
Comp. Appl. Math. (2017) 36:1173–1183
DOI 10.1007/s40314-015-0301-9

Unexpected behavior of Caputo fractional derivative

Lucas Kenjy Bazaglia Kuroda1 · Arianne Vellasco Gomes2 ·
Robinson Tavoni1 · Paulo Fernando de Arruda Mancera1 ·
Najla Varalta2 · Rubens de Figueiredo Camargo3

Received: 3 August 2015 / Revised: 7 December 2015 / Accepted: 14 December 2015 /
Published online: 3 February 2016
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2016

Abstract This paper discusses the modeling via mathematical methods based on fractional
calculus, using Caputo fractional derivative. From the fractional models associated with
harmonic oscillator, logistic equation and Malthusian growth, an unexpected behavior of the
Caputo fractional derivative is discussed. The difference between the rate of variation and
the order of the Caputo fractional derivative is explained.
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1 Introduction

The obtaining of a differential equation whose solution describes well the reality brings great
difficulty. In Albert Einstein words “One thing I have learned in a long life: that all our
science, measured against reality, is primitive and childlike—and yet it is the most precious
thing we have”. Usually, the closer we are to perfectly describe a real problem, the bigger
are the number of variables involved and the complexity of the equations.

In this sense, the Non-Integer Order Calculus, traditionally known as Fractional Calculus
(FC),1 which is the branch of mathematics that deals with the study of integrals and deriv-
atives of non-integer orders, has played an outstanding role (Machado et al. 2011). Several
mathematicians and applied researchers have obtained important results and generalizations
from modeling real processes using FC (Arafa et al. 2016; Camargo et al. 2009a, 2012;
Camargo and de Oliveira 2015; Debnath 2003; Mainardi 2009; Ortigueira and Machado
2015; Podlubny 1999; Soubhia et al. 2010).

Considering a differential equation that describes a specific phenomenon, a common
way to use fractional modeling is to replace the integer order derivatives by a non-integer
derivatives, usually with order lower than or equal to the order of the original derivatives, so
that the usual solution may be recovered as a particular case (Camargo and de Oliveira 2015).

Although there is no trivial physical and geometrical interpretation for the fractional deriv-
ative and the fractional integral (Podlubny 2002; Tavassoli et al. 2013), fractional order differ-
ential equations are naturally related to systems with memory, since the fractional derivatives
are usually not local operators, i.e., calculating time-fractional derivative at some time requires
all the previous (Camargo and de Oliveira 2015; Podlubny 1999). Processes with memory
exist in many biological systems (Arafa et al. 2012, 2016; Diethelm et al. 2005; Elsadany
and Matouk 2014; Matouk et al. 2015; El-Sayed et al. 2009, 2007). Besides, fractional dif-
ferential equation can help us to reduce the errors arising from the neglected parameters in
modeling real life phenomena (Arafa et al. 2016; Gutierrez et al. 2010; Mainardi 2009).

In engineering, there are several applications of fractional calculus (Sabatier et al. 2007),
for example, in the study of control and dynamical systems (Matigon 1996; Matouk 2010,
2015). Moreover, in physics, there are several potential applications of fractional derivative
(Hilfer 2000), for example, in the generalization of the classical equations (Camargo et al.
2008, 2009a, b, c).

In medicine, it has been deduced that the membranes of cells of biological organism
have fractional order electrical conductance and then, they are classified in groups of non-
integer order models. Fractional derivatives embody essential features of cell rheological
behavior and have enjoyed greatest success in the field of rheology (Arafa et al. 2016). Some
mathematical models in HIV shown that fractional models are more approximate than their
integer order form (Arafa et al. 2016; Diethelm et al. 2005).

With the aim of solving fractional partial differential equations and generalize results,
several definitions to the “fractional derivative” (FD) have been proposed (de Oliveira and

1 In fact, the name Fractional Calculus is not accurate, since the order of an integral and a derivative can be
real and also complex.
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Machado 2014). In a recent paper (Khalia et al. 2014) a new definition of FD, called con-
formable FD, has been proposed. Another example is the so-called local FD (Kolwankar and
Gangal 1996). Furthermore, Grünwald–Letnikov, Riemann–Liouville and Caputo fractional
derivatives and Riesz potential can be considered. A natural question arises: “What is a frac-
tional derivative?” In a paper, whose title is exactly this question (Ortigueira and Machado
2015), Ortigueira and Tenreiro Machado set a criterion called Wide Sense Criterion (WSC)
which establishes when an operator is a FD and showed that the well-known definitions of
Grünwald–Letnikov, Riemann–Liouville, Caputo and Riesz satisfy the WSC.

Fractional calculus modeling (FCM), using Caputo derivative (Sabatier et al. 2007), has
been recently used to generalize the logistic equation (Verhulst 1838). The solution of the
corresponding fractional differential equation provides a suitable description for the growth
of certain types of cancer tumor (Varalta et al. 2014).

