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Abstract This paper is a survey of the literature about the

nonlinear updating process. It is focused on the computa-

tion of the difference between the numerical model and the

reference data as well as the algorithm uses to find the

optimal parameters. In both parts of the nonlinear updating

process, the popular approaches are presented. Special

emphasis is given to methods based on Volterra series.

Keywords Model updating � Nonlinear model � Nonlinear
identification � Sensitivity

1 Introduction

Numerical models are powerful tools to design a

mechanical structure, to control its integrity or to predict its

life’s service. In the particular case of the linear behaviour

of the mechanical systems, the methods for updating the

numerical models are well known and are widely used for

industrial applications (e.g. [36, 38, 70]). Typically, a lin-

ear model is a first approximation of a practical system.

Indeed, nonlinear behaviour (e.g., due to large displace-

ments, gaps, jumps, material behaviour, discontinuities) is

very common in real mechanical structures (e.g. [52, 104]).

The modelling of these nonlinear effects increases the

reliability of the numerical model. However, the number of

numerical parameters increases with the complexity of the

model and it is not easy to identify the value of these

parameters due to the uncertainties in the experimental

system (e.g., mechanical properties, boundary conditions).

Consequently, the first step is to define the numerical

model. On one hand, this model could be complex enough

to obtain a sufficiently reliable result. On the other hand,

this model could be simple enough to minimise CPU time

needed to solve it. The choice of the numerical model is

still a balance between numerical cost and reliability.

1.1 The nonlinear model

An important part of the nonlinear numerical model study

into the literature uses finite element method. For example,

Astroza et al. [1] has dealt with the linear and nonlinear

civil structural finite element models and has proposed a

new updating method combining simulated annealing with

the unscented Kalman filter. Nonlinear finite element

model has also been updated by Ebrahimian et al. [31]

using a batch Bayesian estimation approach. Many other

examples can be found into the literature, as well as the

finite element model with localized nonlinearity studied by

da Silva et al. [95] and the nonlinear finite element model

treated by Bussetta et al. [12]. Both examples use the

Volterra series into the updating process.
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To optimise the computational time, an iterative process

using meta-model can be used. First, a meta-model created

with the solution of the finite element model is used to

identify the parameters’ value. Then, the updated finite

element model is solved and the new value is used to

correct the meta-model. This process continues until con-

vergence is achieved (see Peeters et al. [80]).

A review of regression and Kriging meta-models is

presented by Kleijnen [58]. The numerical model can use

reduced-order modelling. For example, Claeys et al. [25]

used the Craig–Bampton method to compute a simple

model (i.e. with 1 or 2 degree of freedom) from a complex

finite element one. Touzé et al. [98] proposed a reduced-

order modelling using nonlinear normal modes. Čermel-

jand Boltežar [99] presented a reduced model in the fre-

quency domain based on the sub-structuring of complex

structures into linear and nonlinear parts. Lucia et al. [72]

dealt with a large bibliography review and a comparison of

order-reduction modelling techniques. They were focused

on Volterra series representation, the proper orthogonal

decomposition (POD) and harmonic balance (HB), partic-

ularly in the multi-disciplinary field of computational

aeroelasticity.

Some investigations have used numerical models

representative of complex physics. For example, the HB

has been used by Detroux et al. [29] for the detection

and tracking of bifurcations of nonlinear systems. Li and

Billings [68] have dealt with the extension of the of

Volterra analysis to weakly nonlinear Duffing systems at

a much wider range of excitation amplitude. Restoring

force surface (RFS) model has been studied by Kerschen

et al. [49] into the framework of the identification of

non-linear systems. The black-box model is another kind

of these nonlinear models. Juditsky et al. [46] has dis-

cussed about several aspects of the mathematical foun-

dations of the nonlinear black-box identification problem.

The artificial neural network is a similar model. The

properties of this model have been investigated by

Billings et al. [6] through to the study of non-linear

dynamical systems. Auto-regressive with exogenous

inputs (ARX) models are widely utilised for describing

dynamic data regimes for linear and non-linear systems.

Chen et al. [23] have proposed a new fitness function to

improve the quality of the (N)ARX model using a

genetic algorithm.

Generally speaking, the updating methods are applied

by assuming linear models of the structure with lumped

non-linearities, often assuming some kind of nonlinear

springs as being the source of the nonlinear behaviour.

