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Introduction

Biosurfactants are complex biomolecules produced by bac-
teria and fungi. They have important properties including 
solubility, low critical micelle concentration (CMC) and 
surface tension reduction [1].

The industrial-scale production of biosurfactants must 
overcome some challenges, such as low yield, expensive 
substrates and downstream processing operations that 
increase production costs. The commercially available bio-
surfactant surfactin is valued at approximately $15.3/1 mg. 
On the other hand, the cost of chemical surfactants is 
around one dollar/lb, to put it in perspective [2]. Therefore, 
potential substrates for biosurfactant production have been 
sought from agro-industrial crops and residues, to provide 
cheaper and renewable sources for production at industrial 
scale.

Biodiesel is obtained from triglycerides by a transes-
terification reaction with methanol. The main by-product 
from biodiesel production is glycerol. The world biodiesel 
market might reach 37  billion gallons by 2016 [3]. Con-
sequently, crude glycerol will be increasingly available. 
Therefore, conversion of this low-value glycerol into value-
added products have attracted attention.

The biosurfactant produced by Bacillus subtilis strains 
consists of a long-chain fatty acid linked in a short peptide 
moiety composed of seven amino acids. There are natural 
variations of the surfactin chemical structure [4]. The pep-
tide sequence may change due to substitutions of amino 
acid in the peptide ring [5–7]. In addition, the length of the 
fatty acid chain can vary between 13 and 15 carbons [8–10] 
or least common homologous with 12 and 16 carbons [9, 
11, 12]. These homologous can exhibit different properties 
and activities [13, 14].
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The species B. subtilis is able to grow in many alterna-
tive carbon sources, including agricultural waste and by-
products [15]. The supplementation of the medium with 
metallic ions may induce overproduction of surfactin. Man-
ganese and iron salts added to the culture medium enhances 
both the biomass and surfactin concentration [16, 17].

This article describes the production of surfactin by 
B. subtilis in a medium with glycerol, a low-cost carbon 
source, supplemented with manganese salts. The properties 
of the crude surfactin such as surface tension and emulsi-
fication activity were tested. Chemical characterisation of 
the purified surfactin was obtained using Infrared spectra 
and 1H NMR spectra.

Materials and Methods

Growth Conditions of Bacillus subtilis

Bacillus subtilis ATCC 6633 was grown in Erlenmeyer 
flasks with 50  mL of nutrient broth and 5% of glycerol. 
The medium was incubated on a rotary shaker at 180 rpm 
and 35 °C for 24 h. Afterwards, the culture medium and the 
cells were separated by centrifugation for 20 min at 1500×g 
using a K-24 centrifuge. The cells were washed with sterile 
sodium chloride solution 0.85% (w/v). The inoculum was 
adjusted by measuring the optical density of 0.35 × 10−1 
(1.66 g L−1) at 600 nm and 1 mL was used to inoculate the 
production medium.

Biosurfactant Production

The culture medium for biosurfactant production was com-
posed of 50  mL of Bushnell-Haas medium. Factors such 
as glycerol concentration (5, 7 and 9% v/v) and manganese 
sulfate (MnSO4H2O 99.6%—Mallinckrodt) concentration 
were tested to allow higher productivity of biosurfactant. 
The MnSO4 was added to the medium to obtain concen-
trations of 0.01 and 0.05 mM. Bacterial growth was mon-
itored by measuring the optical density at 600  nm (Hach 
DR/2500 Spectrophotometer). A calibration curve was 
built to relate the absorbance with cell dry weight. The pH 
of the production medium was measured after fermentation 
using a Digimed DMPH-2 pH meter. The flasks were incu-
bated on a rotary shaker at 180 rpm and 35 °C for 72 h. The 
production of dry crude biosurfactant was calculated using 
optimum conditions for biosurfactant production.

Biosurfactant Extraction

Bacillus subtilis cells were removed from culture medium 
by centrifugation at 1500×g for 20 min using a K-24 cen-
trifuge. The cell-free supernatant was subjected to acid 

precipitation, according Cooper et al. [18]. by the addition 
of 6 M HCl until the pH reached pH 2.0 and was stored at 
4 °C overnight. Crude biosurfactant was recovered by cen-
trifugation at 1500×g for 20 min.

Surface Tension Measurement

Surface tension measurements were performed using a 
Krüss K6 Tensiometer equipped with a Du Noüy platinum 
ring. The crude biosurfactant was dissolved in a phosphate 
buffer pH 7. The surface tension was plotted against con-
centration of crude biosurfactant to determine the critical 
micelle concentration (CMC).

Emulsification Index (E24)

The ability of the biosurfactant to emulsify liquid such as 
water and oil fuel was tested. Emulsifying activity was 
determined by the addition of 2 mL of diesel fuel and the 
same volume of biosurfactant solution at different concen-
trations in test tubes. The tubes were then vortexed at max-
imum speed for 2  min, and the emulsions produced were 
allowed to settle for 24 h at room temperature. The emul-
sification index (E24) was calculated as the percentage of 
the height of the emulsified layer (mm) divided by the total 
height of the liquid column (mm) [19].

