planar glass wave-guide [24]. Here we present the results in 
dimensionless units, which can be converted to actual exper
imental units using the transformations (2).

The analytic model (5) is also applicable to the case of a 
vortex soliton in BEC [25]. In that case the mean-field Gross–
Pitaevskii equation  describing the BEC in the presence of 
attractive two-body and repulsive three-body interactions is 
given by [26]
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where m is the mass of each atom of the BEC, ψ tr,( ) is the 
condensate wave function at space point = x y zr , ,{ } and time 

t, ρ = +x y2 2 , a is the s-wave scattering length of atoms, 

K3 is the three-body interaction term, and N is the number of 
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atoms. Equation  (6) can be written in the following dimen-
sionless form after a redefinition of the variables
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where π=p N4 , =q mN K a22
3

4ħ/( ), length is scaled in units 
of | |a , time in ma2 ħ/ , ψ| |2 in units of | |−a 3. Equations (3) and 
(7) are mathematically the same, but the interpretation of the 
various terms in them is distinct. A BEC vortex soliton can be 
introduced in (7) in a similar fashion as in the case of an opti-
cal pulse, viz. (5). In the following we will discuss mostly the 
case of a spatiotemporal vortex light bullet in cubic-quintic  
medium. Nevertheless, the similarity of the mathematical 
models (3) and (7) ensures the the possibility of generating 
a 3D vortex soliton in a BEC with repulsive three-body and 
attractive two-body interactions.

For an analytic understanding of the formation of a spin-
ning light bullet (a vortex soliton of unit charge), we con-
sider the Lagrange variational formulation of an optical 
pulse [27]. In this axially symmetric problem, a convenient 
analytic variational approximation of the vortex bullet is  
[27, 28]
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where ρ= +r t2 2 2, σ z1( ) and σ z2( ) are radial and axial widths, 
respectively, and α βz z,( ) ( ) are corresponding chirps. The 
(generalized) Lagrangian density corresponding to (5) is 
given by
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where the overhead dot denotes z-derivative. Equation  (5) 
can be obtained by extremizing the functional (9) 
[27]. Consequently, the effective Lagrangian function 
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The variational parameters ν σ σ α β≡ , , ,1 2  are obtained from 
the Euler–Lagrangian equations
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After some straightforward algebra the four Euler–Lagrangian 
equations  lead to the following dynamical equations  for the 
widths:
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The stationary profile of the vortex bullet is obtained by 
setting the z-derivatives on the right-hand sides of (12) and 
(13) [27]:
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Equations (14) and (15) correspond to the global minimum 
of a conserved α- and β-independent effective Lagrangian 
σ σ σ σ α β≡ = =L L, , , 0, 01 2 1 2( ) ( ): σ σ∂ ∂ = ∂ ∂ =L L 01 2/ / . 

The function σ σL ,1 2( ) describes the Lagrangian dynamics of 
the widths σ σ,1 2 and is independent of the generalized veloci-
ties σ σ˙ , ˙1 2.

3.  Numerical results

The 3D NLS equation  (5) is generally solved by the split-
step Crank–Nicolson [29] and Fourier spectral [30] methods. 
The split-step Crank–Nicolson method in Cartesian coordi-
nates is employed in the present study. We use r  ={x, y, t} 
step of 0.05–0.016, a z step of 0.0005–0.000 0025 [29] and 
the number of r discretization points 128–320. There are dif-
ferent C and FORTRAN programs for solving the NLS-type 
equations [29, 31] and one should use the appropriate one. We 
use both imaginary- and real-z propagation [29] for numerical 
solution of the 3D NLS equation. The imaginary-z propaga-
tion is appropriate to find the stationary state and the real-z 
propagation for the dynamics. In the imaginary-z propagation 
the initial state was taken as in (8).

A stable bullet corresponds to a global minimum of the 
conserved effective Lagrangian σ σL ,1 2( ) at a negative value. 
To demonstrate the appearance of a global minimum, we show 
in figure 1 the two-dimensional contour plot of the Lagrangian 
σ σL ,1 2( ) in the σ σ−1 2 plane for (a) p  =  q  =  200, (b) p  =  200, 