Although this kind of model is able to reproduce the

nonlinear phenomena (e.g. Kerschen et al. [50]), it is

actually a rough simplification of the structure. Kerschen

et al. [52] presents an extensive bibliography review on

the nonlinear system identification techniques. Recently,

this review was updated by Noël and Kerschen [77].

1.2 Goal and outline

Despite of the important number of investigations, the

nonlinear model updating techniques are not mature as the

classical linear tools. The goal of this article is to give

survey about the state-of-the-art of the nonlinear updating

method. This bibliography review deals with the two main

parts of the updating process: the computation of the dis-

tance between the reference and the model as well as the

parameter identification algorithm. Both parts are inde-

pendent and can be freely combined.

As the updating methods, the outline of this article is

split into two critical parts. First, the Sect. 2 deal with the

choice of the objective function (i.e. the difference between

the reference and the model). Then, the algorithm used to

find the optimal parameters of the numerical nonlinear

model is discussed into the Sect. 3 (i.e. how to find the

value of the parameters). Finally, some remarks about the

nonlinear updating process are summarised in Sect. 4.

2 Error estimation: numerical model/reference
data

The definition of the distance between the numerical model

and the reference solution is the first difficult step on the

way to increase the reliability of the model. This measure

called error or objective function, is the main criterion uses

to choose the value of the numerical parameters. Because

of the uncertainty, the lack of knowledge and the speci-

ficities of each problems, a important number of error

functions has been developed. These objective functions

can use data in the frequency domain or in the time

domain.

2.1 Harmonic balance (HB)

The harmonic balance (HB) method is the most widespread

of the ones used in the frequency domain. This procedure

represents the response of a nonlinear system to an har-

monic input as a sum of sines with frequencies that are

integer multiples of the input frequency. This consideration

allows to analyse the frequency response of the system by

substituting the input signal and the assumed output in the

motion equation. To update the nonlinear model, the fre-

quency response function (FRF) is linearised around the

excitation frequency. Meyer and Link [74] used this

method to identify the nonlinear two-degree-of-freedom

elements into large linear finite element models. In Bös-

wald and Link [8], a similar way was used to update the
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nonlinear stiffness and the damping of a joint. Moreover, a

large number of investigation deals with the enhancement

of the HB method. Hall et al. [42] developed an improved

version of the HB method for the Navier-Stokes equations,

and used it for modelling unsteady nonlinear flows in

multi-stage turbomachinery. Liu et al. [71] used this kind

of improved method for an aeroelastic airfoil with cubic

restoring forces, and the results were compared with the

results from the classical HB approach. The constrained

optimization multi-dimensional harmonic balance method

was proposed in Liao [69] to the uncertainty quantification

problems in rotor dynamics with multiple frequency exci-

tations. Another strategy to enhanced the HB method was

proposed by Cochelin and Vergez [26], HB method was

combined with a continuation method to follow the peri-

odic solutions of dynamical systems. This method was

extend to the case of non-polynomial non-linearities by

Karkar et al. [48].

2.2 Constitutive relation error (CRE)

The concept of constitutive relation error (CRE) used to

update linear models in the frequency domain (e.g., [2, 28])

can be extended to update nonlinear systems. CRE is an

iterative method where each iteration is split in two steps.

First, the most important error is localised in the model and

then the parameters are updated to correct this error.

Guchhait and Banerjee [40] used the CRE to update non-

linear hyperelastic material models. A modified constitu-

tive relation error was proposed by Nguyen et al. [76] for

nonlinear behaviour in general and for the delay damage

model in particular. Isasa et al. [44] combined extended

constitutive relation error with multi-harmonic balance to

update linear model with local non-linearity.

2.3 Volterra series in the frequency domain

Another powerful method in the frequency domain uses the

Volterra series to extend the concept of frequency response

functions to nonlinear systems (the Fourier transform of the

Volterra kernel is named higher-order frequency response

functions). The Volterra series approach extends the input–

output relationship for linear systems to nonlinear ones.

