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a b s t r a c t 

A lot of images are currently generated in many domains, requiring specialized knowledge of identifi- 

cation and analysis. From one standpoint, many advances have been accomplished in the development 

of image retrieval techniques based on visual image properties. However, the semantic gap between 

low-level features and high-level concepts still represents a challenging scenario. On another standpoint, 

knowledge has also been structured in many fields by ontologies. A promising solution for bridging the 

semantic gap consists in combining the information from low-level features with semantic knowledge. 

This work proposes a novel graph-based approach denominated Semantic Interactive Image Retrieval 

(SIIR) capable of combining Content Based Image Retrieval (CBIR), unsupervised learning, ontology tech- 

niques and interactive retrieval. To the best of our knowledge, there is no approach in the literature 

that combines those diverse techniques like SIIR. The proposed approach supports expert identification 

tasks, such as the biologist’s role in plant identification of Angiosperm families. Since the system exploits 

information from different sources as visual content, ontology, and user interactions, the user effort s re- 

quired are drastically reduced. For the semantic model, we developed a domain ontology which repre- 

sents the plant properties and structures, relating features from Angiosperm families. A novel graph-based 

approach is proposed for combining the semantic information and the visual retrieval results. A bipartite 

and a discriminative attribute graph allow a semantic selection of the most discriminative attributes for 

plant identification tasks. The selected attributes are used for formulating a question to the user. The 

system updates similarity information among images based on the user’s answer, thus improving the re- 

trieval effectiveness and reducing the user’s effort s required f or identification t asks. The proposed method 

was evaluated on the popular Oxford Flowers 17 and 102 Classes datasets, yielding highly effective results 

in both datasets when compared to other approaches. For example, the first five retrieved images for 17 

classes achieve a retrieval precision of 97.07% and for 102 classes, 91.33%. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The increasing image availability accessible through different

technologies has demanded the development of effective retrieval

and recognition methods. In this scenario, various image process-

ing techniques have been developed and applied to digital media

content ( Arvor, Durieux, Andres, Laporte, 2013 ). Many recent ad-

vances have been made through the development of techniques

that use quantitative features extracted by visual descriptors, ca-

pable of retrieving and indexing images. Most of these approaches

are based on Content-Based Image Retrieval (CBIR) systems, which

retrieve images by taking into account their visual content. The
∗ Corresponding author. 

E-mail addresses: filipemfg@gmail.com (F.M.F. Gonçalves), ivan@rc.unesp.br (I.R. 

Guilherme), daniel@rc.unesp.br (D.C.G. Pedronette). 

i  

f  

2  

r  

http://dx.doi.org/10.1016/j.eswa.2017.08.035 

0957-4174/© 2017 Elsevier Ltd. All rights reserved. 
BIR approaches consider various visual properties such as shape,

exture, and color, extracted through global and local low-level fea-

ures ( Datta, Joshi, Li, & Wang, 2008; Kurtz, Depeursinge, Napel,

eaulieu, & Rubin, 2014; Lew, Sebe, Djeraba, & Jain, 2006 ). Re-

ently, Convolutional Neural Networks (CNNs) have also been ap-

lied towards this goal with significant results ( Hoi, Liu, & Chang,

010; Jia et al., 2014; Razavian, Azizpour, Sullivan, & Carlsson,

014 ). Therefore, the main aspects of such retrieval methods are

ased on feature extraction techniques by visual descriptors. 

Besides the visual features, advances have been achieved in

ther stages of the retrieval pipeline. Approaches which exploit

he user feedback through supervised learning methods have been

ntegrated to CBIR techniques, improving the image retrieval ef-

ectiveness and adaptability to user inputs ( Cheng, Jing, & Zhang,

009; Liu, Liu, Qin, Ma, & Li, 2007b; Thomee & Lew, 2012 ). More

ecently, unsupervised learning has also attracted a lot of attention

http://dx.doi.org/10.1016/j.eswa.2017.08.035
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Fig. 1. Proposed retrieval approach for Plant Image Retrieval. 
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f the research community, once such methods exploit the dataset

tructure for improving the retrieval effectiveness, dispensing user

nterventions. In this scenario, unsupervised rank-based methods

ave been proposed achieving significant effectiveness gains ( Bai &

ai, 2016; Bai, Bai, & Wang, 2015; Pedronette, Gonçalves, & Guil-

erme, 2017; Pedronette & da S. Torres, 2013; 2014 ). 

Despite the continuous development of visual features, super-

ised, and unsupervised learning methods, retrieving relevant im-

ges based on the user needs still is a challenging task. The main

hallenge is to relate the semantic information of an image do-

ain with the numerical values of low-level features recovered by

attern recognition algorithms. This problem refers to the seman-

ic gap, which is defined as a lack of coincidence between the in-

ormation that can be extracted from the visual content and the

nterpretation that the same data present to the user in a given

ituation ( Datta et al., 2008; Smeulders, Worring, Santini, Gupta, &

ain, 20 0 0 ). The semantic gap remains one of the most challenges

f CBIR approaches, directly affecting the retrieval effectiveness. 

On the other hand, ontologies have been widely used as a

epresentation technique, allowing the reuse of knowledge since

hey transcribe a common understanding of a specific area. On-

ologies declare explicit semantic, realizing significant statements

nd supporting the information sharing of attributes and relation-

hips ( Gruber, 1993; Guarino, 1998; Lacy, 2005 ). However, despite

he recent advances, there is still a challenge to integrate tech-

iques that use quantitative features with the semantics of struc-

ured knowledge representation in ontologies. 

In addition, image analysis and identification tasks require spe-

ialized knowledge in many research fields, such as Systematic

otany. Traditionally, plant samples and field photographs are an-

lyzed with many systematic descriptions, that allow the identifi-

ation of organisms and their classification into groups. The iden-

ification of Angiosperms (plants with flowers and fruits) requires

 vast knowledge of structures and properties of a specimen sub-

ect ( Souza & Lorenzi, 2007 ). The identification task is even more

hallenging when performed solely from image sources since some

lant regions are hidden. The image may not show, for example,

nternal structures in vegetable organs, such as the ovary. Nilsback

nd Zisserman state in Nilsback and Zisserman (2006) that image

lassification of flower branches is difficult even for humans, who

eed a complete knowledge of the domains. In this scenario, it is

mperative the development of approaches for better representing

he knowledge of many research fields in ontology structures, such

hat it can be interpreted and processed by both humans and ma-

hines. 

In this paper, a novel interactive image retrieval approach is

roposed aiming at bridging the semantic gap in plant identifi-

ation tasks. The proposed approach, entitled Semantic Interactive

mage Retrieval (illustrated in Fig. 1 ), consists of an automatic in-

eractive system which combines Content Based Image Retrieval

CBIR) techniques, Unsupervised Learning, knowledge representa-

ion structured in Ontologies and interactive retrieval mechanisms.

iven an image input defined by the user, the system extracts low-
 w
evel features ( Fig. 1 A) and executes an unsupervised learning algo-

ithm ( Fig. 1 B) in order to improve the retrieval results. Addition-

lly, the system uses as an input the structured knowledge given

y the ontology ( Fig. 1 C), which is defined by a domain specialist.

he integration between the image retrieval results and the ontol-

gy knowledge constitutes the most relevant contribution of the

roposed approach ( Fig. 1 D). The system exploits both information

n order to establish a better interaction with the user, defined in

erms of textual questions. A bipartite ontology graph and a dis-

riminative attribute graph are proposed to select the most infor-

ative attributes from the ontology, capable of better discriminat-

ng the plant in the query image from those retrieved based on

ow-level features. 

