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1  Introduction

The development of methods to analyse and understand 
nonlinear vibrations has been a topic of interest during 
recent years in signal processing and in structural dynam-
ics applications. Normally, vibrating engineering struc-
tures can present a wide variety of complex and interesting 
effects involving geometrical nonlinearities, joints and gaps 
or even properties of the material nonlinearities and many 
others [16, 33]. The identification of problems character-
ized by such complex effects becomes a difficult challenge 
once the algebraic solution is not well established and does 
not exist in some cases. Among the several existing meth-
ods to deal with this kind of problem, the Volterra series 
representation has been extensively used with satisfactory 
results [22, 25, 26, 35]. The Volterra series allows the out-
put of nonlinear systems to be represented as a polynomial 
power series expansion in the time domain through the 
multi-dimensional convolutions between the input signal 
and the higher-order Volterra kernels [23]. Recently, Cheng 
et al. [11] presented a state-of-the-art review of the Volterra 
series and their powerful benefits and broad applications in 
many different fields of engineering science such as bio-
medical engineering, fluid dynamics, electrical engineer-
ing, mechanical engineering, etc.

The multi-dimensional Fourier transform of the Volterra 
kernels generates higher-order frequency response func-
tions (HOFRFs) that are used to describe the conventional 

Abstract  Most engineering applications involving vibrat-
ing structures are nonlinear in nature and many tech-
niques have been recently investigated to provide a better 
understanding of such problems. Among the large variety 
of methods, the harmonic probing has presented useful 
properties for identification and dynamic analysis of non-
linear systems. The method is conventionally described 
by the multi-dimensional Fourier transform of the Volterra 
kernels and it depends on the knowledge of the equations 
of motion and the respective input and output data. How-
ever, this white-box methodology is limited to applications 
where the input signal is either unknown or even unmeas-
ured. Thus, the present paper is concerned with the devel-
opment of an extended version of the harmonic probing 
method to deal with applications where only the outputs are 
available. The algebraic expressions of the extended Volt-
erra kernels transform and their theoretical properties are 
provided. The main advantages, novelties and drawbacks 
of this new approach are discussed and compared with 
the conventional approach. It is verified that the new ker-
nels can be expressed as a combination of the conventional 
ones. Numerical tests based on a classical 2DOF Duffing 
oscillator are carried out and the results reveal the effec-
tiveness and potential of the extended harmonic probing 
method based on a nonparametric model using new kernels 

Technical Editor: Kátia Lucchesi Cavalca Dedini.

 *	 Oscar Scussel 
	 oscar.scussel@gmail.com

	 Samuel da Silva 
	 samuel@dem.feis.unesp.br

1	 Departamento de Engenharia Mecânica, Faculdade de 
Engenharia de Ilha Solteira, Unesp-Universidade Estadual 
Paulista, Av. Brasil 56, Ilha Solteira, SP 15385‑000, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-017-0723-y&domain=pdf


3330	 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3329–3341

1 3

harmonic probing method [2–4, 6]. The harmonic probing 
algorithm is simply an extension of the usual procedure 
for obtaining the linear transfer functions. It is a white-box 
modelling approach and the solution is computed using the 
Fourier transform of the Votlerra kernels. These functions 
are very useful and have been extensively applied in sev-
eral problems of structural dynamics. For instance, Cafferty 
and Tomlinson [5] applied the frequency domain technique 
using HOFRFs to investigate the energy transfer properties 
and to characterize an application involving a Monroe auto-
motive damper. Furthermore, HOFRFs have been used in 
applications of modal testing [27, 29].

Storer and Tomlinson [27] showed that the higher-
order transfer functions up to third-order can be meas-
ured through sine excitation on a practical case involving 
a nonlinear beam rig. The paper illustrated the possibility 
of detecting nonlinear effects by using the HOFRFs. How-
ever, the method studied suffers some limitations once the 
HOFRFs cannot be well measured due to the bending reso-
nant peaks and it requires curve-fitting procedures. Addi-
tionally, Tawfiq and Vinh [29] found that HOFRFs as well 
as the Volterra kernels constitute the bases of nonlinear 
modal analysis. The utilization of the quotient of polyno-
mials for transfer functions and impulse response functions 
revealed a great importance allowing interpreting physical 
phenomena (damping, eigenvalues, etc.). Many research-
ers have investigated the harmonic probing algorithm for 
nonlinear system analysis for single-inputs to understand 
the phenomena of harmonics and nonlinear behaviour [3, 
4]. However, in Worden et al. [34] an extension of the har-
monic probing method is proposed for both continuous 
and discrete-time subject to multiple sinusoidal inputs. The 
algebraic expressions revealed that the higher-order and the 
cross-kernel transforms are directly related with the first-
order kernel and are functions of the nonlinear parameters 
via polynomial representation.