With the Volterra series, the output of a nonlinear system is

the sum of a linear contribution and nonlinear ones (see,

e.g. [86, 87, 101]). The linear contribution is the convo-

lution between the first Volterra kernel and the input. The

nonlinear contributions are multidimensional convolutions

between the higher-order Volterra kernels and the input. A

lot of scientific publications deals with this updating

method. Chatterjee and Vyas [21] used this method to

update the nonlinear parameter of a Duffing oscillator. The

case of multi-input Volterra series was studied by

Chatterjee and Vyas [22]. In this article, the third order

Volterra kernel was estimated in the frequency domain

thanks to a relationship with the previously computed first

order one. Chatterjee [20] extended this updating method to

the case of multi-tone excitation. Lang et al. [60] used

nonlinear systems which can be described by a polynomial

form differential equation model to compute an expression

for the frequency response function. This method was used

by Lang et al. [61] to compute the optimal value of non-

linear viscous dampers for vibration control of multi-de-

gree-of-freedom systems. It was illustrated by a multi-

storey shear building model submitted to harmonic or

earthquake loadings. Peng et al. [81] compared this method

with the HB method using the Duffing oscillator. Accord-

ing to their conclusions, this method is better for strongly

nonlinear systems, but contrary to the HB method, it cannot

capture the jump phenomenon. Dong et al. [30] computed

analytical expressions for the calculation of output power

spectral density (PSD) and input–output cross-PSD of

nonlinear systems subjected to a Gaussian white noise

excitation. These expressions allowed the authors to

express the output PSD as well as the input–output cross-

PSD as a polynomial function of the input intensity or a

polynomial function of the nonlinear characteristic

parameters. This formulation was validated in a single

degree-of-freedom nonlinear system. Feijoo et al. [33] took

advantage of the Volterra model to split the nonlinear

equation system into associated linear equations for Vol-

terra operators and to define the associated frequency

response functions. These ones are easier to analyse and

interpret than the more complicated higher-order frequency

response functions. This method applied to only single

degree-of-freedom nonlinear system was extended to

multi-degree-of-freedom nonlinear (see Feijoo et al. [34] in

which the method was illustrated with a two degree-of-

freedom example).

2.4 Volterra series in the time domain

Moreover, the Volterra series can be used directly in the

time domain to define metrics for the nonlinear model

updating. da Silva [93] proposed metrics based on first two

Volterra kernels to identify local non-linearity in large FE

model. Shiki et al. [91] presented an improvement of this

updating method using the first three Volterra kernels. This

updating method was used by Shiki et al. [90, 92] for

damage detection in nonlinear structures. Another metrics

based on first three Volterra kernels was used by Bussetta

et al. [12] to update large nonlinear FE model. Third-order

Volterra model was used to simulate nonlinear bridge

aerodynamics by Wu and Kareem [107, 108]. Some

authors evaluate the value of the Volterra kernels thanks to

another nonlinear model. Wray and Green [106] shown that
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a certain class of artificial neural networks are equivalent to

Volterra series and gave the expression of the Volterra

kernel versus the internal parameters of the network. Guo

et al. [41] brought to light that the Volterra series can be

considered as a specialisation of the Adomian decompo-

sition and gave the relation between the value of the Vol-

terra kernels and the Adomian polynomials.

2.5 Identification of the Volterra kernels

Unfortunately, in the general case, the identification of the

Volterra kernels is very difficult to do because of ill-posed

and convergence problems. In addition, the number of terms

to define the kernels is quite large (Mp coefficients to identify

pth-order kernel for a system with a memory of M samples,

i.e. the input’s value affects the next M next samples of the

output). To identify the Volterra kernels, some authors use a

specific input signal. Bedrosian and Rice [3] presented a

method to compute the Volterra series in the frequency

domain with harmonic or Gaussian inputs. This method is

extended to deal with the multiple sinusoidal inputs and

multi-output for both continuous-time and discrete-time in

Worden et al. [105]. A simpler and more general version of

this algorithm was proposed by Jones [45]. This algorithm is

not limited to specific harmonic inputs. Wu and Kareem

[107] utilised an impulse function as input to identify the

Volterra kernels in the time domain. The proposedmethod is

tested thanks to a numerical example of a long-span sus-

pension bridge. On the other hand, to reduce the number of

estimated coefficients theVolterra kernel can be expanded in

a specific function basis. The Volterra kernels expanded in a

orthogonal basis are named Wiener kernels. da Rosa et al.

[85] studied an optimisation of a two-parameter Kautz basis

for the orthonormal series expansion of discrete-time Vol-

terra models. da Silva et al. [95] identified the first and sec-

ond-order Volterra kernels in an Kautz orthogonal basis.