The proposed approach involves various research challenges of

ifferent areas. The main contributions of the paper are summa-

ized in the following, enumerated according to Fig. 1 : 

• A. CBIR and features extraction: ( i ) extraction of visual

features using recent CBIR and deep-learning frameworks

(LIRE; Lux, 2013 and Caffe; Jia et al., 2014 ); ( ii ) evaluation of

several features and identification of the most effective f eatures

for plant image retrieval tasks; 
• B. Unsupervised learning: ( iii ) use and evaluation of a recent

rank-based unsupervised learning method (RL-Sim; Pedronette 

& da S. Torres, 2013 ) in plant image retrieval to improve the

effectiveness of initial retrieved results; 
• C. Ontology modeling: ( iv ) the development of a systematic

botany ontology, which describes and conceptualizes properties

and structures of Angiosperm families; 
• D. Semantic Guided Interactive Image Retrieval: ( v ) a graph-based

integration approach which combines the retrieval results in-

formation with the structured knowledge given by the ontol-

ogy; ( vi ) the proposal of a semantic-guided interactive image

retrieval system, in which the questions presented to the user

are defined according to the most discriminative attributes of

the ontology. 

The proposed approach was experimentally evaluated on the

wo popular datasets: Oxford Flowers with 17 and 102 Classes. Ex-

erimental results demonstrated that significant effectiveness gains

an be obtained through the interactive retrieval process, indi-

ating the decrease of effects of the semantic gap. The proposed

ethod also yields very high effectiveness results in both datasets

hen compared to other approaches. 

The paper is organized as follows: Section 2 discusses related

ork and Section 3 presents the CBIR techniques used in plant

mage retrieval ( Fig. 1 A). Section 4 discusses the unsupervised dis-

ance learning method ( Fig. 1 B) while Section 5 , the ontology mod-

ling ( Fig. 1 C). Section 6 presents in details the Semantic Guided

nteractive Image Retrieval ( Fig. 1 D). Section 7 presents the exper-

mental evaluation and Section 8 discusses the proposed approach.

inally, Section 9 presents the conclusion and directions for future

ork. 
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2. Related work 

Currently, one of the main challenges in image and multimedia

retrieval research is to reduce the semantic gap ( Hui, Mohamad,

& Ismail, 2010 ). An updated review of the problem is presented

in Liu, Zhang, Lu, and Ma (2007a) , where the authors discuss the

technical state-of-the-art approaches to reduce such gap, dividing

them into five categories. 

The first category uses an ontology to define high-level con-

cepts ( Manzoor, Usman, Balubaid, & Mueen, 2015; Reddy &

Bandikolla, 2008 ). The second one uses learning methods, like su-

pervised or unsupervised learning, to associate low-level features

and input concepts of a particular query ( Liu et al., 2007b; Pe-

dronette & da S. Torres, 2013 ). The third technique is based on rel-

evance feedback in recovery loop for continuous learning ( Kundu,

Chowdhury, & Bulo, 2015; Kwan, Welch, & Foley, 2015 ). The fourth

one consists in generating a semantic template to support high-

level retrieval of images ( Manzoor et al., 2015 ), while the fifth cat-

egory uses a textual information obtained from the Web in order

to retrieve image content from Web images ( Feng & Chua, 2003;

Reddy & Bandikolla, 2008 ). 

Ontologies can assist in image retrieval by supplying a semantic

model based on what occurs in the image (such as objects, events,

etc.); or even enabling the association of images to the same con-

cept through the use of URIs ( Halaschek-Wiener, Schain, Grove,

Parsia, & Hendler, 2005 ). The use of ontologies provides a common

standard, thus allowing other individuals to process the contents

of such previously annotated images ( Coto, 2008 ). 

Various authors ( Manzoor et al., 2015; Pandey, Khanna, &

Yokota, 2015; Reddy & Bandikolla, 2008; Vogel & Schiele, 2007 )

also evaluated a collection of images and presented semantic mod-

els for CBIR systems. In Manzoor et al. (2015) , Manzoor compared

the low-level features of images and inferred certain concepts such

as colors. Their study further evaluated whether some concept

defined in the ontology features such coloring. A ranking of the

most relevant images that shared those characteristics and con-

cepts were then displayed to the user aided by other extracted fea-

tures from the image and some optional textual input. 

Vogel and Schiele (2007) used a semantic model of natural

landscapes, also defined by images: sky, grass, sand, among others;

as well as the concept position within the image (i.e.: the sky is at

the top). Each image segment was analyzed separately and then

compared to previously defined concepts. It was possible to de-

termine, from an established metric, which conceptual image was

referenced, depending on the number of concepts in the landscape.

Reddy and Bandikolla (2008) presented an image retrieval ap-

proach by using textual information and Web image characteris-

tics of the 2007 Cricket World Cup. An ontology was created with

the concepts related to the championship. In their study, the au-

thors evaluated pictures of different websites and extracted their

low-level features, in addition to evaluating image labels. Then, if

an image had an annotation, such as the name of a given cricket

player, it could be inferred on the ontology that the player was the

captain of a certain team. 

Our bibliography survey found a lot of studies that only

addressed the analysis of low-level plant images characteris-

tics ( Caballero & Aranda, 2010; Goëau et al., 2013; Kebapci,

Yanikoglu, & Unal, 2009; Nilsback & Zisserman, 2006 ). However,

there are few studies that addressed the issues mentioned in the

semantic analysis of plant images ( Walls et al., 2012 ). Much of this

is due to the complexity of such images, since the plants have

small structures and/or internal flower components that are not

clearly shown in flower branches ( Nilsback & Zisserman, 2006 ). 

To reduce the semantic gap, improve the effectiveness of im-

age retrieval and assist researchers interested in identifying An-

giosperm families, we developed the proposed approach. We ad-
ressed the difficulties associated with plant identification by sim-

ly analyzing the low-level features of an image by proposing a

emantic Guided Interactive Image Retrieval, which employs an in-

ovative integration system that combines Content Based Image

etrieval (CBIR), unsupervised learning, ontology information and

nteractive image retrieval mechanisms. 

. CBIR and features extraction 

This section presents a formal definition of the image retrieval

odel and describes the techniques used to extract the low-level

eatures from the images. 

.1. Image retrieval model 

A general image retrieval model is considered for defining our

pproach. Let C = { img 1 , img 2 , . . . , img n } be an image collection,

here each image represents a plant species and n is the size of

he collection. Let ρ( i, j ) denotes a distance function between two

mages img i and img j , according to a given visual feature. 