q  =  400, (c) p  =  100, q  =  200, and (d) p  =  q  =  100, where we 
illustrate the region with negative Lagrangian; the Lagrangian 
is positive outside this region. The Lagrangian σ σL ,1 2( ) 
goes to zero as σ σ ∞,1 2 → . At the origin, σ σ, 01 2 → , and the 
Lagrangian σ σ ∞L ,1 2( ) → , which guarantees the absence of a 
collapsed state at the origin. The repulsive quintic nonlinear-
ity contributes positively to the Lagrangian; so do the first two 
terms on the right-hand side of (10). To make the Lagrangian 
(10) negative, the cubic nonlinearity coefficient p has to be 
larger than a critical value, e.g. >p pcrit, when the minimum 
of the Lagrangian could be negative, corresponding to a stable 
vortex bullet. For <p pcrit the optical pulse is too repulsive to 
form a vortex bullet. In figure 2(a) we show the variational 
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values for pcrit versus q. We compare the numerical and vari-
ational results for the root-mean-square (rms) sizes xrms and 
trms in figure 2(b) and Lagrangian | |L  in figure 2(c), for q  =  100 
and 200. The variational Lagrangian is calculated using (9) 
with the numerically obtained σ σ,1 2, corresponding to the 
minimum of Lagrangian (10) given by (12) and (13). The 
variational σ≡xrms 1. The rms sizes x t,rms rms and Lagrangian 
L of figures 2(b)–(c), respectively, increase with increasing q 
value, corresponding to repulsion, and decrease with increas-
ing p value, corresponding to attraction.

To study the density distribution of the spatiotemporal vor-
tex light bullets we define the reduced 1D and 2D densities by

∫δ φ= | |x t y rd d ,1D
2( ) ( )� (16)

∫δ φ= | |x y t r, d .2D
2( ) ( )� (17)

In figure  3 we show these reduced densities δ x1D( ) and 
δ x, 02D( ) as obtained from numerical and variational calcul
ations for various cubic nonlinearity coefficient p and quin-
tic nonlinearity coefficient q. The corresponding Lagrangian 
values are also exhibited. For a fixed defocusing quintic 
nonlinearity coefficient q (=200), the vortex bullet is more 
compact with the increase of focusing nonlinearity coef-
ficient p, resulting in more attraction—as can be found in  
figures 3(a) and (c). For fixed focusing nonlinearity coeffi-
cient p  =  200 and 100, the light bullet is more compact, with 
the decrease of defocusing nonlinearity coefficient q result-
ing in less repulsion—as found in figures  3(a)–(b) and in 
3(c)–(d) respectively.

The negative-Lagrangian finite well of figure  1 trapping 
the spatiotemporal vortex light bullet guarantees its stabil-
ity because of Lagrangian conservation. Now we present a 

numerical test of stability of a vortex bullet. For this purpose 
we consider the vortex bullet shown in figure 3(c) with p  =  100 
and q  =  200 as calculated by imaginary-z propagation. Using 
the imaginary-z profile as the initial state, we perform numer
ical simulation by real-z propagation. The real-z propaga-
tion shows steady breathing oscillation of the vortex bullet 
for a large z propagation. In figures 4(a)–(c) we show the 3D 
isodensity contour of the vortex bullet at z  =  0, 6 and 12. The 
vortex core remains intact in this propagation. No transverse 
instability [1] of the vortex core was found. In figure 4(d) we 
show the steady (monopole breathing) oscillation in the rms 
x and t sizes xrms and trms versus propagation distance z dur-
ing real-z propagation. The steady continued oscillation of the 
vortex bullet over a long distance of propagation establishes 
the stability of the bullet. The real-z simulation was performed 
in full 3D space, without assuming spherical symmetry, to 
guarantee the stability in full 3D Cartesian space.

A collision between two analytic 1D solitons is truly elas-
tic [1] due to the conservation laws (of energy, momentum), 
and such solitons pass through each other without deforma-
tion at any incident velocity. A collision between two 3D 
spatiotemporal vortex bullets is expected to be inelastic in 
general, due to loss of kinetic energy leading to their defor-
mation. However, under ideal conditions at large velocities 
the collision between two spatiotemporal vortex bullets can 
be quasi-elastic. Under these conditions, the kinetic energy 
of the colliding vortex bullets is much larger than the internal 
interaction energies, and the duration of the encounter in z 
is small. At the other extreme, when the kinetic energies of 
the colliding vortex bullets are much smaller than the inter-
nal binding energies, the encounter is controlled solely by the 
internal interactions, and the two vortex bullets form a bound 
entity after collision, called a breather.

To test the nature of collision between the present spati-
otemporal vortex light bullets, we study the frontal head-on 
collision of the same along the angular momentum axis (t). A 
moving bullet with velocity v along the t axis can be generated 
by multiplying the bullet wave function by ivtexp( ) and per-
forming real-z simulation with this function. The imaginary-z 
profile of the light bullet shown in figure 3(c) with p  =  100, 
q  =  200 is used as the initial function in the real-z simulation 
of collision, with two identical bullets placed at =±x 1.45 ini-
tially at z  =  0. The vortex bullets are set in motion along the t 
axis, in opposite directions, with velocity v  =  43. To illustrate 
the dynamics upon real-z simulation, we plot the 3D density 
contour φ| |zr, 2( )  at different values of propagation distance z 
in figure 5. In this case, the kinetic energy ≈v 2 9242/  is much 
larger than the Lagrangian (| | ≈L 2.5); the collision is found to 
be quasi-elastic, and when considering the 3D nature of the 
collision the distortion of the vortex bullets after collision is 
found to be insignificant.

