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A B S T R A C T

Reliable estimates of the unsaturated soil hydraulic properties are needed in many research and engineering
projects. Fractal based approaches have become popular for describing the hydraulic functions. New models
based on fractal geometry are presented to describe the wetting phase relative permeability (unsaturated hy-
draulic conductivity) of porous media. Analytical expressions were derived using the fractal capillary pressure
(water retention) model proposed by Alfaro Soto and Vilar (2006) and the statistical pore size distribution
models of Mualem (1976a) and Burdine (1953) for the unsaturated hydraulic conductivity. The newly derived
models provide predictions of the relative permeability to water, as well as of the fractal dimension for modeling
the pore structure of a soil. Results are compared with previous formulations by Brooks and Corey (1964), van
Genuchten (1980) and Kosugi (1996), as well as with experimental water retention and hydraulic conductivity
data of four soils having widely different soil textures. The proposed models agreed closely with observed data.
The analytical models may be attractive alternative for estimating the unsaturated hydraulic conductivity when
no laboratory or field measurements are available.

1. Introduction

Estimates of the unsaturated soil hydraulic conductivity are needed
in various branches of the earth sciences, including civil and petroleum
engineering, hydrogeology, soil science, vadose zone hydrology, and
environmental and geotechnical engineering. Although the unsaturated
hydraulic conductivity can be measured using a range of laboratory and
field tests (e.g., Dane and Topp, 2002), the required experiments are
generally too expensive, complex, and time-consuming for routine ap-
plications, especially when the conductivity is very low. Moreover,
results can vary considerably if such factors as the wetting and drainage
history of the porous medium or specific characteristics of the fluid
(water, air, non-aqueous phase liquid) or medium are not considered in
the tests. These various limitations have encouraged the use of indirect
methods involving both empirical equations as well as more process-
based formulations to determine the unsaturated hydraulic con-
ductivity, K, as a function of the pressure head, h, or the water content,
θ (Brooks and Corey, 1964; Durner, 1994; Vereecken et al., 2010).

Statistical pore-size distribution models have made it possible to
estimate the K(θ) or K(h) functions based on the characteristics of the
soil water retention (or capillary pressure - saturation) curve, θ(h). A
range of models can be used for this, as exemplified by theoretical
formulations by Purcell (1949), Childs and Collis-George (1950),
Burdine (1953), Millington and Quirk (1961) and Mualem (1976a),

among others. Using these theories, various analytical models have
been obtained for the hydraulic conductivity functions, such as the
widely used models of Brooks and Corey (1964) and van Genuchten
(1980).

Fractal geometry has been used also for describing the hydraulic
properties of unsaturated porous media. Tyler and Wheatcraft (1990)
determined the hydraulic conductivity functions using a fractal model
for the water retention curve, along with the statistical pore-size dis-
tribution models of Burdine (1953) and Mualem (1976a). Rieu and
Sposito (1991) combined fractal descriptions of the water retention
curve and the particle size distribution to obtain the fractal dimension
necessary for calculating the hydraulic conductivity. Other contribu-
tions were fractal formulations of the porous medium where used in
combination with predictive pore-size distribution approaches for the
permeability are given by Fuentes et al. (1996), Xu (2004) and Li
(2010), among others.

In this paper we propose an alternative fractal-based description of
the unsaturated soil hydraulic functions using the conductivity models
of Burdine (1953) and Mualem (1976a). Below we first briefly sum-
marize various formulations for the hydraulic properties based on both
traditional (mostly empirical) and fractal-geometric descriptions of the
hydraulic properties. These descriptions are then compared with the
new fractal-based formulations.
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2. Existing models for the soil hydraulic properties

2.1. Traditional analytical formulations

A large number of empirical equations and statistical pore size
distribution models have been used for the hydraulic properties of
unsaturated media, including functions proposed by Brooks and Corey
(1964), Campbell (1974), van Genuchten (1980), Fredlund et al.
(1994), Kosugi (1996), and Assouline and Tartakovsky (2001). A de-
tailed overview of various models is provided by Leij et al. (1997). Here
we briefly summarize only those formulations that relate immediately
to the work discussed in this paper.