Although this representation provides useful tool for 
the study of nonlinear behaviour, it may have convergence 
problems [8, 21, 30, 31]. Tomlinson et al. [31] proposed a 
criterion to determine the upper limit to the sinusoidal exci-
tation level at the natural frequency. This strategy provides 
an estimation of the magnitude amplitude at which the out-
put starts to diverge. The results obtained through single 
degree-of-freedom (SDOF) and 2DOF Duffing oscillators 
with cubic stiffness revealed the accuracy of the method 
to establish the magnitude of the harmonic input and the 
number of terms required in the Volterra series expansion 
to predict the response of systems described by polynomial 
nonlinearities. In addition, Thouverez [30] provided an 
alternative procedure to estimate an upper limit of the con-
vergence radius of the Volterra series by using the dynami-
cal equations in terms of the harmonic balance method. 
Furthermore, the complex variable properties with Rouch’s 

theorem and Lagrange’s expansion are applied to obtain the 
convergence criterion. The examples using Duffing oscilla-
tors with nonlinear springs showed that the approximation 
due to the harmonic balance approach does not affect the 
estimation of the convergence radius. An improved method 
to analyse the convergence threshold of the Volterra series 
response was proposed by Chatterjee and Vyas [8]. The 
contribution lies in a procedure based on critical values of 
the nondimensional nonlinear parameters for the response 
convergence over a wide range of excitation frequency. 
This critical limit value is described as function of the num-
ber of the Volterra series terms that added to the approxi-
mation of the response predicted. The results based on a 
2DOF nonlinear system showed that the critical values are 
found to be directly dependent on the nonlinear stiffness as 
well as on the linear coupling stiffness coefficients.

Additionally, the HOFRFs via the harmonic probing 
method have been extensively used in nonlinear parameter 
estimation problems. Lee [18] proposed a method to com-
pute the higher-order kernel transforms using component 
separation technique that allows the response component of 
first-order to be extracted. The nonlinear parameters were 
estimated by a relationship between the first-order and the 
higher-order kernel transforms. The nonlinear parameter 
estimation method was applied in simulated systems with 
nonlinear stiffness and nonlinear damping. The method 
presented a few disadvantages and convergence problems 
of the response predicted under high level of amplitude 
excitation.

Chatterjee and Vyas [9] proposed an alternative 
approach where the nonlinear parameters along with 
the first-order kernel transforms are obtained by using a 
recursive iteration technique. The number of terms of the 
response series and the excitation amplitude over a wide 
range of frequencies are driven by the convergence crite-
rion. The procedure is investigated through numerical sim-
ulation involving a Duffing oscillator and the robustness is 
also tested against random measurement noise. This recur-
sive iteration procedure proposed by Chatterjee and Vyas 
[9] was extended for multi-degrees-of-freedom systems 
with multiple inputs based on higher-order and cross-kernel 
transforms by Chatterjee and Vyas [10]. The method was 
tested through numerical simulation for a rotor-bearing sys-
tem characterized by quadratic and cubic stiffness nonlin-
earities. Convergence and error analysis were also carried 
out and the results illustrated the accuracy of the method 
for nonlinear system analysis under multi-input harmonic 
excitations. Recently, Chatterjee [7] applied the HOFRF 
for damage detection problems on nonlinear response char-
acteristics of a cracked beam. This study investigated the 
use of the Volterra series for developing a quantitative dam-
age assessment for a benchmark composed by a cantilever 
beam with edge crack.
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Although the conventional harmonic probing method 
is a useful tool for structural dynamics problems, this tool 
requires the knowledge of the equations of motion, known 
as white-box modeling. Moreover, the input and output data 
must be available. Thus, the analysis in operational condi-
tions becomes very limited in several real-world engineer-
ing applications once they are driven by unknown inputs.

In order to overcome these limitations involving prob-
lems where the input signal is not directly available or totally 
unknown in their environmental operating, many concepts 
and techniques of blind system identification (BSI) have 
been developed and employed [1, 15]. A vast number of 
methods based on blind source separation (BSS) techniques 
have been widely used due to their potential in modal analy-
sis based on output-only signals [14, 19, 36]. In such cases, 
the Volterra series theory has been extensively used mainly 
in areas such as signal processing and communications [12, 
24, 28] and damage detection and location in multi-degree-
of-freedom (MDOF) systems based on the transmissibility 
of nonlinear output frequency response functions (NOF-
RFs) [17, 37]. Scussel and Silva [24] proposed recently the 
use of Volterra series and orthonormal basis expansions to 
identify the higher-order kernels in the discrete-time domain 
through a least-squares approach and output-only signals. 
The results based on numerical and experimental applica-
tions demonstrated the applicability and benefits of the Vol-
terra-Kautz series expansion. Although these recent blind 
methods based on Volterra series allow to identify nonlinear 
systems, it would be very desirable a simple extension of 
the conventional harmonic probing method in order to deal 
directly with problems of structural dynamics through the 
extended HOFRFs and the respective nonlinear parameters 
in the continuous time domain.

In this context, the present paper is aimed at proposing a 
new version of the conventional harmonic probing method 
based on the following contributions:

(i)	 A new theorem is derived to prove the existence of the 
extended HOFRFs for continuous nonlinear systems.

(ii)	 An alternative procedure based on the conventional 
harmonic probing method is presented to obtain the 
analytical expressions of the extended HOFRFs.