Based on the distance function ρ , a ranked list τ q can be com-

uted in response to a query image img q , which also defines a

lant species. The top positions of ranked lists are expected to con-

ain the most similar images with regard to the query. The ranked

ist τq = (img 1 , img 2 , . . . , img n s ) can be defined as a permutation

f the subset C s ⊂ C, which contains the most similar images to

uery image img q , such that and |C s | = n s . A permutation τ q is as

 bijection from the set C s onto the set [ n s ] = { 1 , 2 , . . . , n s } . For a

ermutation τ q , we interpret τ q ( i ) as the position (or rank) of im-

ge img i in the ranked list τ q . 

Based on each image feature, a distance matrix A can be com-

uted, containing the distances among all images of the collection.

e can also take every image img i ∈ C as a query image img q , in

rder to obtain a set T = { τ 1 , τ 2 , . . . , τ n } of ranked lists for each

mage of C. The objective of the unsupervised learning step con-

ists in exploiting the contextual information encoded in the dis-

ances and the ranked lists for improving the retrieval results. For-

ally, it can be defined as function f r which computes a new and

ore effective distance matrix ˆ A = f r(A, T ) . 

.2. Visual features 

Various distinct visual properties are considered in the fea-

ure extraction process. The descriptors were made available

hrough the LIRE (Lucene Image Retrieval) framework ( Lux, 2013;

ux & Chatzichristofis, 2008 ). The framework consists in a re-

ent open source Java library for CBIR, built based on index-

ng structures provided by the Apache Lucene textual retrieval

ngine. The library allows the extraction of image features, its

torage and indexation for later retrieval ( Lux, 2013; Lux &

hatzichristofis, 2008 ). Various recent techniques involving global

nd local features are available ( Lux & Chatzichristofis, 2008 ). Af-

er indexing the images dataset, the distance between each pair

f images is computed, such all images are compared to each

ther ( Lux & Chatzichristofis, 2008 ). According to Lux and Marques,

n Lux (2013) , various metrics may be applied to compute the dis-

ance between images. 

Convolutional Neural Network (CNN) features were also con-

idered using the Caffe framework ( Jia et al., 2014 ). CaffeNet was

rained to recognize 10 0 0 object categories and the features from

he 7th fully connected layer (fc7) were used. The input images

ere resized to 256 × 256 pixels and the feature vectors have 4096

imensions. Features were considered in the Euclidean space (L2

istance function). 

Several global (color, texture) and local descriptors besides the

CN-Caffe were evaluated. This study presents only those de-



F.M.F. Gonçalves et al. / Expert Systems With Applications 91 (2018) 12–26 15 

s  

a  

M  

t  

t  

V  

V

4

 

R  

c  

i  

R  

t  

a  

i  

w  

m  

c  

(

4

 

r  

s

 

i  

m

 

w  

g  

N  

p  

k

 

r  

t  

i  

d  

ρ  

b

ρ  

B

r  

a  

m  

s  

p  

c  

t  

e  

ρ  

i

ρ  

 

i  

f  

o  

a  

d

ρ  

 

p

ρ  

 

c  

t

4

 

b  

c  

a

 

b  

t  

a

A  

 

i  

l

5

 

t  

t  

w

 

i  

(  

d  

d  

t

 

v  

c  

t  

t  

 

p  

o  

h  

g  

s

 

e  

e  

t  

p  

t  

s

 

R  

T

(  

r  

i  

c  

c  

G

 

e  
criptors that have achieved higher effective results in plant im-

ge retrieval tasks: Auto Color Correlation (ACC) ( Huang, Kumar,

itra, Zhu, & Zabih, 1997 ) and Border/Interior Pixel Classifica-

ion (BIC) ( Stehling, Nascimento, & Falcão, 2002 ) as color descrip-

ors; Speeded Up Robust Features (SURF) ( Bay, Ess, Tuytelaars, &

an Gool, 2008 ) as a local descriptor, which is based on Bag of

isual of Words; and CNN-Caffe. 

. Unsupervised distance learning 

The unsupervised distance learning step is performed by the

L-Sim Algorithm ( Pedronette & da S. Torres, 2013 ), which is a re-

ently proposed re-ranking and rank aggregation method used for

mproving the effectiveness of general image retrieval tasks. The

L-Sim Algorithm ( Pedronette & da S. Torres, 2013 ) exploits con-

extual information encoded in the similarity between ranked lists

iming to improve the effectiveness in retrieval tasks. In general,

f two images are similar, their ranked lists should be similar as

ell. In this way, ranked lists represent a relevant source of infor-

ation, since they establish a relationship among a set of images

ontained in ranked lists, instead of only between pairs of images

in distance functions). 

.1. Ranking contextual distance measure 

In this section, the RL-Sim Algorithm ( Pedronette & da S. Tor-

es, 2013 ) is described by using a ranking contextual distance mea-

ure based on similarity/dissimilarity of ranked lists. 

The ranking contextual distance measure is iteratively learned

n an unsupervised setting, by incorporating the contextual infor-

ation provided by rank correlation measures. 

Let us consider the neighborhood set N (i, k ) of an image img i ,

hich contains the k most similar images to img i , according to a

iven distance (say ρ defined by the image descriptor). The set

 (i, k ) can be obtained by the well-known k -Nearest Neighbor ap-

roach, where the cardinality of the set is denoted by | N (i, k ) | =
 . 

Let d ( τ i , τ j , k ) denote a rank correlation measure between

anked lists τ i and τ j , considering their top- k positions given by

he sets N (i ) and N ( j) . The rank correlation measure considered

s based on the intersection between ranked lists ( Pedronette &

a S. Torres, 2013 ). A non-iterative contextual distance measure

c ( img i , img j ) based on the comparison of ranked lists τ i , τ j can

e defined as follows: 

c (img i , img j ) = d(τi , τ j , k ) (1)

ased on the conjecture that the contextual distance measure ρc 

epresents a more effective distance between images, the distance

mong all images in a collection can be recomputed based on this

easure. Therefore, a new set of ranked lists can be obtained,

uch that the contextual distance can also be recomputed and the

rocess can be repeated in an iterative way. Let ( t ) denote the

urrent iteration and let τ (t) 
i 

denote the ranked list at iteration

 . Let ρ(0) 
c be the contextual distance at first iteration, which is

qual to the distance defined by the image descriptor, such that
(0) 
c (img i , img j ) = ρ(img i , img j ) for all images img i , img j ∈ C. The

terative contextual measure is defined as: 

(t+1) 
c (img i , img j ) = d(τ (t) 

i 
, τ (t) 

j 
, k ) (2)

It is expected that the effectiveness of the distance measure

mproves along iterations, so non-relevant images are moved out

rom the first positions of the ranked lists. In this way, the size

f the neighborhood k can be increased for considering more im-

ges along iterations. Therefore the contextual measure can be re-

efined as: 

(t+1) 
c (img i , img j ) = d(τ (t) 

i 
, τ (t) 

j 
, k + t) (3)
After a given number of T iterations, a new distance ˆ ρ is com-

uted based on contextual distance measure ρc : 

ˆ (img i , img j ) = ρ(T ) 
c (img i , img j ) (4)

Finally, using the distance ˆ ρ, a new distance matrix can be

omputed such 

ˆ A i j = ˆ ρ(img i , img j ) , providing more effective re-

rieval results. 