Probably, the best known example of the efficiency of FCM, with Caputo derivative, is
the fractional harmonic oscillator (Gutierrez et al. 2010; Li et al. 2011). Indeed, replacing the
derivative of order two, present in the model of the simple harmonic oscillator, by a Caputo
fractional derivative with order 1 < α ≤ 2 the damped harmonic oscillator is obtained as
solution (Li et al. 2011). The physical interpretation usually given to this fact is that different
friction, presented in the system, leads to a decrease in the rate of variation. In this sense, when
we consider the order of the rate of variation as a number between one and two, we would
be putting in the order of the derivative the effect of all the friction of the system; therefore,
to more accurately model a harmonic motion instead of determining each of coefficients of
friction presented in the system, is enough to determine the order of the derivative that is best
suited.

In this paper, the FCM, with Caputo derivative is analyzed. After introducing some pre-
liminary concepts and results about FC, the fractional harmonic oscillator and the fractional
logistic equation are presented. After that, following the same logic and physical interpreta-
tion of FD, the fractional generalization of the differential equation ofMalthus for the growth
of a population in an ideal environment is presented and solved (Verhulst 1838). The results
obtained for the harmonic oscillator and logistic equation are consistent with the usual intu-
ition, that is, the lower the order of the derivative, the slower is the growth, but for Malthus
fractional differential equation, the result is opposite, and then, the difference between the
value of the order of the rate of variation and the value of the rate of variation is explained.

2 Preliminary concepts

In this section, we consider the gamma function to introduce the so-calledRiemann–Liouville
fractional integral (Camargo and de Oliveira 2015).

Definition 1 Let n ∈ N and ν /∈ ZGel’fand–Shilov function is defined by Mainardi (2009):

φn(t) :=

⎧
⎪⎨

⎪⎩

tn−1

(n − 1)! if t ≥ 0

0 if t < 0

and φν(t) :=

⎧
⎪⎨

⎪⎩

tν−1

�(ν)
if t ≥ 0.

0 if t < 0

As a result, the Laplace transform of the Gel’fand–Shilov function is given by Mainardi
and Gorenflo (2000),

L[φν(t)] =
∫ ∞

0
e−st t

ν−1

�(ν)
dt = s−ν

�(ν)

∫ ∞

0
e−aaν−1da = s−ν . (1)
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2.1 Mittag-Leffler functions

Definition 2 The classical Mittag-Leffler function is defined as Mittag-Leffler (1903):

Eα(z) =
∞∑

n=0

zn

�(nα + 1)
, z ∈ C and Re(α) > 0. (2)

Taking α = 1 the exponential function is recovered, E1(z) = ez . A two parameter
generalization has been proposed by Wiman (1905) as follows:

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, z ∈ C and Re(α), Re(β) > 0. (3)

For β = 1 the classical Mittag-Leffler function is recovered, i.e. Eα,1(z) = Eα(z).
TheLaplace transformof the two parameterMittag-Leffler function iswritten as (Camargo

and de Oliveira 2015; Podlubny 1999)

L[tβ−1Eα,β(±atα)] = sα−β

sα ∓ a
. (4)

2.2 Riemann–Liouville fractional integral

There are several ways to introduce the fractional integral (Camargo and de Oliveira 2015;
Mainardi 2009). Here, we introduce it through a generalization of the integer order integral
operator.

Definition 3 Let n ∈ N and f (t) : R → R a real integrable function. The integral operator
with order 1 and n, denoted by I and I n , are, respectively, defined as:2

I f (t) =
∫ t

0
f (t1) dt1 and I n f (t) =

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f (tn) dtn dtn−1 . . . dt2 dt1.

Theorem 1 Let f (t) : R → R be an integrable function. The integrate of order n may be
written as (Camargo and de Oliveira 2015):

I n f (t) = φn(t) ∗ f (t) =
∫ t

0
φn(t − τ) f (τ ) dτ =

∫ t

0

(t − τ)n−1

(n − 1)! f (τ ) dτ, (5)

where ∗ denotes the Laplace convolution and φn(t) is the Gel’fand–Shilov function.

