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• A generalization of the logistic map is considered.
• A parametric perturbation is introduced in the system.
• Some results at the boundary crisis are obtained.
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a b s t r a c t

A generalization of the logistic map is considered, showing two control parameters α and
β that can reproduce different logistic mappings, including the traditional second degree
logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation
such that the original logistic map control parameter R changes its value periodically
according an additional parameterω = 2/q. The value of q gives this period. For this system,
an analytical expression is obtained for the first bifurcation that starts a period-doubling
cascade and, using the Feigenbaum Universality, we found numerically the accumulation
point Rc where the cascade finishes giving place to chaos. In the second part of the paper
we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis,
orbits can reach amaximum value X = Xmax = 1. When it occurs, the trajectory is mapped
to a fixed point at X = 0. We show that there exist a general recursive formula for initial
conditions that lead to X = Xmax.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The one-dimensional logistic map has beenwidely studied along the years, and its importance arises because it describes
the typical behavior of many dissipative dynamical systemsmodeled by nonlinear differential equations [1–5]. Applications
involve different areas, including biology, mathematics, engineering, physics and many others [6–17]. It is known that
the usual second polynomial degree logistic mapping has some special characteristics, for example, it presents cascades
of period-doubling bifurcations leading to chaos [18], tangent bifurcations giving rise to periodic windows, intermittent
behavior and crisis events (boundary, interior and merging chaotic bands crisis) [19,20]. The logistic map belongs to the
class of unimodal mappings and it is a model to biological population dynamics [21,22].
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Other works can be cited as examples of applications of the Logistic-likemap, for example, the B-Exponential map, which
can be used to generate pseudo-random numbers [23] as well as the regular logistic map [24].

In this paper we consider a generalization of the logistic mapping,

Xn+1 = RnXα
n

(
1 − Xβ

n

)
, (1)

where X is the dynamical variable of the system, and α and β are two control parameters that can be chosen to reproduce
not just the traditional second degree logistic map [6,22,25], when Rn is constant and α = β = 1, but the cubic [6,26], and
quartic maps, as well. We aim to understand and describe analytically the first flip bifurcation when varying the control
parameters. With this result it will be possible to obtain the accumulation point using Feigenbaum universality. In the other
part of the paper we study what happens in the boundary crisis, where we will find some analytical expressions for the
curves of maximum value of X as function of the control parameters. The analytical and numerical results will be shown
to be in good agreement. In our study, we explore the case α = β . Typically, as the control parameter Rn varies, attractors
arise [2] or change stability. Thus, following Refs. [2,3], we consider that Rn has a parametric perturbation given by

Rn(ϵ, ω) = R [1 + ϵ cos(ωnπ )] . (2)

Here R is a control parameter and ϵ gives us the amplitude of the parametric perturbation. We call as an initial condition
the set X0 and R0. The parameter ω affects the periodicity of the perturbation. This parametric perturbation can be used to
generate strange non-chaotic attractors,whichwere discussed byGrebogi et al. in Ref. [27]. In this paperwe consider periodic
perturbation, so it is interesting to expressω = 2/q, with q a non-zero natural value: the argument of Eq. (2) becomes n2π/q
where q gives the period of Rn. For example, ω = 2 (q = 1) leads to

R0 = R1 = R2 = · · · = RM = R(1 + ϵ), (3)

for anyM . For ω = 1 (q = 2), Rn is a period 2 function since R2 = R0, where

R0 = R(1 + ϵ),
R1 = R(1 − ϵ),

R2 = R(1 + ϵ). (4)

A period 3, R3 = R0, is obtained considering ω = 2/3 (q = 3) with

R0 = R (1 + ϵ) ,

R1 = R (1 − ϵ/2) ,

R2 = R (1 − ϵ/2) ,

R3 = R (1 + ϵ) . (5)

The procedure can be followed for any period q. It is important to observe that R0 is equal to R(1 + ϵ) for any integer ω.
In the first part of the paper (Section 2) we show an analytical expression for the first flip bifurcation of the generalized

logisticmapperiodically perturbed Eq. (1), leading away to obtain numerically the accumulation point using the Feigenbaum
universality. Next, at Section 3 we show important results at the boundary crisis. When the boundary crisis happens an
abrupt destruction of the chaotic attractor occurs, leading some orbits to reach X = 1 and then X = 0. A recursive formulae
is obtained, which shows the initial conditions that lead to X = 1. When it happens all the next iterations are equal to zero.
The conclusions are drawn in Section 4.