Most of the predictive equations for the hydraulic conductivity are
based on the statistical pore-size distribution models of Burdine (1953)
or Mualem (1976a), which are given by
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respectively, where Kr = K(h)/Ks is the relatively hydraulic con-
ductivity, Ks is the saturated hydraulic conductivity, h is the pressure
head (for notational convenience assumed here to be positive for un-
saturated conditions), and Se is effective saturation of the wetting
phase:

= − − ≡ − −S h θ h θ θ θ S h S S( ) ( ( ) ) ( ) ( ( ) ) (1 )e r s r r r (3)

in which S (=θ/θs) is relative saturation, Sr (=θr/θs) is residual sa-
turation, and θ, θs and θr are the volumetric, saturated and residual
water contents, respectively.

Most early models for the hydraulic properties used a simple power
expression for the water retention curve, exemplified by the classical
model of Brooks and Corey (1964), which can be combined with Bur-
dine's model (Eq. (1)) to yield the following set of hydraulic functions

=S h h h( ) ( )e a
λ (4)

= +K S S( )r e e
λ3 2 (5)

in which ha (generally referred to as the air entry value or bubbling
pressure) and λ (also known to as the pore size distribution index) are
essentially empirical parameters.

Eq. (4) can be combined also with Mualem's model (Eq. (2)) to give

= +K S S( )r e e
λ5 2 2 (6)

Limitations often associated with Eqs. (4), (5) and (6) are the sharp
breaks in the Se(h) and Kr(h) curves at the air entry value, the absence of
an inflection point, and possibly poor fits with retention data in the dry
range. Some of these limitations motivated van Genuchten (1980) to
introduce a smooth (continuous differentiable) water retention curve of
the form

= + −S h αh( ) [1 ( ) ]e
n m (7)

in which α, m and n, similarly as ha and λ in Eq. (4), are also empirical
parameters.

Eq. (7) with only minimal restrictions on permissible values of m
and n (i.e., n > 1, and m > 0) can be combined directly with the
Burdine and Mualem predictive equations to obtain very general but
relatively complicated mathematical expressions for the hydraulic
conductivity functions (van Genuchten and Nielsen, 1985; Dourado
Neto et al., 2011). With the restriction m= 2− 1/n on permissible
values of m and n, the Burdine-based equations for the water retention
and hydraulic conductivity functions are obtained by substituting Eq.
(7) into Eq. (1) and integrating to yield (van Genuchten, 1980)

= − − = −K S S S m n( ) [1 (1 ) ] ( 1 2 )r e e e
m m2 1 (8)

The Mualem-based equation for Kr(Se) is obtained similarly by
substituting Eq. (7) into Eq. (2) and assuming m= 1− 1/n on per-
missible m and n values, to give

= − − = −K S S S m n( ) [1 (1 ) ] ( 1 1 )r e e e
m m0.5 1 2 (9)

Another set of equations was derived by Kosugi (1996) who pro-
posed a water retention curve assuming a log-normal pore radius dis-
tribution, to obtain

=S h erfc h h σ( ) 1
2

{ln( ) 2 }e 0 (10)

in which ho and σ are parameters characterizing the log-normal pore-
size distribution, and erfc is the complementary error function. Kosugi
(1996) combined Eq. (10) with both Eqs. (1) and (2) to obtain
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for the Burdine-based conductivity Kr(h) function, and
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for the Mualem-based Kr(h) expression.