Definition 4 Let f (t) be an integrable function. The Riemann–Liouville fractional integral
of order ν of f (t), with Re(ν) > 0, is given by:

I ν f (t) = φν(t) ∗ f (t) =
∫ t

0

(t − τ)ν−1

�(ν)
f (τ ) dτ. (6)

2.3 Caputo fractional derivative

Definition 5 Caputo’s fractional derivative is defined as the Riemann–Liouville fractional
Integral of the usual derivative, in such a way that the law of exponents holds. That is, let

2 For convenience, is defined that I 0 f (t) = f (t).
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f (t) be a differentiable and integrable function and m ∈ N such that m − 1 < Re(α) ≤ m,
the Caputo Fractional Derivative is defined as:3

Dα f (t) = Im−α Dm f (t) = φm−α(t) ∗ Dm f (t). (7)

2.4 Laplace transform

From the definition of Riemann–Liouville Integral, the convolution theorem and the Eq. (7),
is obtained that Varalta et al. (2014)

L[Dα f (t)] = L[φm−α ∗ Dm f (t)] = L[�m−α(t)]L[Dm f (t)] = sα−m L[Dm f (t)]. (8)

3 Fractional harmonic oscillator

In this section, we present the known result of the fractional harmonic oscillator and its usual
physical interpretations (Gutierrez et al. 2010; Li et al. 2011).

It is known, by Newton’s second law of motion applied to systems that repeat in time, the
equation

m
d2

dt2
x(t) + μ

d

dt
x(t) + k x(t) = g(t),

describes the displacement (elongation) of a body of mass m, in time t , from the equilibrium
position, subject to Hooke’s Law, −kx(t), a damping force −μ d

dt x(t) and to an external
force g(t), where μ and k are positive constants.

Consider the particular case of this equation in which there are no friction or external
forces acting on the system, i.e.

d2

dt2
x(t) + ω2

0 x(t) = 0, (9)

where ω2
0 = k/m and subject to the initial conditions x(0) = x0 and x ′(0) = 0. The Eq. (9)

can be rewritten as follows:

x(t) = x(0) + t x ′(0) − ω2
0

∫ t

0

∫ v

0
x(u)dudv = x(0) + t x ′(0) − ω2

0 I
2x(t). (10)

In order to consider a more realistic model, i.e., a model involving friction, a fractional
model may be introduced with the following argument (Diethelm 2010): “ the presence of
friction will lead to a decrease in rate of variation of space-time. As a result, instead of
introducing the various types of friction into the equation, the rate of variation of order two
presented in this equation may be replaced by another one with order 1 < α ≤ 2” (Li et al.
2011; Malinowska et al. 2015), so:4

dα

dtα
x(t) + ω2

0x(t) = 0 ⇔ x(t) = x(0) + t x ′(0) − ωα Iαx(t), (11)

3 It follows from the definition that if α = m, so Dm f (t) = Im−m Dm f (t) = I 0 Dm f (t) = Dm f (t), that
is, the usual derivative is a particular case.
4 Indeed, this argument is not accurate, and it will be explained in the last section.

123



1178 L. K. B. Kuroda et al.

Fig. 1 Graphics of Eq. (13), for different values of α, between 1 and 2

where ω2
0 = ωα . Applying the Laplace transform to the last equation, using the definition

(6), the convolution theorem of Laplace and the property (1), we can write:5

X (s) = x(0)
s−1

1 + ωα s−α
+ x ′(0) s−2

1 + ωα s−α
= x(0)

sα−1

sα + ωα
+ x ′(0) sα−2

sα + ωα
(12)

where X (s) is the Laplace transform of x(t). Since x ′(0) = 0, applying the inverse Laplace
transform on the Eq. (12) and using the Eq. (4), it follows that

x(t) = x0 Eα(−ωα tα). (13)

In Fig. 1, we show graphics for some values of α with x0 = 1 and ω = 1.
From Fig. 1 and applying the limit α → 2 in Eq. (13), we conclude that the integer case,

i.e., the simple harmonic oscillator is a particular case of the fractional solution. Indeed,
limα→2 x(t) = x0 E2(−ωα tα) = x0 cos(ω t).

4 Fractional logistic equation

In reference (Varalta et al. 2014) is presented and solved a fractional version of the logistic
equation,

d

dt
N (t) = kN (t)

(

1 − N (t)

r

)

, (14)

where N (t) is the number of individuals in time t , k is the intrinsic growth rate and r is carrying
capacity. Without loss of generality, taking r = 1, and the variable change v(t) = 1/N (t),
the following linear and separable equation is obtained:

dv(t)

dt
= k[1 − v(t)], (15)

whose solution is given by

v(t) = 1 + 1

c
e−kt ⇒ v(0) = 1 + 1

c
·

5 Since for 1 < α ≤ 2, in Eq. (8), m = 2.
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Fig. 2 Graphics of Eq. (18), for different values of α

Since N (t) = v(t)−1, we can write 1/c = 1/N (0) − 1, as a result:

N (t) = 1

1 +
[

1
N (0) − 1

]
e−kt

. (16)

The fractional version of Eq. (14) has been numerically solved by El-Sayed et al. (2007),
and the fractional version of Eq. (15) has been analytic solved by Varalta et al. (2014) both
with order 0 < α ≤ 1. Although the solutions are similar, they are not the same. Here, for
convenience, we present the fractional version of Eq. (15) with order 0 < α ≤ 1, i.e.,

dαv(t)

dtα
= Dαv(t) = k[1 − v(t)]. (17)