2. Bifurcation diagram and the Feigenbaum universality

Bifurcation diagrams for the generalized logistic map are shown in Fig. 1. A typical behavior is observed where the
initial periodic dynamic is conduced to chaos via successive flip bifurcations at a certain critical parameter Rc . The period 1
bifurcates to period 2 in RF1 which becomes to period 4 in RF2 and so on, constituting the Feigenbaum route to chaos. The
accumulation point Rc can be determined following the expression

Rc = lim
j→∞

(
RFj+1 +

RFj+1 − RFj

δ

)
, (6)

where δ ∼= 4.669201609 is the Feigenbaum’s constant [18].
From Eq. (6), it is possible to obtain a first approximation of Rc determining RF1 and RF2 . Both values can be verified

directly by bifurcation diagrams, as in Fig. 1, but, forω = 2, RF1 is found analytically for any values of the control parameters.
Considering the period 1 condition, X1 = X0 ≡ X∗, Eq. (1) results in

R(1 + ϵ)Xα−1
∗

(
1 − Xβ

∗

)
= 1. (7)
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Fig. 1. Bifurcation diagrams for β = α. (a) α = 1 and ϵ = 0, recovering the logistic map; (b) α = 0.5 and ϵ = 0; (c) α = 0.5, ϵ = 0.2 and ω = 2 (q = 1);
(d) α = 1, ϵ = 0.1 and ω = 1 (q = 2). The initial condition chosen was X0 = 0.4 and after a transient time of 104 iterations the data was plotted.

Fig. 2. (a) XF1 vs α; (b) RF1 vs α for ω = 2 (q = 1) and β = α.

A flip bifurcation occurs when dXn+1
dXn

|Xn=X∗
= −1, given

R(1 + ϵ)Xα−1
∗

[
(α + β)Xβ

∗
− α

]
= 1. (8)

Therefore, using Eqs. (7) and (8) we find the period 1 the first flip bifurcation which occurs at

XF1 =

(
1 + α

1 + α + β

)1/β

. (9)

Additionally, Eq. (9) in Eq. (7) conduces to

RF1 =
X1−α
F1(

1 − Xβ

F1

)
(1 + ϵ)

. (10)

Here, XF1 ̸= {0, 1} since for these values, R is not defined in Eq. (1). In Fig. 2(a) and (b) we show, respectively, the graphs of
XF1 and RF1 for our case α = β . With these figures, it is straightforward to find the values of XF1 and RF1 for each combination
of α and ϵ shown in Fig. 1(a–c), where ω = 2. RF2 is always obtained numerically by the bifurcation diagram.

The bifurcation diagram in Fig. 1(a) shows the regular second degree logisticmapping for Rn = R. In the interval R ∈ [0, 1]
the fixed point X∗ = 0 is stable. A transcritical bifurcation at R = RT = 1 changes the stability and the other fixed point
X∗ = 1−1/R becomes stable. This orbit suffers a duplication of periodwhen it assumes the value XF1 = 2/3 at the parameter
RF1 = 3, as highlighted in Fig. 2. After that, other duplications occur at RF2 , RF3 , RF4 , . . . following the Feigenbaumuniversality
until reaching the chaos at the accumulation point. Using a numerical method we have estimated that RF6

∼= 3.5696916 and
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Fig. 3. For R = 4/(1 + ϵ) and β = α we have in the items (a, b, c) the regular logistic map with ϵ = 0 and α = 1. The items (d, e, f) show X1 vs X0 , X2 vs X0
and X3 vs X0 for ϵ = 0 and α = 2. For the items (g, h, i) we have the results considering α = 1, ω = 2/3 and ϵ = 0.2.

RF7
∼= 3.5698913. Therefore, the accumulation point obtained using Eq. (6) is Rc ∼= 3.56993, which is in good agreement

with the results found in Ref. [5].
For α = 0.5 and ϵ = 0 [Fig. 1(b)] no transcritical bifurcation occur. The expression of the fixed point in this interval is

given by X∗∗ =
1

(1+1/R)2
. The first flip bifurcation still happens for RF1 = 3 [see Fig. 2(b)]. We found by numerical method

that RF6
∼= 3.7838474 and RF7

∼= 3.7840656, and using Eq. (6) we found Rc ∼= 3.78411. In Fig. 1(c) a bifurcation diagram is
shown for α = 0.5 and ϵ = 0.2, and one can see that RF1 = 2.5 according to Fig. 2(b). Here the accumulation point found is
Rc ∼= 3.15343, where we found RF6 = 3.1532061 and RF7 = 3.153388. In the last picture Fig. 1(d), the parameters are α = 1,
ϵ = 0.1 and ω = 1. We can see that for 1 < R < 3 the orbits have a period 2 due the value of q = 2 used in ω = 2/q. For
R ≳ 3 we have several duplications of period, determined just by numerical methods.