2.2. Fractal formulations for the hydraulic functions

Tyler and Wheatcraft (1990) were among the first to determine the
permeability of a porous medium to water using fractal mathematics.
For this they combined a fractal model for the water retention curve
with the statistical models of Burdine (1953) and Mualem (1976a).
Many others have followed since, including Toledo et al. (1990), Rieu
and Sposito (1991), Giménez et al. (1997), and Xu (2004), and various
references therein. Most of the fractal-based functions are relatively
simple power functions of the pressure head, which, if combined with
Burdine's conductivity model (Eq. (1)), will yield equations for three-
dimensional media of the form

= −S h h h( ) ( )e a
D3 (13)

=
−
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in which D is the fractal dimension. Eqs. (13) and (14) are identical to
the Brooks and Corey equations given by Eqs. (4) and (5) if the pore-
size distribution exponent λ is redefined in terms of the fractal di-
mension as

= −λ D3 (15)

which has become a key parameters in many fractal-based soil and
hydraulic property studies.

Eq. (13) can also by combined with Mualem's conductivity model
(Eq. (2)), in which case the fractal based conductivity function becomes

=
−
−K S S( )r e e

D
D

19 3
6 2 (16)

Eqs. (13), (14) and (16), with various assumptions, modifications
and extensions, have been derived or used in many studies (Tyler and
Wheatcraft, 1990; Toledo et al., 1990; Fuentes et al., 1996; Giménez
et al., 1997; Ghanbarian-Alavijeh et al., 2010, Xu and Dong, 2004;
Ghanbarian-Alavijeh and Hunt, 2012b, among others), with some
producing different power functions, especially of Eqs. (14) and (16),
while others interpreted D alternatively as the fractal dimension of the
pore radius, pore surface or particle size distribution. Also, some studies
assumed applicability of the equations over the entire moisture domain
(thus assuming that θr = 0), while others applied the equations over
only a limited part (e.g., between the air entry value and the pressure
head at the permanent wilting point (15,000 cm or some other value)).

Similarly as the traditional Brooks and Corey Se(h) curve, Eq. (13)
has limitations in terms of the sharp break of the curve at the air entry
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value, ha, and the function not exhibiting a inflection point often ob-
served in field data. For this reason several have derived alternative
fractal-based expressions for the hydraulic properties (e.g., Cihan et al.,
2009; Li, 2010). One is by Li (2010) who derived relative permeabilities
using fractal modeling of the medium in combination with the pre-
dictive conductivity models of Purcell (1949) and Burdine (1953). The
water retention curve used in his study was of the form (Li, 2010)

= − −h h bS(1 )e
λ

max
1 (17)

where

= − −b h h1 ( )a
λ

max (18)

in which, as before, λ = 3− D, and where ha and hmax are the lower
and upper cutoff values for Eq. (17), taken by Li (2010) as the air entry
value and the pressure head at the residual water content, respectively.
Eq. (17) was previously used also by Bird (1998), as well as by Perfect
(1999) who assumed the residual water content to be zero. The inverse
expression of Eq. (18) is given by (Bird, 1998; Perfect, 1999;
Ghanbarian-Alavijeh and Hunt, 2012a):

= − − ≤ ≤− − − −S h h h h h h h( ) ( )e
λ λ λ
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Using Eq. (17), Li (2010) derived a model for the relatively hy-
draulic conductivity of the wetting phases using the predictive con-
ductivity model of Purcell (1949), leading to

= − − −
+ +( ) ( )K bS β1 (1 ) 1r e
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where b= 1− β, and β = (ha/hmax)−λ. One may verify that
Kr(Se = 0) = 0, and Kr(Se = 1) = 1 in the above equations. Li (2010)
showed for two media (Berea sand and a rock sample) that Purcell's
model worked very well for the wetting phase.

These various results suggest that fractal geometry can be used to
describe the water retention curve, as well as of the hydraulic con-
ductivity to water. These issues are further explored in the next section
by using fractal theory to describe the water retention and hydraulic
conductivity functions.