(iii)	Theoretical aspects of the model based on output-only 
as well as its significance are addressed.

The main advantage of this new method lies in its ability 
to treat nonlinearities in applications where only the output 
signals are available.

The layout of the present work is organized as follows: 
Section  2 reviews briefly the Volterra series representa-
tion and the harmonic probing algorithm for single-input 
and multi-output (SIMO) systems. The algebraic expres-
sions of the extended HOFRFs based on output-only data 

are presented along Sect. 3. In Sect. 4 a numerical example 
based on a 2DOF Duffing oscillator is carried out and com-
parisons with the conventional harmonic probing method 
results are made. Finally, the conclusions are summarized 
in Sect. 5.

2 � Volterra series and harmonic probing method

The Volterra series is a powerful way to describe the rela-
tionship of input and output of nonlinear systems through 
multi-dimensional convolutions. For single-input and 
multi-output (SIMO) systems, the functionals of the Volt-
erra series relate the output measured at the p-th point with 
the following input [23]:

where the respective polynomial contributions of ηth order 
are given by the following mapping:

The term h(p)η (τ1, . . . , τη) is called the Volterra kernel of η
th order related with the pth output and is a generalization 
of the well-known impulse response function (IRF). The 
multi-dimensional Fourier transform of the Volterra kernels 
can be calculated by

Now, by considering the property of symmetry of the ker-
nels, as can be found in Cafferty and Tomlinson [5], and a 
single-tone input u(t) = A

2
ejωt + A

2
e−jωt, the output in Eq. 

(1) is given as follows:

(1)

y(p)(t) =

+∞∑

η=1

y(p)η (t) = y
(p)
1 (t)+ y

(p)
2 (t)+ y

(p)
3 (t)+ · · · ,

(2)

y(p)η (t) =

∫ +∞

−∞

· · ·

∫ +∞

−∞

h(p)η (τ1, . . . , τη)

η
∏

i=1

u(t − τi)dτi.

(3)

H
(p)
η (ω1, . . . ,ωη) =

∫ +∞

−∞

· · ·

∫ +∞

−∞

h(p)η (τ1, . . . , τη)

×

η
∏

i=1

e−jωiτidτ1 · · · dτη.

Fig. 1   Duffing oscillator with 2DOF and nonlinearities involving 
quadratic and cubic stiffnesses
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(4)

y(p)(t) =
A

2
H

(p)
1 (ω)ejωt +

A

2
H

(p)
1 (−ω)e−jωt

+
A2

4
H

(p)
2 (ω,ω)ej2ωt +

A2

2
H

(p)
2 (−ω,ω)+

A2

4
H

(p)
2 (−ω,−ω)e−j2ωt

+
A3

8
H

(p)
3 (ω,ω,ω)ej3ωt +

3A3

8
H

(p)
3 (−ω,ω,ω)ejωt

+
3A3

8
H

(p)
3 (−ω,−ω,ω)e−jωt +

A3

8
H

(p)
3 (−ω,−ω,−ω)e−j3ωt

+ · · · ,

where A is the forcing level amplitude and ω is the fre-
quency of excitation.

Without loss of generality, a classical two degrees-of-
freedom (2DOF) Duffing oscillator, as can be seen in Fig. 1, 
with quadratic and cubic nonlinearity is used to illustrate the 
method. Furthermore, at the end of this section the frame-
work of the conventional HOFRFs as a function of the phys-
ical parameters of mass, damping and stiffness is reviewed.

The system in Fig. 1 is described by

where M,C and K are the mass, damping and stiffness 
matrices, respectively, given by

The term u is the force excitation vector and y is the vector 
of outputs:

where the superscript T denotes the transpose and Fnl(y) 
denotes the nonlinear functional given by

From the Volterra expansion in Eq. (1) with η = 3, the dis-
placement of the first mass can be represented by

(5)Mÿ+ Cẏ+Ky+ Fnl(y) = u,

(6)

M =

[
m1 0

0 m2

]

, K =

[
k1 + k2 − k2

−k2 k2

]

and C =

[
c1 + c2 − c2

−c2 c2 + c3

]

.

u =
{
u(t) 0

}T
, y =

{
y(1)(t) y(2)(t)

}T
,

Fnl(y) =
{

α1[y
(1)(t)]2 + β1[y

(1)(t)]3 α2[y
(2)(t)]2 + β2[y

(2)(t)]3
}T

.