Purification of the Biosurfactant

Crude biosurfactant was purified by column chromatog-
raphy filled with silica gel 0.03–0.2  mm, 60  A (Acros 
Organics). The silica was suspended in chloroform/metha-
nol (2:1). The crude biosurfactant (0.5 g) was dissolved in 
chloroform/methanol (2:1). The column was eluted using 
solutions with increasing polarities. Chloroform/methanol/
ammonium hydroxide solution at a concentration of 28% 
(v/v) (80:20:4) (v/v/v), chloroform/methanol/ammonium 
hydroxide 28% (75:25:4) (v/v/v) and chloroform/methanol/
ammonium hydroxide 28% (65:35:5) [5]. Fractions were 
collected and the presence of biosurfactant was detected 
by thin layer chromatography with ninhydrin solution. The 
fractions containing the biosurfactant were placed in a flask 
and the solvent was evaporated under vacuum by a rotary 
evaporator. The purified biosurfactant was analysed by 
FT-IR and NMR spectroscopy.

Characterisation with FT‑IR Spectroscopy and Nuclear 
Magnetic Resonance (NMR)

Fourier transform infrared spectroscopy FT-IR was used 
to determine the chemical nature of the biosurfactant. The 
main functional groups of biosurfactant were obtained 
using an FT-IR spectrometer Shimadzu 8300.
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The 1H NMR spectra of biosurfactant were recorded on a 
Bruker 600 MHz spectrometer at room temperature operat-
ing, 64 scans (with tetramethylsilane as internal standard). 
Thirty milligrams of purified biosurfactant were dissolved 
in 0.5 mL deuterochloroform (CDCl3). The assignment of 
the peaks in the 1H NMR spectra was done according to the 
literature [8, 9, 17, 20].

Results and Discussion

Effect of Glycerol on Biosurfactant Production

Bacillus subtilis growth in the medium with different con-
centrations of glycerol is shown in Fig.  1. Bacillus subti-
lis growth was reported in cell dry weight (g L−1) and the 
pH of the medium was measured after 48 h of incubation 
at 35 °C. The medium with 5% (v/v) glycerol supported 
the best B. subtilis growth and the pH of the medium was 
around 6. Higher levels of crude glycerol affected growth 
and the pH of the medium negatively. The medium with 7 
and 9% (v/v) of glycerol strongly inhibited the B. subtilis 
growth. The pH of the medium decreased to around 4 and 
5.

Glycerol is a molecule with a strong influence on the 
osmotic pressure within cells. High levels of glycerol in 
the medium can cause intracellular modifications in order 
to guarantee the bacterial adaptation exposed to unfavour-
able conditions [21]. Hence, in this study the concentration 
of glycerol greater than 5% in the medium prevented the 
bacterial growth.

The results showed that the addition of 0.01 or 
0.05  mM of MnSO4 in the medium increased microbial 
growth in all glycerol concentrations, especially in sam-
ples with 5% of glycerol. The cell dry weight reached 
2.13  g  L−1 in medium with glycerol 5% (v/v) while the 
samples with 0.01 and 0.05 mM of MnSO4 reached 2.56 
and 2.52  g  L−1, respectively. Therefore, there was no 
difference in the B. subtilis growth between 0.01 and 
0.05 mM of MnSO4.

Crude Biosurfactant Production

High glycerol concentrations (9% v/v) did not allow 
growth of the B. subtilis. Consequently, it was not pos-
sible to recovery any biosurfactant. At the concentrations 
of 7 and 5% (v/v), the amount of crude biosurfactant pro-
duced was 26 and 146  mg/L, respectively. Sousa et  al. 
[22] also used 5% of glycerol in the medium to produce 
biosurfactant with different strains of Bacillus. The acid 
pH value of the medium at 7 and 9% of glycerol probably 
interfered with the recovery of biosurfactant because the 
biosurfactant is not soluble under acidic conditions [15].

The amount of dry crude biosurfactant was highest in 
the medium containing MnSO4. The medium at 5% of 
glycerol supplemented with 0.01 and 0.05 mM of MnSO4 
produced 740 and 793  mg  L−1 of crude biosurfactant, 
respectively. The manganese plays an important role in 
the surfactin production, because it improves nitrogen 
metabolism as it promotes synthesis of free amino acid 
required for surfactin production [23, 24].

Although manganese salts improve the surfactin pro-
duction, the combination of glycerol and manganese can 
promote biofilm-associated sporulation [25]. For this, it 
is important to know which concentration of glycerol and 
manganese is the best for biosurfactant production. In 
this study, the addition of 0.05 mM of MnSO4 improved 
the biosurfactant production significantly.