Shiki et al. [91] used the same method to identify the first

three Volterra kernels. In Scussel and da Silva [88] the

Volterra kernels have been identified using only output data.

Prazenica and Kurdila [84] proposed to expand the Volterra

kernels in a multiwavelet basis using the technique of

intertwining. This technique is used to compute first-, sec-

ond-, and third-order Volterra kernels. This method was

extended to the case of nonlinear multi-input multi-output

aeroelastic systems by Khawar et al. [55]. Laguerre expan-

sions of the Volterra kernels was studied byMarmarelis [73]

andCampello et al. [14]. Orcioni [79] presented an improved

cross-correlationmethod to identify eachWiener kernelwith

a different input variance and new formulas for conversion

from Wiener to Volterra representation are presented. This

improved method was compared with the reference one.

Kibangoua et al. [56] proposed a new constructive procedure

for selecting a generalized orthonormal basis in the case of

second-order Volterra systems. Another approach is pre-

sented by Brenner et al. [10], they proposed to identify the

Volterra kernel thanks to a regularisation method using a

multiscale collocation method and to approximate the full

matrix of the Volterra kernel by an sparse matrix. The least-

squares method was used to identify the sparse Volterra

kernels of nonlinear bridge aerodynamics from a numerical

simulation and a wind-tunnel experiment (see [108]).

2.6 Restoring force surface (RFS)

A classical and historical time domain approach is the

Restoring Force Surface (RFS) method. This method uses

the equation of motion written in terms of the input and the

output to identify the nonlinear function of the restoring

force. The RFS was studied on the point of view of the

integration and the differentiation ofmeasured time data (see

[102]) as well as the choice of the excitation signal (see

[103]). Kerschen et al. [49] dealt with the experimental and

numerical identification of nonlinear beam using the RFS

method. Thismethodwas used byKerschen et al. [51] for the

identification of the VTT benchmark, which it consists of

wire rope isolators mounted between a load mass and a base

mass. Platten et al. [83] used an enhancement of the RFS

method using an extended modal space model to identify

multi-degree of freedom nonlinear systems. The RFS

method was used by Keshavarzzadeh and Masri [54] to

identify the nonlinear system using the generalized form of a

Padé–Legendre approximation. Vismara et al. [100] updated

the finite element model of the flap of the intermediate

experimental space vehicle using the RFS model. da Silva

et al. [94] compared the performance of twometrics based on

the HB, one using the CRE, two using the RFS and one

computing the POD for nonlinear model updating. Accord-

ing to their conclusion, in the case of strong non-linearity

only the RFS method is able to update correctly the model.

2.7 Proper orthogonal decomposition (POD)

Another nonlinear updating method in the time domain is

based on the proper orthogonal decomposition (POD), also

known as Karhunen–Loève (K–L) decomposition or prin-

cipal component analysis (PCA). The POD method consists

of extracting spatially coherent modes from time-series data.

This decomposition can be used as an orthogonal basis for

efficient representation of the nonlinear system. Lenaerts

et al. [65] use this method to update a numerical model of a

beam with a local non-linearity thanks to experimental data.

Galvanetto and Violaris [37] proposed a new method based

on the POD for damage detection in mechanical structures.

This method was used with homogeneous plates and com-

posite beams by Thiene et al. [97]. The randomly vibrating

systems was studied by Bellizzi and Sampaio [4]. Another
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kind of decomposition, that is not orthogonal in the Eucli-

dean sense, named smooth decomposition (SD), was pre-

sented by Bellizzi and Sampaio [5].

2.8 Artificial neural network (ANN)

An artificial neural network (ANN) can define the input–

output relationship for complex system. First, data (input

and output values) are used to build the ANN. Then, the

output of the ANN is validated with another set of input–

output data. Hasançebi and Dumlupinar [43] presented an

updating technique using ANNs for finite element model

of reinforced concrete T-beam bridges. Olivencia Polo

et al. [78] proposed a failure mode prediction method of

photovoltaic plants based on ANNs. Eski [32] presented a

model of a drilling machine using ANNs. Lauret et al.

[63] proposed to model the electric load forecasting with

ANN, which was computed using the Bayesian approach.

This method was compared with a nonlinear regression

techniques namely Gaussian process and ANNs model

with classical learning method (see [64]). The investiga-

tions of Li and Shi [66] were about the comparison of the

performance of three different numerical models based on

ANNs thanks to three metrics in 1-h-ahead wind speed

forecasting. According to the authors, no single neural

network model outperforms others universally in terms of

all evaluation metrics and the selection of the type of

neural networks for best performance is also dependent

upon the data sources. To overcome this difficulties, Li

et al. [67] proposed to use Bayesian combination method.