(7)

y(1)(t) =

∫ ∞

−∞

h
(1)
1 (τ1)u(t−τ1)dτ1

︸ ︷︷ ︸

y
(1)
1

(t)

+

∫ ∞

−∞

∫ ∞

−∞

h
(1)
2 (τ1, τ2)u(t−τ1)u(t−τ2)dτ1dτ2

︸ ︷︷ ︸

y
(1)
2

(t)

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

h
(1)
3 (τ1, τ2, τ3)u(t−τ1)u(t−τ2)u(t−τ3)dτ1dτ2dτ3

︸ ︷︷ ︸

y
(1)
3

(t)

,

where y(1)1 (t) is the linear contribution, y(1)2 (t) is the quad-
ratic contribution and y(1)3 (t) denotes the cubic polynomial 
contribution. Assuming a harmonic input u(t) = Aejωt 
applied to the first mass, the output can be rewritten as a 
function of the HOFRFs:

Differentiating y(1)(t) for the velocity and the acceleration 
yields

By substituting the terms y(1)(t), ẏ(1)(t) and ÿ(1)(t) into the 
Eq. (5) and equating the coefficients of Aejωt generates the 
following expressions for the FRFs of the first order:

where the FRFs of the second order are obtained by equat-
ing the coefficients of A2ej2ωt:

(8)

y(1)(t) = AejωtH
(1)
1

(ω)+ A2ej2ωtH
(1)
2

(ω,ω)

+ A3ej3ωtH
(1)
3

(ω,ω,ω).

ẏ(1)(t) = jωAejωtH
(1)
1

(ω)+ j2ωA2ej2ωtH
(1)
2

(ω,ω)

+ j3ωA3ej3ωtH
(1)
3

(ω,ω,ω),

ÿ(1)(t) = − ω2AejωtH
(1)
1

(ω)− 4ω2A2ej2ωtH
(1)
2

(ω,ω)

− 9ω2A3ej3ωtH
(1)
3

(ω,ω,ω).

(9)H
(1)
1 (ω) =

1

−m1ω
2 + (k1 + k2)+ jω(c1 + c2)

,

(10)H
(2)
1 (ω) =

1

−k2 − jωc2
,
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Now, equating the coefficients of A3ej3ωt yields the FRF of 
the third order:

Nevertheless, the conventional harmonic probing method is 
applicable only in cases where the input signal is known. 
Thus, this formulation is quite limited for applications 
under operational conditions where the excitation force is 
unmeasured. Consequently, an extended version of the con-
ventional method to treat such cases through output-only 
is very welcome. Thus, the Sect. 3 presents the main new 
contribution of the present work, which an extension of the 
harmonic probing method and the algebraic expressions of 
the extended HOFRFs based on output-only data.

3 � Extended HOFRFs based on output‑only

This section presents the analytical expressions and a the-
orem for the existence of the extended HOFRFs until the 
third order. A similar result for the discrete-time case based 
on Volterra–Kautz series was performed recently in Scus-
sel and Silva [24]. However, the Proposition in the pre-
sented paper is a new contribution compared to presented 
in Scussel and Silva [24] because it takes into account the 
nonparametric framework of the HOFRF in the continuous 
time domain instead of the parametric structure of the Vol-
terra-Kautz kernels in discrete time domains. An alterna-
tive procedure based on the conventional harmonic probing 
method is presented to obtain the analytical expressions of 
the extended HOFRFs. Additionally, theoretical aspects of 
the model based on output-only as well as its significance, 
benefits and possible limitations are addressed.

Initially, the following assumptions are made:

(i)	 A harmonic excitation u(t) = Aejωt is applied to the 
first mass in the SIMO system described in Eq. (5).

(ii)	 Without loss of generality, suppose that the system 
has a convergent polynomial expansion by using the 
conventional Volterra kernels truncated up to the third 
order as in Eq. (7).

Proposition 1  By assuming (i) and (ii), the output sig-
nal can be expressed as a multi-dimensional convolution 
between the extended Volterra kernels and the linear con-
tribution of another output as follows:

(11)H
(1)
2 (ω,ω) = −α1[H

(1)
1 (ω)]2H

(1)
1 (2ω),

(12)

H
(1)
3 (ω,ω,ω) = [H

(1)
1 (ω)]3H

(1)
1 (3ω)

[

2α2
1H

(1)
1 (2ω)− β1

]

.

where g
(1)
1 (τ1), g

(1)
2 (τ1, τ2) and g

(1)
3 (τ1, τ2, τ3) are 

the extended kernels of first, second and third-order, 
respectively.

Proof  Initially, from (i) a harmonic input u(t) = Aejωt 
applied to the first mass of the system in Eq. (5). Thus, 
from Eq. (7), a linear contribution of the output y(1)(t) is 
given by

Assuming that G(1)
1 (ω) = H

(1)
1 (ω)

[

H
(2)
1 (ω)

]−1

 generates

The quadratic contribution of the output y(1)(t) in Eq. (7) is 
calculated as:

Now, the cubic contribution of y(1)(t) is calculated as 
follows:

(13)

y(1)(t) =

∫ ∞

−∞

g
(1)
1 (τ1)y

(2)
1 (t−τ1)dτ1

+

∫ ∞

−∞

∫ ∞

−∞

g
(1)
2 (τ1, τ2)y

(2)
1 (t−τ1)y

(2)
1 (t−τ2)dτ1dτ2

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g
(1)
3 (τ1, τ2, τ3)

× y
(2)
1 (t−τ1)y

(2)
1 (t−τ2)y

(2)
1 (t−τ3)dτ1dτ2dτ3

y
(1)
1 (t) =

∫ ∞

−∞

h
(1)
1 (τ1)u(t−τ1)dτ1 = AejωtH

(1)
1 (ω)