3. Boundary crisis

In the last section we presented a study about route to chaos in the generalized logistic map. Changing a parameter
continuously, in general, chaos is suppressed by tangent bifurcation where a stable periodic orbit takes place restarting the
route to chaos process again. Now we traverse the lost of the system stability where an abrupt destruction of the chaotic
attractor occur. This phenomenon is due to a boundary crisis at Rn = 4,when the chaotic attractor touches an unstable period
1 orbit at X = 0 where the dynamics remains. For Rn > 4 the orbits no longer stay in the interval X ∈ [0, 1]. Observing
Eq. (2) a maximum value of Rn, named as (Rn)max, is obtained when the cosine function is equal to +1. It happens for

(Rn)max = R(1 + ϵ). (11)

If we consider (Rn)max = 4 then the boundary crisis value RBC is

RBC =
4

1 + ϵ
, (12)

which is achieved just when the index n of the function Rn is amultiple of q, as shown in Eq. (11). If the index is not amultiple
of q then Rn < 4. One can see that in Fig. 1(a) and (b), where ϵ = 0, the boundary crisis occur at RBC = 4 while, in Fig. 1(c)
and (d), RBC < 4 since ϵ > 0. It is important to observe that RBC in Eq. (12) is independent of the control parameter α.

At the boundary crisis, a special situation occurs. The dynamics is conduced to the unstable periodic orbit at X = 0 when
it achieves X = 1. Therefore, for a better understanding about how the boundary crisis occur, it is interesting to find out
which initial conditions lead the dynamics to X = 1 when R = RBC . In Fig. 3(a), the first iteration of the mapping X1 as
function of the initial condition X0 is shown for the logistic map. As one sees, X1 = 1 is observed for the initial condition
X0 = 1/2. For two iterations of the mapping, the plot of X2 as function of X0 has as result Fig. 3(b). Now, for X0 = 1/2 the
value of X2 is zero, and one can see that X2 vs X0 has twomaximums (M2 = 2) X2 = 1. Increasing the number of iterations to
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Fig. 4. In this figure we present X0 as a function of α, where the color represents the value of the final X obtained after the iterations. We have considered
in: (a) 2 iterations and q = 1; (b) 3 iterations and ϵ = 0; (c) 3 iterations, ϵ = 0.08 and ω = 2/2; (d) 3 iterations, ϵ = 0.20 and ω = 2/2; (e) 4 iterations
and ϵ = 0; (f) 4 iterations, ϵ = 0.10 and ω = 2/3; (g) 4 iterations, ϵ = 0.12 and ω = 2/3; Rule for palette colors: X < 0.9 is represented by white,
X = 0.99 corresponds to red, X = 0.999 to orange and X = 1 is colored in blue. The analytical results are represented as different symbols and β = α.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 we obtain the plot shown in Fig. 3(c), and the number of maximums X3 = 1 is equal to 4 (M3 = 4). Therewith, the number
of maximums Xp = 1 in the pth iteration is

Mp = 2p−1. (13)

Therefore, the probability of an orbit in the chaotic set touch the periodic orbit at a time p increases exponentially.
We start to change the other parameters. Initially the value of α is changed to α = 2 and the position of the maximums

are observed moving. For X1 vs X0, as shown in Fig. 3(d), the position of the maximum moves to approximately X0 = 0.7.
The graphics of X2 vs X0 and X3 vs X0 are shown in Fig. 3(e, f). As one can see the maximums are differently positioned when
comparing to those in Fig. 3(b, c), but Eq. (13) still holds.

A more complicated behavior is observed when the parameter ω is changed with ϵ > 0. In Fig. 3(g–i) we consider q = 3
and ϵ = 0.2. For this case, R1 and R2, given by Eqs. (5), are less than 4 and the graph of the second (X2) [Fig. 3(g)] and third (X3)
[Fig. 3(h)] iterations of the mapping are not higher than 0.8. In the other hand, the plot of the fourth iteration X4 [Fig. 3(i)]
has 6 local maximums X4 = 1. For ϵ ̸= 0, Eq. (13) is not longer observed, and below we show a method to find the number
of maximums.

A good way to visualize the maximums as function of the control parameters is to consider a plot as shown in Fig. 4. To
construct these pictures we have made a grid of 1000 by 1000 equally spaced X0 and α values. The final value of X after a
number of iterations is determined by Eq. (1) for each (α, X0) set with β = α. If the final value of X is less then 0.9 we colored
as white, while for X ∈ [0.9, 1.0] the colors follow the palette in the Fig. 4. If X → 1 then the color tends to blue, which
represent the initial conditions that bring to a maximum X .
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In Fig. 4(a) it is considered two iterations of the mapping for ϵ = 0. As one sees, we have two curves that change as a
function of α. Fig. 4(b) shows the results considering three iterations of the mapping and four different curves are observed
with ϵ = 0. In Fig. 4(e) the mapping was iterated up to four times for ϵ = 0, and the number of maximums is 8. For α = 1
these pictures express the results of the logistic map shown in Fig. 3(a–c). The number of maximums now is 8. It expresses
that the exponential growth ofMn in Eq. (13) is independent of the parameters α when ϵ = 0.