.2. Rank aggregation 

The RL-Sim Algorithm ( Pedronette & da S. Torres, 2013 ) can also

e used for combining different visual features, which can provide

omplementary visual information. Each visual feature gives rise to

 distance matrix composing a set of matrices { A 1 , A 2 , . . . , A p }. 

The RL-Sim Algorithm ( Pedronette & da S. Torres, 2013 ) com-

ines the set of matrices in a unique matrix A c using a multiplica-

ive approach. Each position of the combined matrix is computed

s follows: 

 c i j 
= 

p ∏ 

l=1 

(1 + A l i j 
) . (5)

Given a combined distance matrix A c , a new set of ranked list

s computed and submitted to the original unsupervised distance

earning algorithm. 

. Ontology modeling 

The ontology modeling was defined with a specific vocabulary

hat represents concepts related to morphological structures, rela-

ionships and constraints of each Angiosperm family in a level that

as enough to differentiate all of the studied plants. 

The modeling of the Angiosperm ontology was developed us-

ng Protege ( Knublauch, Fergerson, Noy, & Musen, 2004 ) in OWL

Web Ontology Language), following the Methontology proce-

ures ( Fernández-López, Gómez-Pérez, & Juristo, 1997 ) and APG III

efinitions (Angiosperm Phylogeny Group), as well as existing Sys-

ematic Botany bibliography ( Souza & Lorenzi, 2005; 2007 ). 

The whole process of modeling the Angiosperm families in-

olved a thorough analysis of plant parts and structures. The con-

epts were categorized into classes based on their common fea-

ures. A class is defined by a series of properties. The basic condi-

ion for belonging to a given class is to have all of those properties.

Several specific relationships (object properties and datatype

roperties) were also developed to relate classes defined in the

ntology. This process allowed to determine the domain – which

olds the relationship; and the range – which would be the tar-

et classes of said property; thereby increasing the expression of

emantic relationships in the ontology. 

The modeling also follows the pattern described in Botany lit-

rature, in which a particular structure is specific to an organ. For

xample, it is commonly said that a flower has a pistil, but the pis-

il is part of the gynoecium ( Fig. 2 ). Thus, a flower indirectly has a

istil, since a flower has a gynoecium, which in turn presents a pis-

il. Still, a flower only has a pistil if it is female or hermaphrodite,

ince the pistil presence obligatorily requires a gynoecium. 

The Fig. 2 exemplifies part of the ontology modeling in the

anunculaceae family – which features an apocarpous gynoecium.

he Flower class has an object property “HasFlowerStructure”

whose domain is Flower and the range is FlowerStructure ), which

elates to the Flower Structure class. The Gynoecium class, which

s a Floral Whorls , means that Gynoecium is a Floral Whorls sub-

lass. Ranunculaceae family particularly has an Apocarpous Gynoe-

ium , which is implemented as a specific type of gynoecium as a

ynoecium subclass. 

The developed ontology defines 250 classes, 45 object prop-

rties and 1 datatype property for Oxford Flowers 17 Classes.
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Fig. 2. Ontology modeling for Ranunculaceae family. 
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While for the 102 Classes dataset, the ontology defines 429 classes,

66 object properties and 2 datatype properties. Constraint and

class relationships with their respective properties and specific at-

tributes allowed to model the basic features of each studied family

and thus defined concepts linked to the ontology domain. 

6. Semantic Guided Interactive Image Retrieval 

In this section, we describe the main contribution of this paper.

This approach represents the combination of the low-level feature

information with the knowledge modeling process, by guiding a

user with discriminative questions in order to improve the results

retrieved. 

Since the mid-1990s, interactive mechanisms have been used

in image retrieval systems to optimize a similarity metric and to

iteratively correct errors made by the CBIR system ( Kundu et al.,

2015 ). Interactive Image retrieval information is then used to mod-

ify the weights of the combination to reflect different feature rel-

evance ( Giacinto, 2007 ). When interactive methods are used, the

search is considered an iterative process in which the original

query is refined interactively, to progressively obtain more accurate

results ( Arevalillo-Herraez & Ferri, 2013 ). 

One way to bridge the gap between the low-level features of

the images and the high-level semantic concepts is through user

interaction ( Guan & Qiu, 2007 ). The main challenge of the pro-

posed approach is to identify relevant information related to the

query image and visual retrieval results, in order to define the in-

teraction with the user. In this way, our method allows the se-

lection of most discriminative attributes for distinguishing families

present in ranked lists. As a result, the retrieval and classification

results can be improved supported by the user responses. Fig. 3

illustrates the organization of the proposed interactive approach. 

The problem was split into five stages, according to Fig. 3 and

discussed as follows: 

1. The first step consists in retrieving the entire information about

Angiosperm families from the modeled ontology, represented
in terms of a Bipartite Ontology Graph ( Fig. 3 A, detailed in

Section 6.1 ); 

2. The second one computes a Family Rank-Based Histogram of

Angiosperm families based on the retrieved results, aiming at

identifying the most frequently families ( Fig. 3 B, Section 6.2 ); 

3. The third step consists in combining both semantic and

low-level visual information into a Discriminative Attribute

Graph , which provides a structure for determining the most

discriminative attributes for identification purposes ( Fig. 3 C,

Section 6.3 ); 

4. The fourth step performs the selection of the most discrimina-

tive attribute by exploiting the graph structure constructed in

the previous stage ( Fig. 3 D, Section 6.4 ); 

5. Once an attribute is selected, a question is formulated and

showed to the user. Given the answer provided by the user, the

retrieval result is then updated and improved for the next iter-

ation ( Fig. 3 E, Section 6.5 ). 

.1. Bipartite Ontology Graph 

A graph-based approach is proposed with the objective of rep-

esenting the semantic knowledge encoded in the ontology. In this

ay, a Bipartite Ontology Graph (BOG) is proposed for defining the

elationships among each Angiosperms family and the attributes

rom biological structures which compose them. Fig. 3 A illustrates

he proposed graph-based approach. Based on the graph represen-

ation, the semantic knowledge encoded in the ontology can be ex-

loited by the retrieval process, guiding the interactions with the

ser. 

Formally, the Bipartite Ontology Graph can be defined as an

ndirected graph G o = (V o , E o ) . Let F = { f 1 , f 2 , . . . , f r } be a set of

ngiosperms families being analyzed. Let A t = { a 1 , a 2 , . . . , a m 

} be a

et of attributes which represent plant properties modeled by the

ntology. The graph nodes V o are defined as a union of such sets,

 o = F ∪ A t . 
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Fig. 3. Semantic Guided Interactive Image Retrieval for plant identification. 

Fig. 4. Computation of adjacency matrix O – Bipartite Ontology Graph. 
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Fig. 5. Histogram for a hypothetical ranked list. 
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An | F | × | A t | ontology matrix O is used as an adjacency matrix

or defining the set of edges E o of the graph. The matrix O is com-

uted as: 

 i j = f o ( f i , a j ) , (6)

here f o is a binary function computed based on the ontology in-

ormation which returns 1, if the family f i owns the attribute a j ,

nd 0 otherwise. 