⇔y
(1)
1 (t) = AejωtH

(2)
1 (ω)H

(1)
1 (ω)

[

H
(2)
1 (ω)

]−1

,

y
(1)
1 (t) = AejωtH

(2)
1 (ω)G

(1)
1 (ω)

⇔ y
(1)
1 (t) = AejωtH

(2)
1 (ω)

∫ ∞

−∞

g
(1)
1 (τ1)e

−jωτ1dτ1

⇔ y
(1)
1 (t) =

∫ ∞

−∞

g
(1)
1 (τ1)Ae

jω(t−τ1)H
(2)
1 (ω)dτ1

⇔ y
(1)
1 (t) =

∫ ∞

−∞

g
(1)
1 (τ1)y

(2)
1 (t−τ1)dτ1.

y
(1)
2 (t) = A2ej2ωtH

(1)
2 (ω,ω)

⇔ y
(1)
2 (t) = A2ej2ωt[H

(2)
1 (ω)]2

[

− α1[H
(1)
1 (ω)]2H

(1)
1 (2ω)

]

[H
(2)
1 (ω)]−2

⇔ y
(1)
2 (t) = A2ej2ωt[H

(2)
1 (ω)]2G

(1)
2 (ω,ω)

⇔ y
(1)
2 (t) = A2ej2ωt[H

(2)
1 (ω)]2

×

∫ ∞

−∞

∫ ∞

−∞

g
(1)
2 (τ1, τ2)e

−jωτ1e−jωτ2dτ1dτ2

⇔ y
(1)
2 (t) =

∫ ∞

−∞

∫ ∞

−∞

g
(1)
2 (τ1, τ2)y

(2)
1 (t−τ1)y

(2)
1

× (t−τ2)dτ1dτ2.
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From (ii) implies directly in y(1)(t) = y
(1)
1

(t)+ y
(1)
2

(t)+

y
(1)
3

(t). Thus, the Proposition 1 is proved.
It is important to emphasize that the output can be pre-

dicted alternatively in terms of another output instead of 
the force excitation. Furthermore, the proof of Proposition 
1 can be generalized by considering the extended FRFs 
G
(p)
η (ω, . . . ,ω) for an arbitrary order η.
Now, a simple procedure with the conventional har-

monic probing is applied to obtain the analytical expres-
sions of the extended HOFRFs. From Proposition 1, Eq. 
(13) can be rewritten as follows:

Thus, from Eq. (3) the output is predicted as

Differentiating y(1)(t) in Eq. (14) yields expressions for the 
velocity and acceleration as

y
(1)
3 (t) = A3ej3ωtH

(1)
3 (ω,ω,ω)

⇔ y
(1)
3 (t) = A3ej3ωt[H

(2)
1 (ω)]3[H

(1)
1 (ω)]3

[H
(2)
1 (ω)]−3

H
(1)
1 (3ω)

[

2α2
1H

(1)
1 (2ω)− β1

]

⇔ y
(1)
3 (t) = A3ej3ωt[H

(2)
1 (ω)]3G

(1)
3 (ω,ω,ω)

⇔ y
(1)
3 (t) = A3ej3ωt[H

(2)
1 (ω)]3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g
(1)
3

(τ1, τ2, τ3)e
−jω(τ1+τ2+τ3)dτ1dτ2dτ3

⇔ y
(1)
3 (t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g
(1)
3 (τ1, τ2, τ3)y

(2)
1 (t−τ1)

y
(2)
1 (t−τ2)y

(2)
1 (t−τ3)dτ1dτ2dτ3.

y(1)(t) =

∫ ∞

−∞

g
(1)
1 (τ1)Ae

jω(t−τ1)H
(2)
1 (ω)dτ1

+

∫ ∞

−∞

∫ ∞

−∞

g
(1)
2 (τ1, τ2)Ae

jω(t−τ1)H
(2)
1 (ω)

× Aejω(t−τ2)H
(2)
1 (ω)dτ1dτ2

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g
(1)
3 (τ1, τ2, τ3)

× Aejω(t−τ1)H
(2)
1 (ω)Aejω(t−τ2)H

(2)
1 (ω)

× Aejω(t−τ3)H
(2)
1 (ω)dτ1dτ2dτ3,

⇔ y(1)(t) = Aejω(t)H
(2)
1 (ω)

∫ ∞

−∞

g
(1)
1 (τ1)e

−jωτ1dτ1

+ A2ej2ωt[H
(2)
1 (ω)]2

∫ ∞

−∞

∫ ∞

−∞

×g
(1)
2

(τ1, τ2)e
−jω(τ1+τ2)dτ1dτ2

+ A3ej3ωt[H
(2)
1 (ω)]3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

×g
(1)
3

(τ1, τ2, τ3)e
−jω(τ1+τ2+τ3)dτ1dτ2dτ3.

(14)

y(1)(t) = AejωtH
(2)
1

(ω)G
(1)
1

(ω)+ A2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω).