The medium with 5% glycerol supplemented with 
0.01 and 0.05  mM MnSO4 achieved superior produc-
tion when compared with production from a synthetic 
medium. Al-Wahaibi et  al. [26] used B. subtilis to pro-
duce biosurfactant in minimal medium with different 
sources of carbon. The yield in minimal medium with 
glucose and molasses was 300 and 500 mg L−1 of biosur-
factant, respectively. Liu et al. [14] obtained 692 mg L−1 
of biosurfactant from LB medium. In this work, the use 
of a low cost co-product as a source of carbon achieved a 
maximum production of 793 mg L−1. Therefore, the use 
of this carbon source might be able to reduce the produc-
tion costs of the biosurfactant.Fig. 1   Bacillus subtilis growth in medium with different concen-

trations of glycerol and manganese (grey bar). Measurement of pH 
value of medium after 72 h (filled squared with solid line). Error bars 
values of three independent experiments



616	 Waste Biomass Valor (2018) 9:613–618

1 3

Surface Tension and Critical Micelle Concentration 
(CMC)

Surface tension values (mN/m) of the medium at 5, 7 and 
9% (v/v) glycerol are shown in Fig. 2. The media with 5% 
glycerol supplemented with 0.01 and 0.05  mM MnSO4 
were able to reduce the medium surface tension by 39 and 
38%, respectively.

The surface tension values at different concentrations 
of crude biosurfactant are shown in Fig. 3. The crude bio-
surfactant solution at 0.8 mg mL−1 was able to reduce the 

buffer surface tension from 63 to 42 mN m−1. Crude bio-
surfactant solution at 1.5  mg  mL−1 (1.5  g  L−1) reduced 
the surface tension to 39  mN  m−1. The surface tension 
reduction and CMC value found by Abdel-Mawgoud 
et al. [27] were 36 mN m−1 and 15.3 mg L−1, respectively. 
These authors suggest that variations in CMC values 
depends on the purity of the surfactin. The CMC values 
determined in the present study were from a crude bio-
surfactant. Thus, it may explain the high value of CMC 
found in this study. In addition, Liu et al. [28] proposed 
that the number of carbons of the fatty acids chain influ-
ence in the CMC and solubility of the surfactin.

Emulsifying Index (E24)

The emulsifying power is another important property of 
the biosurfactants. The emulsifying index of the crude 
biosurfactant solution against diesel fuel increased from 
23.6 to 33.7%, according to the biosurfactant concen-
tration. The highest emulsifying index was 37.7% at 
1.5  mg  mL−1 of crude biosurfactant solution. Interest-
ingly, concentrations higher than 1.5 did not guarantee 
high emulsifying index. The crude biosurfactant solution 
showed properties such as emulsifying power and sur-
face tension reduction that could improve oil recovery 
processes.

Purification and Chemical Characterisation 
of the Biosurfactant

The purified biosurfactant obtained from column chroma-
tography showed a retention factor of 0.5. The same value 
of Rf was reported by Cho et al. [29]. The IR spectra of 

Fig. 2   Surface tension values (mN m−1) obtained in the medium at 
5, 7 and 9% (v/v) glycerol after 72 h of incubation. The medium was 
supplemented with 0.01 and 0.05 mM MnSO4

Fig. 3   Surface tension plotted against concentration of crude biosur-
factant solution

Fig. 4   Infrared spectra of the biosurfactant produced by B. subtilis 



617Waste Biomass Valor (2018) 9:613–618	

1 3

the biosurfactant indicates the presence of a peptide com-
ponent at 3398 cm−1 resulting from N–H stretching mode 
as shown in Fig.  4. Bands at 2933 and 1382  cm−1 indi-
cated the presence of an aliphatic chain. The absorbance 
around 1650 cm−1 belonged to C=O stretching vibration 
of the amide I region [30]. The peak at 1109 is because of 
C–O–C vibrations in esters [30, 31].

Figure  5 shows the 1H NMR spectra as well as their 
assignments. The assigned peaks in 1H NMR spectra 
showed similarity among the surfactin spectra described 
in other studies [5–8, 17–20, 32].

Backbone-amide-NH groups are in the region from 
δ = 7.7 to 7.0  ppm. Signals around δ = 5.2 indicated Hα 
from amino acids, which comprise the hydrophilic moi-
ety. The peaks at δ = 2.1–0.82  ppm confirmed the pres-
ence of a long aliphatic chain, the hydrophobic moiety. 
A methyl ester proton (CH3OOC) at δ = 3.6  ppm was 
observed. Distinct regions identified by IR and 1H NMR 

spectra presented evidence that the molecule in the study 
is the biosurfactant, surfactin.

Conclusion

The crude glycerol from a biodiesel refinery can be a low-
cost feedstock for biosurfactant production. The produc-
tion is superior when compared with similar studies using 
glucose or LB medium as carbon source. In addition, bio-
surfactant production by B. subtilis can be considered as a 
safe molecule, because this member of the genus Bacillus 
is non-pathogenic. Other benefits of the process include the 
sustainable use of glycerol and the reduction in production 
costs of a highly useful product. Also, the biotechnological 
valorisation of crude glycerol makes biodiesel production 
more sustainable and economically attractive.
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Fig. 5   Nuclear magnetic resonance (1H NMR) spectra of the purified biosurfactant obtained in CDCl3 at 25 °C
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