An edge e ij between a family f i and an attribute a j indicates the

resence of such attribute for the family. Technically, the edge e ij 
s computed through the OWL API, responsible for querying the

ntology. 

Fig. 4 shows an example on how the matrix O is computed

ased on the information collected in the modeled ontology. The

alue “1” for the element o 2 , 1 indicates the presence of a Capitu-

um Inflorescence on the Asteraceae family. 

.2. Family rank-based histogram 

While the ontology graph represents the semantic information,

 structure for modeling the low-level visual information is also

equired. The ranked lists computed by the unsupervised distance

earning step are exploited with this objective. 

An analysis is conducted considering the top- k positions of

anked lists computed for each query image img q . The objective is
o compute the frequency of each family in the retrieved results. A

istogram is computed with this purpose, as illustrated in Fig. 3 B.

he number of bins is defined according to the number of families

nalyzed, as | F |. 

The histogram is formally defined as follows: let N (q, k ) be a

eighborhood set which retrieves the k -nearest neighbors of im-

ge img q , such that |N (q, k ) | = k . Let h ( i ) be the number of im-

ges from the family f i in the neighborhood set N (q, k ) . Let h̄ (i )

e the normalized frequency of family f i , which can be defined as
¯
 (i ) = h (i ) /k . We can also say that: 

r 
 

i =1 

h̄ (i ) = 1 , (7) 

here r represents the number of families, such that r = | F | . In

his way, the histogram h̄ is proportionally defined according to the

requency of each family at top positions, providing a summarized

nformation extracted from visual characteristics. 

Fig. 5 presents the histogram of the families on the top-10 po-

itions of a ranked list. The Asteraceae family has 5 images on the

rst 10 positions of the rank, resulting in a h̄ [2] = 0 . 5 . 

.3. Discriminative Attribute Graph 

Each plant attribute has a distinct potential for identifying plant

amilies. For example, an attribute which is present in many fam-
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Fig. 6. Computation of adjacency matrix D – Discriminative Attribute Graph. 

Fig. 7. Matrix D fully computed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V  

 

 

 

 

 

 

 

 

 

Fig. 8. Computation of the accumulated adjacency. 
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ilies can be useless for identification purposes. Additionally, such

discriminative potential can vary according to the most frequent

families at the top retrieved images. 

In this way, the Discriminative Attribute Graph (DAG) aims at

providing a graph structure for determining the most discrimina-

tive attributes for identification purposes. The main idea consists

in combining both semantic and low-level visual information into

a single graph. In fact, such step consists in one challenging task

of the proposed approach, where the semantic gap problem is ad-

dressed. 

The Discriminative Attribute Graph (DAG) combines information

from the Bipartite Ontology Graph (BOG – Fig. 3 A) and the Fam-

ily Rank-Based Histogram ( Fig. 3 B). The proposed approach is illus-

trated in Fig. 3 C. While the histogram identifies the most frequent

families at top retrieved images, the BOG graph is analyzed for dis-

covering the most appropriated attributes for discriminating such

families. 

Formally, the DAG graph can be defined as an undirected graph

G d = (V d , E d ) . The set of nodes V d is defined in the same way of

the BOG graph, as a union of sets of families and attributes, such

 d = F ∪ A t . The set of edges E d is defined by an adjacency matrix

D . 

An edge e ij between a family f i and an attribute a j indicates the

capacity of such attribute for discriminating the family f i from the

other families. Additionally, the value of the edge is weighted by

the frequency of families in top retrieved images, given by the his-

togram h̄ . In this way, adjacency matrix D is computed as follows:

D i j = 

r ∑ 

c=1 

| O i j − O c j | × ( ̄h (i ) × h̄ (c)) . (8)

Fig. 6 shows how to calculate, based on the equation above, the

element d 0 , 0 from the examples in Figs. 4 and 5 . After comput-

ing all elements, matrix D is illustrated in Fig. 7 . It is important to
otice that elements with value “0” refer to those families that are

ot presented on the top-10 positions of the ranked list ( Fig. 5 ). 

.4. Semantic Attribute Selection 

The DAG graph combines semantic and low-level information

or identifying the most discriminative attribute for each family

 Fig. 3 C). In this way, the adjacency information can be used for

dentifying the most appropriated attribute to be used in the in-

eractive image retrieval step ( Fig. 3 D). The most discriminative at-

ribute is given by the node a j which presents the greater accu-

ulated adjacency (i.e.: the attribute which can be exploited for

ifferentiating the most frequent families). 

Formally, a function s ( a j ) is computed defining the sum of the

djacencies of a given attribute a j . The accumulated adjacency s ( a j )

s computed based on the adjacency matrix D , as follows: 

 (a j ) = 

m ∑ 

i =1 

d i j (9)

Fig. 8 illustrates the computation of the accumulated adjacency

n order to select the most discriminative attribute. 

After this step, the attributes are sorted in decreasing order in

elation to their accumulated adjacency value. The attribute which

resents the greater accumulated adjacency is selected for com-
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Fig. 9. Choosing a question for the user. 
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osing an interactive retrieval step. A question is created for ask-

ng the user with regard to the presence of the selected attribute

n the query image, as illustrated in Fig. 9 . 

One advantage of the proposed method consists in the capacity

f selecting the most discriminative attributes in order to reduce

he number of questions and interactions required. In this way,

he proposed approach can achieve more effective results requir-

ng fewer user effort s than traditional biological approaches, as a

ichotomous key. 

.5. Interactive image retrieval 

In the interactive image retrieval step ( Fig. 3 E), given a selected

ttribute a j ( Fig. 3 D), the system composes a question for the user.

he user answers “yes”, “no” or “do not know” to questions, trig-

ering a different system feedback for each situation. The answer

iven by the user is used for updating and improving the retrieval

esults. 

For example, let a j be the selected attribute for a particular ex-

eriment which indicates the presence of Capitulum Inflorescence .

he user would be asked: 

“Does the family have a capitulum inflorescence? ”

Suppose the queried image was referring to the Asteraceae fam-

ly and the answer would be “yes”. Thus, all images from fami-

ies that have a Capitulum Inflorescence would receive a distance

pdating. The distances to such images would be decreased and

hey would be moved to top positions of ranked lists, improving

he quality of results retrieved. 

The approach used for the distance updating is based on a mul-

iplication by a constant α < 1. Let img q be a query image. Let img j 
enotes an image which has a certain attribute a j . The answer

yes” for the presence of the attribute a j implicates the decrease

f the distance between img q and img j . Therefore the distance ma-

rix A is updated as follows: 

 q j = A q j × α. (10) 

If the answer regarding of the presence of a certain attribute

s “no”, the distance updating follows the same principle. Let img n 
e an image which does not have the attribute, the matrix A is

pdated as: 

 qn = A qn × (1 + α) . (11)

However, the answer “no” is inconclusive, since a family may

resent more than one feature for the same category. This may

ccur, if the queried image is, for example, a Primulaceae plant.

his family may have either a Raceme, Cymose or Panicle Inflores-

ence . If the chosen attribute a j is a Raceme Inflorescence and the

mage does not have such feature (i.e.: has another inflorescence

ype, such as Cymose or Panicle ), the distance should not affect the

anked lists in a strong way. Therefore, the value used for the con-

tant α is very small. 