2.9 Example of error estimation: symmetric Duffing

oscillator

A few simple simulation were performed to illustrate the

error estimation presented in this section of the paper.

These simulation were done by simulating a updating

procedure of a simple symmetric Duffing oscillator [9].

This kind of equation can exhibit very complex behaviour

as harmonic distortion, jumps, bifurcation and chaos.

Because of this rich behaviour, the Duffing equation is a

benchmark in the nonlinear dynamics literature.

In this kind of vibrating system, the nonlinearity comes

from polynomial terms in the stiffness terms. For the case

of the symmetric Duffing oscillator, the motion equation

can be described as:

m€yðtÞ þ c _yðtÞ þ k1yðtÞ þ k3yðtÞ3 ¼ uðtÞ ð1Þ

wherem is the mass coefficient; c is the damping constant, k1
is the linear stiffness, and k3 is called the nonlinear cubic

stiffness. Despite the apparent simplicity of this nonlinear

differential equation, it can be used to describe the vibrations

of systems with geometrical nonlinearities, nonlinear

vibration isolators, pendulums, among other systems [59].

For this illustration, the reference parameters of the

system were considered to be: m ¼ 0:078 kg, c ¼ 0:50

N (m/s)�1, k1 ¼ 1230 N/m and k3 ¼ 8:13� 107 N/m3.

These so called reference parameters are the values to be

found in an model updating process. In this paper, these

values are used to generate pseudo-experimental input and

output data. Also, since the focus in on the nonlinear

parameters, it is considered that m, c and k1 are already

known since they can be calculated using classical linear

model updating techniques.

Three different approaches suitable for single degree of

freedom nonlinear systems are illustrated in this section:

the harmonic balance (HB), Volterra series in the fre-

quency domain and the restoring force surface (RFS). A

more in depth description of other error metrics can be

found in the paper [94].

2.9.1 Error estimation in the Duffing oscillator using

the Harmonic Balance

The harmonic balance can be used to estimate the fre-

quency response curve (FRC) to steady-state sinusoidal

excitation. In an experimental test, this kind of curve is

approximated by using a stepped-sine excitation in order to

observe the jump phenomenon. In this simulation, the

Duffing oscillator is excited by a 0.5 N amplitude stepped

sine with a frequency resolution of 0.075 Hz and block

duration of 2.5 s from 22 to 25 Hz. By capturing the

amplitude of the response for each frequency, the FRC can

be estimated and compared to an analytical value in order

to fit a value of the nonlinear stiffness k3.

Analysing the Duffing equation with the harmonic bal-

ance, the amplitude relation of the FRC (HFRC ðx; k3Þ) is:

HFRCðx; k3Þ ¼
Y

U
ðxÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�mx2 þ k1 þ 3
4
k3Y2Þ2 þ c2x2

q

ð2Þ

where Y is the steady-state amplitude of the output and U is

the input level. Note that HFRCðx; k3Þ is written as a

function of k3 which is considered to be unknown. This

analytical curve can be used as a function of the nonlinear

parameter k3 so that one can use this expression in a resi-

due between the experimental FRC (HexpðxÞ) and the

Duffing equation FRC (HFRCðx; k3Þ):

JHBðk3Þ ¼ jjHFRCðx; k3Þ � HexpðxÞjj ð3Þ

In the Fig. 1, the error JHBðk3Þ is illustrated as a function of

the nonlinear stiffness k3. It is possible to observe that the

global minimum of the error agrees with the reference

nonlinear stiffness (k3 ¼ 8:13� 107).
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2.9.2 Error estimation in the Duffing oscillator using

the Volterra series in the time domain

To identify the Volterra model of a nonlinear system, the

input and output signals need to be measured to have a

least-squares approximation of the Volterra kernels. The

input signal u(t) need to broadband excite the nonlinear

polynomial terms of the system to have a complete char-

acterization. In this case, a sweep sine input was applied

with 0.5 N amplitude from 0.1 to 200 Hz during 8.191 s.