Substituting the terms y(1)(t), ẏ(1)(t) and ÿ(1)(t) into Eq. (5) 
gives

The coefficients of Aejωt yield:

The extended FRF of first-order in Eq. (15) can be rewrit-
ten as

Now, equating the coefficients of A2ej2ωt provides

ẏ(1)(t) = jωAejωtH
(2)
1

(ω)G
(1)
1

(ω)+ j2ωA2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ j3ωA3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω),

ÿ(1)(t) = −ωAejωtH
(2)
1

(ω)G
(1)
1

(ω)− 4ω2A2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

− 9ω2A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω),

Aejωt = m1

[

− ω2AejωtH
(2)
1

(ω)G
(1)
1

(ω)− 4ω2A2ej2ωt

[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

− 9ω2A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)

]

+ (k1 + k2)
[

AejωtH
(2)
1

(ω)G
(1)
1

(ω)

+ A2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)

]

+ (c1 + c2)
[

jωAejωtH
(2)
1

(ω)G
(1)
1

(ω)

+ j2ωA2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ j3ωA3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)

]

+ α1

[

AejωtH
(2)
1

(ω)G
(1)
1

(ω)

+ A2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)

]2

+ β1

[

AejωtH
(2)
1

(ω)G
(1)
1

(ω)

+ A2ej2ωt[H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

+ A3ej3ωt[H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)

]3

,

(15)

1 = G
(1)
1

(ω)H
(2)
1

(ω)[−ω2m1 + (k1 + k2)+ (c1 + c2)jω]

⇔ G
(1)
1

(ω) =
−k2 − c2jω

−ω2m1 + (k1 + k2)+ (c1 + c2)jω
,

(16)G
(1)
1 (ω) =

H
(1)
1 (ω)

H
(2)
1 (ω)

.

(17)

0 = [H
(2)
1

(ω)]2G
(1)
2

(ω,ω)

[

− 4ω2m1 + (k1 + k2)+ (c1 + c2)j2ω
]

+ α1[H
(2)
1

(ω)G
(1)
1

(ω)]2

⇔ G
(1)
2

(ω,ω) = −α1[G
(1)
1

(ω)]2H
(1)
1

(2ω),
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From Eq. (16), the extended FRF of second-order can be 
expressed as

Furthermore, by equating the coefficients of A3ej3ωt yields

Thus, the extended FRF of third-order can be computed as

Equation (16) shows an important result which describes 
the extended FRF G(1)

1 (ω) as a simple ratio of the conven-
tional FRFs in Eqs. (9) and (10). Basically, it describes the 
ratio of two output spectra of the structure. Thus, this new 
concept of extended FRF presents similar characteristics 
to the concept of transmissibility once the function G(1)

1 (ω) 
behaves and it is computed in a similar way as the trans-
missibility functions (TFs) [13, 20, 32]. The transmissibil-
ity is traditionally defined as the ratio of the spectra of two 
different system outputs and has been widely studied and 
used for damage detection and fault diagnosis [37].

Moreover, it can be seen in Eqs. (18) and (19) that the 
second- and third-order extended FRFs, G(1)

2 (ω,ω) and 
G
(1)
3 (ω,ω,ω), are also related to the conventional FRFs and 

the nonlinear parameters as well.
It is important to point out that the extended HOFRFs 

introduced here have a similar definition as the transmis-
sibility functions of NOFRFs presented by Lang et al. [17] 
and Zhao [37]. Thus, the extended version of the harmonic 
probing method may present potential features for further 
applications in transmissibility for damage detection, loca-
tion and fault diagnosis of nonlinear systems.

Although the extended HOFRFs reveal great features 
and benefits for prediction of nonlinear vibrating systems 
based on output-only, the method might present some 
drawbacks and limitations such as the convergence of 
the series, the order of the Volterra kernels and number 
of parameters to be estimated. Usually, the convergence 
problems are directly related to the amplitude of excita-
tion, discontinuities and complex nonlinearities. The Volt-
erra series representation might not be appropriate to deal 
with systems characterized by effects, such as strong jump 
phenomenon, limit-cycles, chaos, etc [8, 21, 30, 31]. In 
order to deal with problems involving strong nonlinearities 

(18)G
(1)
2 (ω,ω) = −α1

[
H

(1)
1 (ω)

H
(2)
1 (ω)

]2

H
(1)
1 (2ω).

0 = [H
(2)
1

(ω)]3G
(1)
3

(ω,ω,ω)×

[

− 9ω2m1 + (k1 + k2)+ (c1 + c2)j3ω
]

+ 2α1[H
(2)
1

(ω)]3G
(1)
1

(ω)G
(1)
2

(ω,ω)+ β1[H
(2)
1

(ω)G
(1)
1

(ω)]3

G
(1)
3

(ω,ω,ω) = 2α2
1G

(1)
1

(ω)3H
(1)
1

(2ω)H
(1)
1

(3ω)− β1G
(1)
1

(ω)3H
(1)
1

(3ω),

(19)

G
(1)
3

(ω,ω,ω) =

[
H

(1)
1

(ω)

H
(2)
1

(ω)

]3

H
(1)
1

(3ω)

[

2α2
1H

(1)
1

(2ω)− β1

]

.

it will be necessary to consider more terms in the Volterra 
series expansion. Despite these limitations discussed, the 
advantage of the method presented lies in its ability to treat 
weakly nonlinear systems through the extended HOFRFs 
up until the third-order. In Sect. 4, the method is applied in 
a 2DOF system with quadratic and cubic nonlinearities and 
the results are compared with the conventional harmonic 
probing method.