The final situation occurs when the user “do not know” the an-

wer. In this case, the next attribute with the greater accumulated

djacency is used for composing a new question. 
. Experimental evaluation 

An experimental evaluation was conducted aiming at assessing

he effectiveness of the presented approach. Section 7.1 discusses

he experimental protocol and Section 7.2 describes the datasets

onsidered. Section 7.3 shows a visual evaluation of the proposed

pproach. Section 7.4 discusses the evaluation of visual features

nd unsupervised learning while Section 7.5 describes the exper-

mental results of the proposed interactive approach. 

.1. Experimental protocol 

The evaluation considers an experimental protocol mainly

ased on retrieval tasks, in which all dataset images are considered

s query images. Various effectiveness measures are reported: the

recision at different depths (P@5, P@10), the Mean Average Pre-

ision (MAP) and the Precision × Recall curve (PR curve) before and

fter the use of the proposed approach. In order to allow a deeper

xperimental analysis and comparisons with other methods, classi-

cations tasks are also considered. A k NN classifier built upon the

etrieval results is evaluated by the accuracy of the recognition rate

btained. 

For both retrieval and classification tasks, the first steps in-

olved in the evaluation are the same. Initial experiments aim at

valuating the effectiveness of visual features and the impact of

nsupervised learning step. The visual features are extracted, the

istances among images are computed and ranked lists are ob-

ained. Subsequently, the unsupervised learning step is performed

y the RL-Sim algorithm, considering isolated features and aggre-

ation of different f eatures. In order to evaluate the impact of pa-

ameters of RL-Sim algorithm, an analysis is performed varying the

umber of iterations in the range of 1–3 and the neighborhood

ize k in the range 5–35 (in intervals of 5). The retrieval results

btained before and after the RL-Sim algorithm are evaluated by

ffectiveness measures, as precision, recall, and MAP. After the pa-

ameters definition, the execution of the unsupervised learning al-

orithm is performed once for the whole dataset and used by the

ext steps. Since no label information is used, the retrieval results

btained at this stage can be shared by all query images. 

Next, various experiments were conducted to assess the effec-

iveness of Semantic Interactive Image Retrieval ( Section 6 ). For

his stage, the interactive retrieval process is evaluated indepen-

ently for each query image. Ground-truth information used to

imulate the user’s responses is based on the Bipartite Ontology

raph ( Section 6.1 ), which encodes information about the pres-

nce or absence of attributes modeled for the plants. Such infor-

ation is available for the whole dataset, excluding the query im-

ge. The number of users interactions ranged from 1 to 10 ques-

ions and the evolution of results are evaluated for each iteration.

he reported results represent the average of the measures ob-

ained for all query images, constituting a leave-one-out cross val-

dation. Both retrieval and classification tasks are considered. For

etrieval, precision, MAP and PR curves are reported as effective-

ess measures. For classification, the accuracy of k NN classifier is

onsidered. 

.2. Datasets 

In order to evaluate the proposed approach, two popular flow-

rs datasets were considered. Firstly, the Oxford Flowers 17 Classes

ataset ( Nilsback & Zisserman, 2006 ), which contains 17 classes

rom different Angiosperm species. Each class has 80 images, to-

alizing 1360 images in the dataset. 

We also used the Oxford Flowers 102 Classes dataset ( Nilsback

 Zisserman, 2006 ). This dataset contains 102 classes from differ-

nt Angiosperm species and each class has a different number of
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Fig. 10. Ranked lists behavior after the use of the proposed approach (SIIR). 
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images, varying from 40 to 251 images per class. In this way, the

102 classes dataset presents a total of 8189 images. 

The 17 classes dataset represents 8 Angiosperm families. Each

family was modeled on the developed ontology as well as their

specific characteristics that allow their identification in a total of

132 restrictions. The 102 classes dataset represents 47 Angiosperm

families. All of these families were modeled on the ontology, so as

their specific morphological characteristics, which presents a total

of 350 restrictions. 

7.3. Visual evaluation 

The capacity of the proposed approach in improving the plant

identification tasks is illustrated in this section. Fig. 10 shows a real

case which highlights the effectiveness improvements obtained by

the proposed approach for a given ranked list. Borders in red rep-

resent incorrect results considering the images classes (species),

while borders in green show the correct retrieved results for each

step. Borders in yellow represents an incorrect retrieved results

considering species, but a correct result considering the informa-

tion from the families. 

The query image had its features extracted by SURF, and the

Rank A presents the top-10 similar images according to this de-

scriptor. According to Fig. 10 A, P@10 accounts for only 40% of the

correct classification, since it has four images that belong to the

class of the query image. The precision of the families in the top-

10 (PF@10) represents a value of 60% 

Fig. 10 B shows the results of the ranked list for the query image

after the execution of the RL-Sim algorithm ( k = 20, t = 2). It can be

observed that P@10 increased after this step, when compared with

the case in Fig. 10 A, since its value represents now 50% at the top-

10 first positions in this rank. 

Fig. 10 C shows the results of the query image after 1 question

and suggests to the user that the family is Asteraceae . It can be no-

ticed that the proposed approach reaches P@10 with 80% of class

precision and PF@10 with 100% of family precision. Notice that

with only 1 simple question, our approach improved the precision

with a huge gain when compared with the initial ranks in Fig. 10 A

and B. 

The question “The inflorescence is Capitulum? ” was chosen by

the Semantic Attribute Selection once the question is the most in-

formative for distinguishing the images in Rank B . Additionally, it

is an easy question to solve, since its concepts are known by biolo-
ists and botany enthusiasts, and represents a concept that can be

isually observed in the image. 

.4. Visual features and unsupervised learning 

This section presents the experimental results obtained by: ( i )

isual features; ( ii ) visual features + unsupervised learning; ( iii ) fu-

ion of visual features through rank aggregation. 

The experimental results demonstrate the importance of com-

ining different features through unsupervised learning. Combin-

ng different approaches of visual features achieved the higher ef-

ective results in retrieval tasks. We experimentally evaluated more

han 19 features (color, texture, and local descriptors) and 1 feature

ased on Convolutional Neural Networks (CNN). By combining a

olor, a local and a CNN feature, we achieved the highest effective

esults. Such positive results are mainly due to the complementar-

ty among diverse features and the capacity of the rank aggregation

ased on unsupervised learning of combining in an effective man-

er. It is worth mentioning the importance of improving the initial

etrieved results, since the ranks will be used for the next steps of

he proposed approach. 

After features extraction evaluation, three descriptors (ACC, BIC

nd SURF) were selected, as well as the Caffe framework (CNN)

o proceed with the image analysis. This criterion was set because

hese tools presented the best results for the effectiveness met-

ics. Since we applied the proposed approach in two datasets, the

esults of each one are shown in two distinct Sections 7.4.1 and

.4.2 . 