The signals were discretised using a sampling frequency of

1 kHz, the response y(t) was calculated by using the

Newmark algorithm. With the input force applied and the

displacement of the Duffing oscillator as the output, the

Volterra kernels representing the linear part of the model

(H1;exp) and the nonlinear part of the response (H3;exp)

were calculated. These terms are considered to translate the

behaviour of the system in a nonparametric representation.

To calculate an error metric based on the Volterra series,

a residue between experimental nonlinear kernel H3;expðxÞ
and the kernel calculated with the Duffing oscillator

H3ðx; k3Þ was applied.
JVSðk3Þ ¼ jjH3ðx; k3Þ � H3;expðxÞjj ð4Þ

where JVSðk3Þ is the error between the nonlinear kernels.

By minimizing this function it is possible to have an

approximation of the nonlinear stiffness k3 based on an

experimentally extracted model of the nonlinearity. In the

Fig. 2 the error JVSðk3Þ is illustrated as a function of the

nonlinear stiffness k3.

2.9.3 Calculation of the nonlinear parameter

in the Duffing oscillator using the restoring force

surface

For this illustration, the same dataset used in the previous

section can be applied (with the sweep sine force u(t)). In this

specific case, it is possible to consider an additional term fNL
that represents the nonlinear contribution in the motion

equation:

m€yðtÞ þ c _yðtÞ þ k1yðtÞ þ fNL ¼ uðtÞ ð5Þ

In a practical parameter identification, considering that the

linear parameters m, c and k1 were previously calculated,

the nonlinear force time series can be calculated by doing:

fNL ¼ uðtÞ � ðm€yðtÞ þ c _yðtÞ þ k1yðtÞÞ ð6Þ

One can observe that the acceleration €y, velocity _y and the

displacement y need to be known also. Since the acceler-

ation is an usual measurement in modal testing, this signal

can be integrated twice to obtain _y and y. With this it is

possible to fit a polynomial curve to represent fNL as a

function of the displacement and/or the velocity of oscil-

lation. In this simple case, the fNL was expressed as:

fNL ¼ k3y
3 ð7Þ

The Fig. 3 shows the comparison between the fNL as a

function of the displacement y, as well as the polynomial fit

that can be used to calculate k3.

6 6.5 7 7.5 8 8.5 9
x 107

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k3 [N/m3]

J H
B(k

3)

Fig. 1 Calculation of the nonlinear parameter for the Duffing

oscillator using the Harmonic Balance

6 6.5 7 7.5 8 8.5 9
x 107

0

0.5

1

1.5

k3 [N/m3]

J V
S
(k

3)

Fig. 2 Calculation of the nonlinear parameter for the Duffing

oscillator using the Volterra series in the time domain
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3 Algorithm of model identification

The algorithm used to identify the value of the parameters

is a key part of the updating process. This algorithm has a

important influence over the solution—convergence

towards local optimum— as well as over the numerical

cost—numbers of computations of the numerical model.

The search algorithm can be split into the iterative opti-

misation algorithms [18] and the global identification

algorithms (e.g., genetic, evolutionary, stochastic) [19].

The main advantage of the first kind of algorithm is that the

convergence is obtained with a limited number of com-

putations of the numerical model. The main disadvantages

of this kind of method stem from the difficulty to compute

the objective function gradients, the sequential nature of

the process and that the algorithm converge toward local

minima, which can be sometimes satisfactory, but not

always. With the second kind of algorithm, the global

optimum is identified but the number of resolution of the

numerical model can be very large. To reduce the com-

putational cost, the search algorithm can use a metamodel.

Bonte et al. [7] compared different kinds of search algo-

rithms—sequential approximate optimization, iterative

algorithm and metamodel assisted evolutionary strategy—

by application to two forging processes. However, because

of the lack of data and modelling errors, a local minimum

could be a better model of the system (e.g. [109]). This

search strategy was enhanced by Caicedo and Zárate [13]

by a reducing epistemic uncertainty technique.

3.1 Iterative optimisation algorithms

The classical iterative optimisation algorithms (conjugate

gradient, BFGS, etc.) can be used to identify the parame-

ters value. Castro et al. [17] studied the optimisation of

intermediate die shapes of forging process with a method

based on a modified sequential unconstrained minimisation

technique and a gradient method. The calculation of

objective function gradients are computed by the direct

differentiation method in [35, 111] or by the adjoint state in

[24]. Sekhar and Ganguli [89] compares modified Newton

method, rank-1 Broyden update, and rank-2 BFGS update

methods for the numerical analysis in the helicopter trim

problem. Kim et al. [57] used sequential gradient method to

solve nonlinear inverse problem of laminar-forced con-

vective flow.