Now we take into account the parametric perturbations for different values of ϵ and ω = 2/q. As mentioned before, for
ϵ ̸= 0, X = 1 is only observed for R0 = Rq = R2q = · · · . Thus, in Fig. 4(c) where q = 2 and ϵ = 0.08 we consider three
iterations of the mapping. As one sees, the four curves observed in Fig. 4(b) start connecting to each other. Increasing ϵ to
0.2 it generated Fig. 4(d), which shows that this curve is restricted to a limited interval of α. The same is observed for q = 3
when ϵ grows. Fig. 4(f) shows the results for q = 3 and ϵ = 0.10. For 4 iterations, this mapping should present 8 maximums
X4 = 1 for each value ofα as observed in the Fig. 4(e). Instead, there are four connections in Fig. 4(f), being two of them closed
curves. Changing ϵ to 0.12 the connections are more clear (see Fig. 4(g)). In conclusion, the number of maximums X = 1 is
highly affected by the value of the ϵ chosen. Therefore, with parametric perturbations (ϵ ̸= 0), the number of maximums
observed does not follow that one observed for ϵ = 0. Instead, Eq. (13) is the upper limit of this number.

Now we derive a general equation that describes how trajectories are conduced to the unstable periodic point X = 0.
For convenience we denote the iteration and the parametric perturbation just before to the boundary crisis as Xq+1 = 1 and
Rq = 4, respectively. Therefore, here R = 4/(1 + ϵ) and, following Eq. (1) with α = β ,

Xq =

(
1
2

) 1
α

, (14)

Xq−1 =

(
1
2

±
1
2

√
1 − 4

Xq

Rq−1

) 1
α

, (15)

Xq−2 =

(
1
2

±
1
2

√
1 − 4

Xq−1

Rq−2

) 1
α

, (16)

...

X1 =

(
1
2

±
1
2

√
1 − 4

X2

R1

) 1
α

, (17)

X0 =

(
1
2

±
1
2

√
1 − 4

X1

R0

) 1
α

, (18)

where

Rm =
4

1 + ϵ

[
1 + ϵ cos

(
2π

m
q

)]
, m = 0, . . . , q. (19)

For example, for q = 1, the parametric perturbation has just one value, R1 = R2 = · · · = 4, so following Eq. (18) we have

X2 = 1, (20)

X1 =

(
1
2

) 1
α

, (21)

X0 =

(
1
2

±
1
2

√
1 − X1

) 1
α

. (22)

In this case, X0 has two solutions due the plus and minus sign at the square root. These two solutions lead to X = 1 after
2 iterations. There are always two independent curves of Xn as shown in Fig. 4(a). The analytical results are highlighted by
different symbols (squares, circles, triangles, etc.) in Fig. 4.

A more interesting case is q = 2 where the perturbation assumes two different values: R1 = 4 1−ϵ
1+ϵ

and R2 = 4. Thus,

X3 = 1, (23)

X2 =

(
1
2

) 1
α

, (24)

X1 =

(
1
2

±
1
2

√
1 − 4

X2

R1

) 1
α

, (25)
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X0 =

(
1
2

±
1
2

√
1 − X1

) 1
α

. (26)

In this case, four different solutions of X0 are obtained and the results are shown in Fig. 4(b), for ϵ = 0. After increasing the
value of ϵ, the curves start to connect each other, as observed in Fig. 4(c)–(d) for ϵ = 0.08 and ϵ = 0.2 respectively. This
result is in agreement of our solution since R1 must be greater than 4X2 in Eq. (25). Similarly, for q = 3, eight independent
solutions of Xn can be found for ϵ = 0, as shown in Fig. 4(e). When ϵ increases, the curves start to connect each other, as
Fig. 4(f)–(g) show.

Just to emphasize the complexity of the solutions, let us for example consider the regular logistic map with α = 1 and
ϵ = 0. In this case, an orbit iterated many times has as solution X the following expression:

X =
1
2

⎛⎝1 ±

√1 −
1
2

(
1 ±

√
1 −

1
2

(
1 ±

√
. . .
))⎞⎠ . (27)

Depending on the combination of signals considered (plus or minus), the number of solutions for the maximum X is too
high.

4. Conclusions

A generalization of the logistic mapping was studied. The map has two control parameter α and β that change the
characteristics of the map, and using this one can reproduce some results, for example, for the quartic, cubic and second
degree logistic mappings. A parametric perturbation was also introduced in the system. In the first part of the paper the
first flip bifurcation was obtained analytically. With this result, we obtained the accumulation point using the Feigenbaum
universality. At the boundary crisis, we found analytical expressions for the curves of maximum value of X as function of the
control parameters. The analytical results were compared with the numerical ones, which are in good agreement.
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