3. Alternative fractal model for the hydraulic functions

In this section, the fractal model for the water retention curve de-
veloped by Alfaro Soto and Vilar (2006) is used to derive formulations
for the unsaturated hydraulic conductivity function using the ap-
proaches of Mualem (1976a) and Burdine (1953).

3.1. Fractal model for the water retention curve

Alfaro Soto and Vilar (2006) expanded upon previous work by
considering the pore-size distribution instead of the particle size dis-
tribution, and introducing an equivalent water retention curve which
does not assume a gradual and continuous reduction in pore size. Their
water retention model is of the form

= ⎧
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where λ= 3− D as before, θr is the residual water content, ho is an
semi-empirical parameter, and ha is the usual air entry value char-
acterizing a break in the retention function near saturation typical of
the Brooks and Corey (1964) formulation. This parameter is a function
of ho and λ as follows:

= −h h S S( (1 ))a o r r
λ1 (22)

In terms of effective (Se) and relative (S) saturations, Eq. (21) can be
written also in the forms
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where S(h) = θ/θs and Sr = θr/θs.
Alfaro Soto and Vilar (2006) derived Eq. (21), similarly as Tyler and

Wheatcraft (1990), by using a Menger sponge algorithm for the fractal
pore size distribution without any assumption about the geometry of
mass and the solid-pore interface. The equation incorporates two por-
tions of the water retention curve, one associated with initial desa-
turation of macropores and represented by the region where the fractal
characteristics are evident (with the fractal dimension being within in
the range 0≤ D≤ 3), while a second region assumes that the lower
limit of the water content when h → ∞ is equal to the residual water
content, θr.

We consider Eq. (21) to be a semi-empirical equation since the
model is made to partially satisfy a fractal condition in that the fractal
portion is invariant upon dilation and has fractal scaling as suggested
by Tyler and Wheatcraft (1990). In other words, the system remains
identical under different magnifications (Adler, 1992) and has a hier-
archical structure with larger units containing successively smaller and
smaller units (Giménez et al., 1997).

Fig. 1 shows S(h) plots based on Eq. (21) using hypothetical values
of 0.23 for Sr and 0.5 m for ho, with D varying from 1.0 to 2.9. The plots
reflect the fact that for given values of ho (in this case 0.5 m) and Sr, the
air entry value ha decreases as the fractal dimension increases. Please
note also that all curves go through the point (ho, 2Sr) = (0.5, 0.46),
which follows immediately from Eq. (21). In all cases, relative satura-
tion decreases between pressure heads of ho and ha, but this would
occur over a wider pressure head range if the residual water content is
allowed to decrease simultaneously when D increases. The curves re-
semble to some extent typical Brooks and Corey retention curves, ex-
cept that they do not exhibit straight lines on complete log-log plots of
Se(h), but only in the dry pressure head range.

Fig. 2 shows similar plots for different values of residual saturation
(Sr), varying from 0.1 to 0.5, while ho and D are maintained at 0.50 m
and 1.0, respectively. The plots show not only that, as expected, relative
saturation at a given pressure head increases with an increase in Sr, but
also with an increase in the air entry value, ha, as implied by Eq. (22).
The simultaneous increase in Sr and ha is typical of the water retention
curves of relatively fine-textured soils (e.g., Carsel and Parrish, 1988;
Schaap et al., 2001).

The flexibility of Eq. (21) in describing water retention data of
various soils is demonstrated in Fig. 3. The soils studied were Lamberg
clay, Caribou silty loam, Rubicon sandy loam, and Gravelly sand G.E.9,
with data sets obtained from the catalogue of Mualem (1976b). Results
obtained with Eq. (21) are compared in Fig. 3 with those using the
models of Brooks and Corey (1964), van Genuchten (1980) and Kosugi
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Fig. 1. Capillary pressure head – relative saturation curves calculated with Eq. (22) as-
suming Sr = 0.23 and ho = 0.50 m, with D varying from 1 to 2.9.
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(1996), while Table 1 presents the fitted parameters obtained using
nonlinear regression. The fractal dimension varied between 0.70 and
2.61. No apparent relationship existed between texture and the value of
D. However, all D values were less than the theoretical upper limit 3.0
(Hunt, 2004).