.4.1. Oxford Flowers – 17 Classes 

In this section, we present the results for different f eatures with

nd without the unsupervised learning (UL) step on the Oxford

7 classes dataset. Table 1 summarizes the initial retrieval results

without UL) and the considering the unsupervised learning with

he best parameters settings for each feature. 

It can be noticed in Table 1 that Caffe framework (CNN), when

solated (without Rank Aggregation), shows the best results among

he three metrics for visual features extraction method and for the

nsupervised Learning. These results reach 87.71% on ranking pre-

ision for the five first positions after the execution of the RL-Sim

lgorithm. 

Considering the other three image descriptors (ACC, BIC and

URF), it can be noticed that SURF presents the best results. For
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Table 1 

Effectiveness results for various features and unsupervised learning (UL) on the Oxford 17 Classes dataset. 

Effectiveness metrics ACC BIC SURF ACC+SURF CNN CNN+SURF 

P@5 without UL 0.5310 0.6001 0.5204 0.6085 0.8569 0.8859 

P@5 + UL 0.5394 0.6001 0.5518 0.6278 0.8771 0.9138 

P@10 without UL 0.4215 0.5015 0.4184 0.5071 0.7959 0.8207 

P@10 + UL 0.4 4 40 0.5104 0.4530 0.5439 0.8411 0.8921 

MAP without UL 0.1928 0.2625 0.2155 0.2466 0.5025 0.4804 

MAP + UL 0.2410 0.3097 0.2391 0.3216 0.7023 0.7485 

Table 2 

Effectiveness results for various features and unsupervised learning (UL) on 

the Oxford 102 Classes dataset. 

Effectiveness metrics BIC SURF CNN CNN+SURF+BIC 

P@5 without UL 0.5399 0.3661 0.5751 0.7455 

P@5 + UL 0.5432 0.4201 0.6009 0.8020 

P@10 without UL 0.4269 0.2624 0.4816 0.6491 

P@10 + UL 0.4353 0.3173 0.5292 0.7431 

MAP without UL 0.1766 0.0979 0.1871 0.2872 

MAP + UL 0.1905 0.1219 0.2645 0.4326 
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 combination of two features, a significant improvement can be

bserved. The fusion of ACC+SURF shows an increase of approxi-

ately 16.39% for its best P@5 (0.6278; k = 35 , t = 1 ), when com-

ared to the best result presented by ACC in this metric (0.5394;

 = 10 , t = 1 ). Considering the aggregation of features that pre-

ented the best retrieval results (CNN+SURF), the gains in the ef-

ectiveness measures analyzed are even more significant. 

The use of unsupervised learning through the RL-Sim algorithm

chieved a major advancement for the MAP gain for CNN+SURF in

5.8%, when comparing the value of the best MAP of the union

NN+SURF (0.7485; k = 35 , t = 2 ) with the map without the ap-

lication of RL-Sim to the same union (0.4804). 

.4.2. Oxford Flowers – 102 Classes 

This section presents the results of the visual features ex-

raction methods and the unsupervised learning for 102 classes.

able 2 summarizes the initial retrieval results (without UL) and

he unsupervised learning (UL) with the best parameters settings

or the Oxford Flowers 102 Classes dataset. 

As we can see in Table 2 , the results are lower than those pre-

ented by the 17 classes. It occurs since the 102 classes dataset

resents a large number of classes, compared with 17 classes,

hich difficult the retrieval of the correct results. Table 2 also

resents the aggregation results of three extraction methods

CNN+SURF+BIC), since this combination shows the best retrieved

esults for the 102 classes dataset. We also combined CNN+SURF,

NN+BIC, BIC+SURF and also ACC with these selected methods,

ut the results were lower than those presented by the union

NN+SURF+BIC. 

The results of aggregation of the three methods show how the

nsupervised learning assists the improvement of the proposed ap-

roach. The initial MAP results of CNN+SURF+BIC is 0.2872, while

he results obtained after the unsupervised learning is 0.4326, rep-

esenting a gain of 50.63%. Although SURF presented lowest re-

ults compared to the others methods chosen for the 102 classes

ataset, when aggregated with CNN and BIC it presented an excel-

ent gain. 

It is worth mentioning that the higher gains obtained with

NN+ SURF+ BIC aggregation, shown in Table 2 , were due to the

act that those extraction methods complemented each other. In

eneral, it means that those methods had same hits and different

isses for the same query. With a higher precision of the ranked

ists, more effective will be semantic image retrieval and therefore,

ewer user effort s will be required. 
.5. Semantic Interactive Image Retrieval 

The results presented in this section are related to the experi-

ents using the Semantic Interactive Image Retrieval (SIIR). As the

onfigurations of the optimal points achieved by each metric were

ifferent to the extraction methods ( Tables 1 and 2 ), we used a

tandardized parameters settings for all the experiments involv-

ng the SIIR evaluation ( k = 20 , t = 2 ). The value of the constant

= 0 . 01 was set through an empirical analysis. For the experi-

ents, 10 interactive sessions were considered, since we simulated

he user’s answer. But in practical applications the user decides

hen to stop the retrieval process. We also computed the Confi-

ence Interval (CI) with a 0.95 confidence value. 

.5.1. Oxford Flowers – 17 Classes 

Fig. 11 (a) shows the improvements achieved by the proposed

pproach in Precision × Recall (PR) curves considering ACC and

URF descriptors. Fig. 11 (a) presents three PR curves: the ACC

nd SURF in isolation (without UL) and the ACC+SURF combined

hrough rank aggregation in the interactive image retrieval ap-

roach after 10 questions. 

It can be observed that the gain – represented by the distance

etween the curves of the two descriptors (ACC and SURF) and the

CC+SURF aggregation with SIIR, reaches a very high value demon-

trating the effectiveness of the proposed interactive approach. 

Fig. 11 (b) illustrates analogous results considering the CNN-

affe feature. We can observe that higher effectiveness results

ere achieved, demonstrated by Precision × Recall curves. The

NN+SURF with SIIR curve shows the best results presented for

his analysis. 

Significant improvements were also obtained considering other

ffectiveness metrics. Fig. 12 (a) presents the results of precision in

he five first positions (P@5) of the ranks for the extraction meth-

ds analyzed. 

It is observed that the P@5 value of CNN+SURF aggregation with

IIR is the highest achieved in this experiment. The value of this

etric increases every question answered by the user, reaching its

aximum value within 10 questions answered (0.9707). This value

epresents a gain of approximately 6.97% in relation to the initial

alue of P@5 (0.9074) presented in Fig. 12 (a). 

If compared the maximum value of P@5 for CNN+SURF (0.9707)

fter evaluation of the Semantics Interactive Image Retrieval, with

he P@5 of feature’s extractions for the same method without the

nsupervised Learning (0.8859 – Table 1 ), it is observed a gain of

pproximately 9.57%. 