4 � Numerical application

The system in Eq. (5) is used in order to illustrate the 
approaches by using the conventional and the extended har-
monic probing. The main idea is to show that the extended 
HOFRFs are able to compute the response as well as the 
conventional HOFRFs. Additionally, the possibility of 
analysing the polynomial contributions (linear, quadratic 
and cubic) of the total output predicted is also investi-
gated. The physical parameters m1 = m2 = 1 kg, k1 = 104 
N/m, k2 = 9× 104 N/m, c1 = c2 = c3 = 10 N  s/m, 
α1 = α2 = 105 N/m2 and β1 = β2 = 109 N/m3 are used. 
The system is characterized by the linear resonances for the 
first and second mode close to 11 and 68.5 Hz, respectively.

A harmonic input u(t) = A cos(2πωt) with amplitude of 
A = 0.48 N and the excitation frequency close to ω = 11 
Hz is applied to the first mass. The outputs are obtained 
by solving numerically the equations of motion through 
the Newmark method with the Newton-Raphson proce-
dure and initial conditions in (y(1)(0), y(2)(0)) = (0, 0) and 
(ẏ(1)(0), ẏ(2)(0)) = (0.0240, 0.0240) in order to obtain the 
transient and steady-state regimes in the response appar-
ently with the same amplitude. A sampling rate of 500 Hz 
that corresponds approximately to 45 times the first fun-
damental resonance and 8 times the second one is used to 
avoid aliasing effects.

The simulation is performed with a time duration of 10 
s and using 5001 samples. In addition, the power spectral 
density (PSD) function of the reference data is calculated. 
Welch’s periodogram is used with a Hanning window 
over a frequency range of 0–50 Hz. However, in Fig.  2 
is shown a zoom of the PSDs over a frequency range of 
5–40 Hz to provide a better visual inspection of the curves. 
Figure 2a shows the PSD of the force excitation, denoted 
as Pu(ω), where it is possible to note the peak that cor-
respond to the first fundamental frequency of resonance at 
approximately 11 Hz. Furthermore, in Fig.  2b is showed 
the PSD of the first mass displacement, denoted as Py(1) (ω) 
is shown. It can be seen in such curve the presence of even 
and odd harmonics at 22 and 33 Hz, respectively. These 
harmonics in the output spectrum point out the nonlinear 
effects of the system characterized by quadratic and cubic 
stiffnesses.



3336	 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3329–3341

1 3

The physical parameters were used to compute the FRF 
of first-order H(1)

1 (ω) from Eq. (9) and G(1)
1 (ω) from Eq. 

(15) over a frequency range of 0–90 with increment step of 
0.1 Hz. In general, Fig.  3 shows the comparison between 
the conventional FRF and extended FRF of first-order. 

Figure  3a, b shows the magnitude and phase of the FRF 
H

(1)
1 (ω). The resonances peaks of the first mode (11 Hz) 

and the second mode (68.5 Hz) associated with the linear 
dynamic of the model can be seen. Figure 3c, d shows the 
magnitude and phase of the extended FRF G(1)

1 (ω) as well. 

Fig. 2   Analysis of the harmonics in the response signal y(1)(t) when is applied a sinusoidal input on the first mass with excitation close to 11 Hz 
and amplitude of 0.48 N. a PSD of the harmonic input applied on the first mass. b PSD of the output y(1)(t) (displacement of the first mass)

Fig. 3   First-order frequency response functions. a Amplitude of H(1)
1

(ω). b Phase of H(1)
1

(ω). c Amplitude of G(1)
1

(ω). d Phase of G(1)
1

(ω)
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In such case, it can be noted that only the anti-resonance 
peak (close to 48 Hz) appears and the figure presents char-
acteristics of the transmissibility curve as can be verified in 
Eq. (16).

Furthermore, it can be noted that extended FRF and 
the conventional one differ values in magnitude and 
phase because of their different framework. Moreover, the 
extended FRF has an additional term −k2 − c2j. Although 
they present different behaviour as discussed, they are used 
in a similar way to predict the linear contribution y(1)1 (t) of 
the output. While the conventional one is based on the input 
force excitation u(t), the extended one is based on another 
output y(2)1 (t).

Figure  4 illustrates the principal diagonals of the fre-
quency response functions H(1)

2 (ω,ω) and G(1)
2 (ω,ω) in 

magnitude and phase. It is clearly possible to see in Fig. 4a 
the resonances at 11 and 68.5 Hz and their secondary 
resonances at 5.50 and 34.25 Hz, respectively. Thus, the 
framework of the conventional FRF of second-order pro-
vides information about quadratic nolinearities and is used 
to compute the quadratic contribution of the total output 
predicted.