The plots in Fig. 3 and the R2 values in Table 1 indicate good
agreement of Eq. (21) with the data. They show that results with Eq.
(21) are very similar to those based on the models of Brooks and Corey

(1964), van Genuchten (1980) and Kosugi (1996). However, the plot
for Lamberg clay in Fig. 3a revealed lower values for R2, mostly because
of less that optimal fits of the very wet and dry sides of the curve. The
figure also shows that extrapolation of the fitted van Genuchten-
Mualem and Kosugi retention curves to the dry end did lead to lower
residual water contents than the Brooks-Corey and our curves.

3.2. Fractal models for the hydraulic conductivity

We next used Eq. (21) or (23a) to derive predictive equations for the
relative permeability (Kr) using the models of Burdine (1953) and
Mualem (1976a) as given by Eqs. (1) and (2), respectively. Solving Eq.
(23a) for h(Se) gives

= −h h S S[ ]o e r D
1

3 (24)

Substituting Eq. (24) into Eq. (1) and carrying out the integrations
yields the relative permeability model based upon Burdine's approach:

= −
−K S S( )r e e

D
D

11 3
3 (25)

Similarly, the relative permeability of the wetting phase can be
calculated using the model of Mualem (1976a) by substituting Eq. (24)
into Eq. (2) and integrating to yield

= −
−K S S( )r e e

D
D

19 5
6 2 (26)

The remarkable result here is that Eqs. (25) and (26) exactly du-
plicate the Brook-Corey fractal based Kr(Se) expressions given by Eqs.
(14) and (16). This even though different soil water retention models
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Fig. 2. Water pressure head – saturation curves calculated with Eq. (22) assuming
ho = 0.5 m and D= 1.0, with Sr varying between 0.10 and 0.50.

Fig. 3. Experimental capillary pressure head – volumetric water content data and fitted curves obtained with Eq. (22), as well as with the models of Brooks and Corey (1964), van
Genuchten (1980), Kosugi (1996), Toledo et al. (1990) and Fuentes et al. (1996), for four soils: a) Lamberg clay, b) Caribou silty loam, c) Rubicon sandy loam and d) Gravelly sand.
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are involved (Eqs. 13 and 23a). Because of the different retention
equations, the Kr(h) functions will be different also for the two models.
The fact that the same Kr(Se) expressions are obtained is a consequence
of the assumed scaling properties of the Burdine and Mualem theories
(Eqs. (1) and (2), respectively), which are forcing the predictive con-
ductivity curves to end at Kr(Se) = 1 when Se = 1. In other words, the
multipliers of the Se(h) expressions (i.e., of Eqs. 13 and 23a) can be
different, but not the exponents of Se in the two retention equations.

Figs. 4 and 5 shows plots of the relative hydraulic conductivity (Kr)
versus relative saturation (S) calculated with Eq. (27), using the same

parameters as in Figs. 1 and 2 respectively (i.e., ho = 0.5 m, Sr = 0.23
and D varying between 1.0 and 2.9 in Fig. 4 and D = 1 and Sr varying
between 0.1 and 0.50 in Fig. 5). The plots in Fig. 4 show a considerable
decrease in Kr as the fractal dimension (D) increases, leading to much
steeper curves. For the theoretical upper limit of 3.0 for D, the curve
would become a step function, being 1 at full saturation, and zero
elsewhere. This situation is very similar to the traditional van Gen-
uchten-Mualem and van Genuchten-Burdine equations, which have
lower limits of the van Genuchten n values of 1 and 2, respectively (van
Genuchten and Nielsen, 1985; Vogel et al., 2001).

Fig. 5 shows that, as expected, an increase in residual saturation (Sr)
forces the wetting relative permeability curves to be restricted to in-
creasingly smaller parts of relative saturation close to saturation.