3.2 Bayesian method

Another algorithm of model identification process is based

on the Bayesian method [11]. With the Bayesian inference,

the uncertainties (parameter values and noise) are included

into the identification process. The process identifies a set

of parameters with a degree of belief and error bar. Lauret

et al. [62] used this kind of identification method to esti-

mate two convective heat-transfer coefficients of a roof-

mounted radiant barrier system. Zárate et al. [110] pre-

sented a Bayesian approach for location of acoustic emis-

sion sources in the shell of liquid filled tanks. A different

approach using a novel Markov chain Monte Carlo algo-

rithm with the Bayesian method for the identification of a

nonlinear dynamical system was proposed by Green [39].

3.3 Genetic algorithm (GA)

The genetic algorithm (GA) can be used to update the

model. The GAs are based on the law of the survival of the

fittest. The nonlinear model of a ball joint system was

updated through the genetic algorithm in Davoodi et al.

[27]. An evolutionary search model based on the GA was

proposed by Castro et al. [16] to update thermomechanical

nonlinear finite element model of hot metal-forming pro-

cesses. Canyurt and Hajela [15] described the parallel

implementation of cellular genetic algorithm for multicri-

teria design optimization problems. The main idea of the

cellular genetic algorithm is to treat the values of model’s

parameters as being distributed over a 2-D grid of cells,

which cell defines a set parameter’s values. The optimi-

sation of densification process of metal powders with GA

was considered by Keshavarz et al. [53]. This process was

modelled by thermomechanical nonlinear finite element

method.

3.4 Bees algorithm (BA)

The Bees algorithm (BA) is based on the food research

strategy of the honeybee swarms [82]. Few scouts explore

randomly for source food (acceptable solution). Then,

more bees are sent to the source food for neighbourhood
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Fig. 3 Calculation of the nonlinear parameter for the Duffing

oscillator using the restoring force surface. The red circle represents

the experimental data and the blue continuous line is the cubic

polynomial that fits the data

J Braz. Soc. Mech. Sci. Eng. (2017) 39:4757–4767 4763

123



searching. Moradi et al. [75] applied this search algorithm

to update finite element model of structures. In addition,

they compared this algorithm with the GA, the particle

swarm optimization (PSO) and the inverse eigensensitivity

method (IEM). According to their conclusion, BA showed

to have more accurate results than those of GA and IEM, it

was similar to PSO. Sun et al. [96] used BA to update a

finite element model thanks to surrogate models—response

surface methodology, Kriging, radial basis function and

support vector regression. The proposed strategy is into the

framework of sheet metal forming process. Karaboga and

Gorkemli [47] proposed a quick artificial bee colony which

is a new version of AB algorithm. This algorithm models

the behaviour of onlooker bees more accurately and

improves the performance of standard AB in terms of local

search ability.

4 Final remarks

The numerical modelling of the nonlinear mechanical system

is a useful tool. On the other hand, the identification of the

model (the value of the parameters) versus the real system

(experimental data) is a complex process. Each part of the

identification of the numericalmodel is important. Obviously,

the choice of the numerical model is very important; it

depends on the knowledge and the understanding of the user.

The updating of the nonlinear model can be divided into the

computation of the metric function and the search algorithm.

The important number of investigation about the computation

of the difference between the results of the numerical model

and experimental data shows the complexity of the problem.

The differences between the numerical results and the

experimental data can be split into the errormodelling and the

uncertainties in the experimental system. Generally, the

metric function is defined to evaluate the error modelling.

However, the difference between these two kind of errors is

fuzzy and the definition of an appropriate metric function is

still open. In view of the optimum updating of the nonlinear

model, the search algorithm have to consider the uncertainties

in the experimental data, the lackof data, the complexityof the

system as well as the doubts over the choice of the metric

functions. Moreover, the search algorithm has an important

influence over the computational cost of the updating process

as well as the reliability of the updated model. The compu-

tational cost can be reduce by the evaluation of a metamodel.

To put in a nutshell, the nonlinear updating process is

still current subject of investigation and it will remain as

such in the next years. The toolbox of the nonlinear

updating will be enhanced to increase the reliability of the

updating process and to reduce the computational cost.
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