On the other hand, the extended FRF of the second-order 
contains only the secondary resonances as can be noted in 
Fig.  4c. This effect happens due to the framework of the 
function G(1)

2 (ω,ω) as in Eq. (18).
Figure 5 shows the principal diagonal of the frequency 

response functions H(1)
3 (ω,ω,ω) and G(1)

3 (ω,ω,ω) given 
by Eqs. (12) and (19) in magnitude and phase. The conven-
tional FRF of the third order gives information about cubic 
nolinearities and is used to compute the cubic contribution 
of the total output predicted.

In Fig.  5a, it is possible to see that the conventional 
FRF exhibits the resonances at 11 and 68.5 Hz and their 
tertiary resonances at 3.67 and 22.8 Hz, approximately. 
It is important to note that the secondary resonances do 
not appear due to the low contribution of the terms of 
quadratic stiffness. Cafferty and Tomlinson [5] presented 
an example where the peaks referred to the second 
order are present in the conventional FRF of the third 
order once the terms of quadratic stiffness have good 
contribution.

Moreover, it can be observed in Fig.  5c that the 
extended FRF which shows that the tertiary resonances 

Fig. 4   Principal diagonal of the second-order frequency response functions. a Amplitude of H(1)
2

(ω,ω). b Phase of H(1)
2

(ω,ω). c Amplitude of 
G
(1)
2

(ω,ω). d Phase of G(1)
2

(ω,ω)
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are only due the framework of extended HOFRF 
G
(1)
3 (ω,ω,ω) from Eq. (19). In general, the extended ker-

nels can be useful in applications of identification and 
transmissibility of nonlinear systems as discussed at the 
end of Sect. 3.

The HOFRFs of each method are used to predict the 
contributions y(1)1 (t), y(1)2 (t) and y(1)3 (t). This fact reveals the 
main benefits of the Volterra series expansion where it is 
possible to split the total response predicted in polynomial 
contributions. Although the framework of the functions 
H

(p)
η (ω1, . . . ,ωη) and G(p)

η (ω1, . . . ,ωη) present different 
behaviour as verified previously, they can be used to pre-
dict the response in a similar way. While the conventional 
one uses the input excitation, the extended one is based on 
another output measured.

Figure 6 shows the linear, quadratic and cubic contribu-
tions of the total output predicted by each method as well 
as their spectra where it can be noted that there is agree-
ment. In this example, the temporal contribution of the sec-
ond order is quite low due to the terms α1 and α2 chosen. 
Additionally, the asymmetric behaviour of the contribution 
y
(1)
2 (t) can be noted.

The total output is computed by summing the contribu-
tions, y(1)1 (t)+ y

(1)
2 (t)+ y

(1)
3 (t), predicted by the conven-

tional and extended HOFRFs. Figure  7 shows the com-
parison between the output simulated by the Newmark 
method (−) and the outputs predicted by the conventional 
and extended HOFRFs. (∗). In both cases, it is possible 
to see good agreement demonstrating the accuracy of the 
approaches for output prediction. Additionally, the response 
spectrum was calculated as shown in Fig.  8. Through the 
PSD function, it can be noted that the models were able to 
detect the presence of the fundamental frequency resonance 
in 11 Hz and the second and third harmonics, in 22 and 33 
Hz, also known as even and odd harmonics.

The results in this work have shown the applicability of 
the the extended HOFRFs to characterize and detect non-
linear behaviour in vibrating systems. The conventional 
harmonic probing method is quite illustrative when the 
differential equations that describe the problem are known 
analytically. On the other hand, it has been verified that the 
extended HOFRFs give the same results, but considering 
the knowledge of the output-only instead input and output 
as in the conventional case.

Fig. 5   Principal diagonal of the third-order frequency response functions. a Amplitude of diag(H(1)
3

(ω,ω,ω)). b Phase of diag(H(1)
3

(ω,ω,ω)). c 
Amplitude of diag(G(1)

3
(ω,ω,ω)). d Phase of diag(G(1)

3
(ω,ω,ω))
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5 � Final remarks

In this paper we have presented an extended version of the 
harmonic probing method. This new approach provides an 
alternative tool to compute the HOFRFs where only the 
structural responses are available. The extended HOF-
RFs can be useful to give information about the nonlinear 

behaviour and output prediction. The results obtained 
using a classical Duffing oscillator with 2DOF charac-
terized by quadratic and cubic stiffnesses have shown 
the benefits of this new approach for structural dynam-
ics analysis. Furthermore, the method can be applied in 
nonlinear parameter estimation problems once the new 
kernels are function of the conventional ones where the 

Fig. 6   Comparison between the results obtained using the harmonic 
probing method (−) and the results reached by the extended harmonic 
probing method based on output-only data (∗). a Linear contribution. 

b PSD of the linear contribution. c Quadratic contribution. d PSD of 
the quadratic contribution. e Cubic contribution. f PSD of the cubic 
contribution
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dynamical properties appear clearly. Further applica-
tions are concerned with new perspectives on the concept 
of transmissibility for nonlinear systems based on the 
extended HOFRFs.
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