3.3. Example calculations of the relative hydraulic conductivity

Eqs. (25) and (26) were used next to obtain the relative permeability
of the wetting phase using the Burdine and Mualem approaches, re-
spectively. The parameters Sr, ho and D in the equations (Table 1) were
estimated from the water retention curves shown in Fig. 3 using non-
linear least-squares. The accuracy of the fits were quantified by means
of the root-mean-square deviation (RMSD) between the modeled and
measured values. Values of RMSD close to zero provide better predic-
tions, with larger values indicating greater deviations from measured
values. Table 2 summarizes the results of the RMSD values obtained for
each soil using the following equation:

Table 1
Fitted parameters of the water retention functions of Alfaro Soto and Vilar (ASV), Brooks
and Corey (BC), van Genuchten-Mualem, van Genuchten-Burdine and Kosugi, given by
Eq. (20), Eq. (7) with m= 1− 1/n, Eq. (7) with m= 1− 2/n, and Eq. (10), respectively.

Retention Parameter Unit Soil2

Function a b c d

ASV1 θs (–) 0.544 0.442 0.382 0.324
θr (–) 0.026 0.195 0.155 0.071
ho (cm) 997 108 80 140
D (–) 2.50 2.61 0.70 1.87
R2 (–) 0.962 0.990 0.999 0.994

BC θs (–) 0.531 0.438 0.381 0.312
θr (–) 0.000 0.242 0.156 0.071
ha (cm) 2.6 66.7 66.7 47.6
λ (–) 0.460 0.569 2.310 1.126
R2 (–) 0.973 0.996 0.999 0.989

VGM θs (–) 0.533 0.440 0.383 0.322
θr (–) 0.000 0.306 0.177 0.081
α (cm−1) 0.177 0.009 0.011 0.015
N (–) 1.79 3.05 6.88 2.96
m = 1 − 1/n (–) 0.442 0.672 0.855 0.662
R2 (–) 0.998 0.999 0.990 0.999

VGB θs (–) 0.528 0.440 0.382 0.320
θr (–) 0.000 0.299 0.174 0.078
α (cm−1) 0.262 0.010 0.012 0.017
n (–) 2.60 3.53 6.97 3.58
m = 1 − 2/n (–) 0.231 0.434 0.713 0.442
R2 (–) 0.994 1.000 0.992 0.998

K θs (–) 0.536 0.440 0.382 0.322
θr (–) 0.000 0.312 0.178 0.084
ho (cm) 12.0 135.7 90.7 84.7
σ (–) 1.207 0.587 0.264 0.645
R2 (–) 0.999 0.999 0.990 0.998

1 ASV: Alfaro Soto and Vilar (2006); BC: Brooks and Corey (1964); VGM: van
Genuchten (1980)-Mualem; VGB: van Genuchten (1980)-Burdine; K: Kosugi (1996).

2 (a) Lamberg clay; (b) Caribou silty loam; (c) Rubicon sandy loam; (d) Gravelly sand.

Fig. 4. Wetting phase relative permeability (Kr) - relative saturation (S) curves calculated
with Eq. (27), based on Mualem's pore size distribution model assuming the same values
for Sr (0.23) and ho (0.5 m) as in Fig. 1, and with D varying between 1.0 and 2.9.

Fig. 5. Wetting phase relative permeability (Kr) - relative saturation (S) curves calculated
with Eq. (27), based on Mualem's pore size distribution model assuming the same values
for ho (0.5 m) and D (1.0) as in Fig. 2, with Sr varying between 0.1 and 0.5.

Table 2
Root Mean Square Deviation (RMSD) values of predicted relative hydraulic conductivity
functions using the pore size distribution models of Mualem and Burdine.