To study the inelastic collision at very small velocities we con-
sider two compact bullets with p  =  200, q  =  200, place them at 
=±t 2 and set them in motion with velocity v  =  0.1, in opposite 

directions, along the t axis. The dynamics is illustrated by a plot 
of the time evolution of 1D density ∫δ φ≡ | |t z x y zr, d d ,1D

2( ) ( )  
versus t, z in figure  6 (a) and the corresponding contour plot 

Figure 1.  Contour plot of Lagrangian σ σL ,1 2( ) (10) as a function  
of σ1 and σ2 for (a) p  =  200, q  =  200, (b) p  =  200, q  =  400,  
(c) p  =  100, q  =  200, (d) p  =  100, q  =  100. The Lagrangian is 
negative in the shaded region and positive outside.

Laser Phys. Lett. 14 (2017) 065402
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is shown in figure 6(b). The two vortex bullets come close to 
each other at t  =  0 coalesce to form a breather and never sepa-
rate again. The combined bound system remains at rest at t  =  0, 
continuing in a small breathing oscillation because of a small 
amount of liberated kinetic energy, which creates the breather in 
an excited state. The observation of an oscillating breather has 

been reported some time ago in dissipative systems [32]. In this 
case the kinetic energy ≈v 2 .0052/  is insignificant compared to 
the Lagrangian (| | ≈L 21), and the collision is fully inelastic with 
destruction of individual bullets.

However, as the velocity v is reduced from ≈v 40 (elastic 
collision scenario presented in figure 5) to ≈v 0.1 (breather 

Figure 2.  (a) Variational results for pcrit versus q. A vortex bullet with negative Lagrangian can be formed for >p pcrit. (b) Variational (line) 
and numerical (points) results for rms sizes xrms and trms versus cubic nonlinearity coefficient p for quintic nonlinearity coefficient q  =  100 
and 200. (c) Variational (line) and numerical (points) results for Lagrangian L versus cubic nonlinearity coefficient p for quintic nonlinearity 
coefficient q  =  100 and 200.

Figure 3.  Numerical (line) and variational (points) reduced densities δ x1D( ) and δ =x y, 02D( ) for different cubic nonlinearity coefficient p 
and quintic nonlinearity coefficient q: (a) p  =  q  =  200, (b) p  =  200, q  =  400, (c) p  =  100, q  =  200 and (d) p  =  q  =  100.
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formation as in figure  6), a distortion of the vortex bullets 
takes place after collision, with eventual destruction of the 
vortex bullets. This is illustrated in figure  7, where apart 
from the two trajectories of the vortex bullets after collision 
a central peak can be seen at t  =  0. On further reduction of 

the initial velocity, the central peak at t  =  0 becomes more 
pronounced, and the outer tracks less prominent. Eventually, 
at very small velocities only the central peak corresponding 
to the formation of a breather after collision prevails, viz. 
figure 6.

Figure 4.  Real-z evolution of the vortex bullet with p  =  100 and q  =  200 by isodensity contour plot of φ| |zr, 2( )  at (a) z  =  0, (b) 6, (c) 12. 
The dimensionless density on the contour is 0.02. (d) The rms sizes xrms and trms versus z during real-z evolution.

Figure 5.  Collision dynamics of two vortex bullets, each with p  =  100, q  =  200, placed at =±t 1.45 at z  =  0 and set into motion in 
opposite directions along the t axis with the velocity of v  =  43, illustrated by isodensity contours at (a) z  =  0, (b)  =0.0135, (c)  =0.027, 
(d)  =0.0405, (e)  =0.054, (f)  =0.0675. The density on the contour is 0.02.
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4.  Summary

To summarize, we demonstrate the formation of a stable 3D 
spatiotemporal vortex bullet with cubic-quintic nonlinearity, 
employing a variational approximation and full 3D numer
ical solution of the NLS equation. The statical properties 
of the bullet are studied by a variational approximation and 
a numerical imaginary-z solution of the 3D NLS equation. 
The cubic nonlinearity is taken as focusing Kerr type above 
a critical value, whereas the quintic nonlinearity is defocus-
ing. The dynamical properties are studied by a real-z solu-
tion of the NLS equation. In the 3D spatiotemporal case, 
the vortex light bullet can move with a constant velocity. 
At large velocities, the collision between the two spatio-
temporal vortex light bullets is quasi-elastic, with no vis-
ible deformation of the final bullets. At small velocities, the 
collision is inelastic with the formation of a breather after 
collision. At medium velocities the bullets can be destroyed 
after collision.
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