Applying the Laplace transform, solving the transformed equation and taking v(t) =
1/N (t), we obtain:

N (t) = 1

1 +
[

1
N (0) − 1

]
Eα(−ktα)

· (18)

Note that,

lim
α→1

N (t) = 1

1 +
[

1
N (0) − 1

]
e−kt

,

i.e. the solution of integer order is a particular case of the fractional solution.
In Fig. 2, we present some graphics corresponding to the solution of Eq. (17), taking

N (0) = 0.2, k = 1 and carrying capacity r = 1, for different values of α.
Since lim

t→∞ Eα(−ktα) = 0 for all values 0 < α ≤ 1, we have:

lim
t→∞ N (t) = lim

t→∞
1

1 +
[

1
N (0) − 1

]
Eα(−ktα)

= 1,

that is, the all the values considered converge to the value of the carrying capacity.
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In Varalta et al. (2014), is shown the convenience of this fractional model to describe the
growth of certain types of cancer tumor. For the propose of this article, it is important to note
that, as it happens in the fractional harmonic oscillator, the lower the order of the derivative,
the slower is the growth.

5 Exponential growth of Malthus

The model proposed by Malthus to describe growth in an ideal environment of a population
of P(t) individuals at the instant t is based on the hypothesis that, in these circumstances, the
rate of variation of the number of individuals will be proportional to the population itself, in
other words (Varalta et al. 2014),

d

dt
P(t) = kP(t) ⇒ P(t) = P(0)ekt . (19)

Let us introduce the fractional version of the this model using the same type of reasoning
done to the harmonic oscillator and the logistic equation, i.e., “since in a non-ideal situation,
there are a number of inhibiting factors such as competition for vital resources, instead of
considering such factors into the equation, we take into account that those inhibiting factors
lead to a decrease in rate of variation and replace the derivative of order one, in this model,
by a derivative of order 0 < α ≤ 1” (Debnath 2003), i.e.,:

dα

dtα
P(t) = kP(t). (20)

By applying the Laplace transform on the previous equation, we can write from the Eq.
(8), that

sαF(s) − sα−1P(0) = K F(s) ⇒ F(s) = P(0)
sα−1

sα − k
, (21)

where F(s) is the Laplace transform of P(t). Applying inverse Laplace transform and using
the Eq. (4) we have

P(t) = P(0)Eα(k tα). (22)

Figure 3 shows some solutions of Eq. (20), taking P(0) = 1 (scale 1 to 1000) and k = 1.
Note that, the lower the order of derivative of fractional equation (20), greater is the

rate of variation of P(t), which is an opposite result than the expected one; by our initial
considerations, the growth of P(t) was supposed to be smaller when we decrease the order
of the derivative.

Since the result of the Eq. (20) was not the expected, we will solve it considering the order
of the derivative as 1 < β ≤ 2, i.e.,:

dβ

dtβ
P(t) = kP(t). (23)

Applying theLaplace transform, solving the transformed equation and applying the inverse
Laplace transform, follow that:

P(t) = P(0) Eβ(k tβ) + P ′(0) t Eβ,2(k t
β). (24)

In Fig. 4, it is presented the graphic of the solution of Eq. (23), taking P(0) = 1 = P ′(0)
(scale 1 to 1000) and k = 1.
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Fig. 3 Graphics of Eq. (22), for values of α, between 0 and 1

Fig. 4 Graphics of Eq. (24), for different values of β, between 1 and 2

Note that also in the solution of the Eq. (23), the lower the order of fractional derivative,
the greater is the growth of P(t). However, the solution of Eq. (23) is more convenient to
describe a non-ideal growth of a population than the solution of Eq. (20).

6 Discussions and conclusions

The fractional modeling has been widely used to generalize and make more precise the usual
modeling. The most common reason found for this type of generalization is that “when
modeling a particular phenomenon is common to make some simplifications, usually those
simplifications, if considered in the model, lead to a decrease in the rate of variation of the
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1182 L. K. B. Kuroda et al.

phenomenon. Thus, instead of considering several factors in the equation, their influence in
the order of the derivative can be embedded”.

This sort of argument, proved to be valid for many problems (Debnath 2003; Podlubny
1999) such as, to the harmonic oscillator (Li et al. 2011), presented here, and the logistic
growth (Varalta et al. 2014). However, when analyzing the exponential model of growth,
we observe an opposite behavior, i.e., the lower the order of the derivative, the faster is the
growth.

This work shows that there is not a general relation between the fractional order of the
dynamic model and its state variable. Although, it presents a similar behavior in some prob-
lems, this is not always checked. Naturally, this type of observation can be useful in the study
of the physical interpretation of fractional derivative.

Acknowledgements The authors thanks the research group MApliC for the important and productive dis-
cussions.
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