Soil Mualem
(1976b)
catalogue
number

Soil name Conductivity
model1

Model2

ASV BC VG K

a 1003B Lamberg
clay

M 0.40 0.46 0.36 0.41
B 0.31 0.37 0.29 0.32

b 3301 Caribou
silty loam

M 0.12 0.16 0.88 0.87
B 0.13 0.18 0.66 0.96

c 3501 Rubicon
sandy loam

M 0.25 0.26 1.26 1.27
B 0.40 0.41 1.29 1.41

d 4135 Gravelly
sand G.E.9

M 0.09 0.12 0.07 0.08
B 0.10 0.09 0.13 0.15

1 M: Mualem (1976a), B: Burdine (1953).
2 ASV: Alfaro Soto and Vilar (2006); BC: Brooks and Corey (1964); VG: van Genuchten

(1980); K: Kosugi (1996).
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= − −K K nRMSD [log( ) log( )] ( 1)m p
2 (27)

where Km and Kp represent, respectively, the measured and predicted
relative permeability and n represents the number of samples. The log
(K) values were used since the conductivity data follow a log-normal
distribution (Kolmogorov-Smirnov statistical test using a significance
level of 5% for all comparisons).

Fig. 6 shows predicted curves of the hydraulic conductivity, K(θ),
for the same four soils as in Fig. 3. The plots compare the proposed
Burdine-based permeability model (Eq. (25)) with the Burdine-based
equations by Brooks and Corey (Eq. (5)), van Genuchten (Eq. (8)) and
Kosugi (Eq. (11)), as well as with the experimental data as documented
by Mualem (1976b) where the saturated hydraulic conductivity were:
2.25 × 10−5 cm/s, 1.66 × 10−4 cm/s, 2.83 × 10−4 cm/s and
2.78 × 10−4 cm/s in soils: a, b, c and d, respectively.

The results in Fig. 6 indicate close agreement between the K pre-
dictions with the fractal-based model and the experimental data, as well
as those obtained with the other Burdine based models. The fractal
model agreed very well with the experimental data of especially soils b,
c, and d. RMSD values for the fractal-based model were lowest in most
cases as shown by the entries in Table 2. The RMSD values suggest that,
overall for our soils, Eq. (24) performed best, followed by the models of
Brooks and Corey, van Genuchten and Kosugi.

Similar results as in Fig. 6 are shown in Fig. 7 for the Mualem-based
K(θ) predictions obtained using Eq. (26). The fractal model again per-
formed better in most cases as reflected by the RMSD values in Table 2.
The van Genuchten and Kosugi models for Rubicon sandy loam (soil c)
in particular produced relatively poor results using either the Burdine
or Mualem based expressions in Figs. 6 and 7, respectively.

In view of the results in Figs. 3, 6 and 7, we believe that the pro-
posed fractal formulation for the water retention curve in combination
with the Mualem or Burdine permeability models provide an possible
alternative for describing the unsaturated soil hydraulic properties.
Additional comparisons with measured data of different soil are clearly
needed. The accuracy of the K(θ) predictions may well be a function of
soil texture, with some studies suggesting that Burdine's model is
equally or more accurate than Mualem's model for very coarse-textured
soils, while the reverse may be true for medium and fine-textured
systems (van Genuchten and Nielsen, 1985; Haverkamp and Parlange,
1986; API, 2007).

Although the models presented here (Eqs. (25) and (26)) provide
reasonably accurate predictions of θ(h) and K(θ), we note that the
predictions are based on a retention model that still assumes a constant
saturation until the air-entry pressure. As mentioned earlier, this si-
tuation may not be realistic for certain field soils having relatively
broad pore-size or particle-size distributions (van Genuchten and
Nielsen, 1985; others). This restriction will also affect predictions of the
hydraulic conductivity if the description of the retention curve near
saturation is imperfect.

Also, our results indicate that Eqs. (25) and (26) tend to under-
estimate the measured conductivity data in the dry range, although this
also occurred with the other models discussed here. Some of the dis-
crepancy may have been due to difficulty in describing the water re-
tention curve on the basis of a single fractal dimension (D) applied to
the entire curve. Although Eq. (21) is not linear, the model is based on a
constant fractal dimension, which appears to be a limitation of many
soils showing multifractal characteristics in their pore or particle size

Fig. 6. Comparisons of unsaturated hydraulic conductivity curves, K(θ), obtained with Eq. (26), Brooks and Corey (1964), van Genuchten (1980) and Kosugi (1996), all assuming
applicability of Burdine's (1953) model, and experimental data for four soils: a) Lamberg clay, b) Caribou silty loam, c) Rubicon sandy loam and d) Gravelly sand.
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distributions. Several studies (e.g., Grout et al., 1998; Posadas et al.,
2001; Wang et al., 2008) have pointed out that multifractal concepts
are generally very well suited for the particle size distribution of many
soils, especially when fine-textured. Since pore size and particle size are
closely correlated, the same may be true also for the water retention
curve.

Multifractal models may be especially attractive for tropical soils,
such as latosols and oxisols, which are more heterogeneous in their pore
size distribution than many temperate soils. Measurement protocols
and other factors may play a role also as explained well in a recent
paper by Bieganowski et al. (2013) for the particle size distribution. As
multifractal approaches have proliferated for the particle-size dis-
tribution, similar philosophies may be beneficial also for the soil hy-
draulic properties. Our approach in this paper still uses one fractal di-
mension, but implemented in a nonlinear manner over the entire
retention function. In view of the shortcomings of having an air-entry
value in the retention formulation, as done also in the classical Brooks
and Corey model, perhaps a multi-fractal approach may well prove to
be more promising.

Alternatively one could also implement more flexible but purely
empirical retention functions, such as Eq. (7) as originally used by van
Genuchten (1980) with independent m and n values. As shown by van
Genuchten and Nielsen (1985), the presence of independent m and n
values assumes that the curvatures of the curve near saturation at the
air entry value will be independent of the curvature in the dry side of
the curve. van Genuchten and Nielsen (1985) showed that this form of
the retention function is always more accurate than the Books and
Corey and restricted van Genuchten-Mualem and van Genuchten-Bur-
dine functions. While we did not further investigate this problem here

using our fractal-based functions, Eq. (7) with independent m and n
values may well be more accurate than most or all approaches, in-
cluding our formulation. While the resulting hydraulic conductivity
models in combination with Eq. (7) are definitely more complicated,
the recent introduction of advanced mathematical packages such as
Mathematica, Matlab or Mathcad with their tool boxes of special func-
tions (in particular, the incomplete beta and hypergeometric functions)
should soften this limitation. An even more far-reaching approach
would be to implement form-free descriptions of the hydraulic prop-
erties as shown by Iden and Durner (2007).

4. Conclusions

In this paper we presented and tested two new models based on
fractal geometry designed to predict the relative permeabilities of the
wetting phases in two-phase systems for different types of soils. The
models assume a more realistic fractal based description of the water
retention curve, in conjunction with the statistical pore-size distribution
models of Burdine (1953) and Mualem (1976a). The proposed models
are different from those based on purely empirical formulations of the
water retention curve that do not necessarily reflect our understanding
of the interaction between water and soil. The proposed formulations
showed close agreement with existing models for the wetting perme-
abilities, as well as with measured experimental data for four different
soil types. An advantage of the models is their applicability over the full
range of pore sizes in a soil. They appear useful tool for studying and
describing the hydraulic properties of soils and rocks.

Fig. 7. Comparisons of unsaturated hydraulic conductivity curves, K(θ), obtained with Eq. (26), Brooks and Corey (1964), van Genuchten (1980), Kosugi (1996) and Toledo et al. (1990),
all assuming applicability of Mualem's (1976a) model, and experimental data for four soils: a) Lamberg clay, b) Caribou silty loam, c) Rubicon sandy loam and d) Gravelly sand.
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