The analysis of the precision in the top-10 positions (P@10) also

hows an increase in the three extraction methods. Fig. 12 (b) illus-

rates the obtained results for P@10, with similar gains to P@5. In

ddition, for image family retrieval, the results, after 10 questions,

re even better: 99.17% on PF@5 and 99.11% on PF@10. It can be

bserved in Fig. 12 (a) and (b) that several points do not present

ntersection of their respective error bars, thus demonstrating sta-

istical differences between some points analyzed. 

We can observe that the first iterations are responsible for

he highest effectiveness obtained in the interactive retrieval pro-
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Fig. 11. Precision × Recall for extraction methods with Semantic Interactive Image Retrieval after 10 questions, on Oxford 17 Classes. 

Fig. 12. Evolution of Precision for Semantic Interactive Image Retrieval (SIIR) along with questions, on Oxford 17 Classes. 

Fig. 13. Evolution of MAP for Semantic Interactive Image Retrieval (SIIR) along with 

questions, on Oxford 17 Classes. 
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cess. It is worth mentioning the fact that answering only one

question increases the effectiveness of the system in a positive

way. For example, Fig. 13 illustrates the significant increase of

the MAP measure, demonstrating the evolution of effectiveness
f the retrieval results. This result presents a major advancement

or Angiosperm families identification, since traditional identifi-

ation techniques based on a dichotomous key for Flowers with

erianth and Polypetalous Corolla reaches 188 leads ( Souza &

orenzi, 2007 ). 

For example, analyzing the Fig. 13 , from the total gain repre-

ented by the user’s interaction for ACC+SURF MAP on 17 Classes,

0.69% of this gain is reached after the first user’s interaction. It

lso can be noticed in Fig. 13 that the MAP for CNN+SURF also

chieves a higher gain score on the first user’s interaction, 45.94%

rom the total gain represented for this joined method, after SIIR

xecution. 

When compared with the initial values displayed in the Fig. 13 ,

he best MAP score achieved gains of 18.52% for CNN+SURF, 26.81%

or CNN, 50.49% for CNN+BIC, and 92.89% for ACC+SURF. These

ains are related only to the user’s interaction process. 

These results demonstrate that the proposed approach showed

ffectiveness to several cases of classification analysis and images

etrieval, for both metrics with low income and the best cases. 

It is interesting to note that, in curves with low values of P@5,

@10 and MAP, the distances between the confidence intervals

 Figs. 12 (a), (b) and 13 ) are greater than the curves that present

igher values (CNN and CNN+SURF). This demonstrates the impor-

ance of asking more questions for low accuracy methods, as well

s corroborating the effectiveness of the proposed approach. 
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Table 3 

Accuracy of 20-NN family classification of SIIR on 17 Oxford flower dataset. 

Methods Family recognition rate 

SIIR −CNN+SURF 1 question 93.97% 

SIIR − CNN+SURF 5 questions 97.20% 

SIIR − CNN+SURF 10 questions 98.97% 

Table 4 

Accuracy of 20-NN species classification of SIIR, in comparison with state-of-the-art 

methods on 17 Oxford flower dataset. 

Methods Class 

recognition rate 

Visual Vocabulary ( Nilsback & Zisserman, 2006 ) 71.76% 

Discrim. Power-Invar. ( Varma & Ray, 2007 ) 82.55% 

Auto. Flower Classif. ( Nilsback & Zisserman, 2008 ) 88.33% 

Top-down color attention ( Khan, van de Weijer, & 

Vanrell, 2009 ) 

89% 

Bin-ratio information ( Xie, Ling, Hu, & Zhang, 2010 ) 89.02% 

BiCoS ( Chai, Lempitsky, & Zisserman, 2011 ) 90.04% 

RL-Sim − CNN+SURF 90.44% 

Multi-scale fusion ( Hu, Hu, Xie, Ling, & Maybank, 2014 ) 91.39% 

SIIR − CNN+SURF 1 question 92.06% 

SIIR − CNN+SURF 5 questions 95.22% 

SIIR − CNN+SURF 10 questions 96.84% 
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Fig. 14. Precision × Recall for CNN, SURF and BIC with Semantic Interactive Image 

Retrieval (SIIR) after 10 questions, on Oxford 102 Classes. 
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Table 3 presents the accuracy of the 20-NN classification of An-

iosperm families. It can be seen that after 10 questions, the fam-

ly recognition rate reaches 98.97%. Since the results summarized

n Table 3 cannot be compared with other studies that use the

ame dataset due to the lack of literature in similar works to the

roposed approach, we also present a class comparison (instead of

amily comparison) with other state-of-the-art approaches. 

Despite the fact that the experimental protocol of our method

iffers from the others, a brief comparison is presented. Table 4

ummarizes the recognition accuracies published for several meth-

ds from the literature, along with the accuracy of our proposed

pproach (SIIR). The Semantic Interactive Image Retrieval obtained

he highest accuracy result, when compared to other approaches,

eaching 96.84% of accuracy for the 20-NN classification. Even

hen the user answers only 1 question, the Semantic Interactive

mage Retrieval demonstrates its effectiveness illustrating a higher

alue of accuracy than other approaches. 

.5.2. Oxford Flowers – 102 Classes 

This section introduces the results of the Semantic Interactive

mage Retrieval for the Oxford Flowers 102 Classes dataset. The

onfiguration of the execution is the same as those presented by

he 17 classes. 

Fig. 14 shows the improvement of the proposed approach for

he 102 classes dataset after 10 questions. It can be seen once

gain the effectiveness of the SIIR by the distances of the curves.

he highest curves present the results from SIIR, while the low

nes show the results from the extraction methods only (with-

ut UL). The aggregation of CNN+BIC+SURF with SIIR achieved the

ighest precision scores for this dataset. 

When compared the curves CNN+BIC+SURF after SIIR applica-

ion with the CNN+BIC+SURF without UL at the point of 20% of

he images classes recalled, it can be observed that the precision

eaches more than 80% for the curve with SIIR, while the curve

ithout the proposed approach shows a precision of less than 50%.

Fig. 15 (a) shows the gain in precision on the top-5 posi-

ions in the ranked lists for the 102 classes. It can be seen that

NN+BIC+SURF after 10 questions presents the best P@5. The gain

f this aggregation when compared with the initial value on this

urve represents 14.92%. The best gain was of SURF (64.04%). 
Fig. 15 (b) also presents high values on P@10 after apply-

ng the questions selected from the Semantic Attribute Selection

 Section 6.4 ). 

The precision on the first ten positions with SURF shows the

ighest gain with 96.36%. When analyzed BIC only, it can be seen

hat its gain is 67.31%, showing again that the proposed approach

s very effective in low retrieval values also. 

It can be observed in Fig. 15 (a) and (b) the non-intersection be-

ween the confidence intervals of some points, thus demonstrating

tatistical differences between such analyzed points. 

The precisions for image family retrieval for the results pre-

ented in 102 classes also demonstrates high scores after 10 ques-

ions: 93.20% on PF@5 and 91.59% on PF@10. 

Fig. 16 shows that the improvement of the retrieved results just

ot occur only in the first positions, but also above deeper posi-

ions over the rank. This analysis can be done because when the

ser answers a question that corresponds to some attribute, even

he deepest plant images that contain that attribute can be moved

o the rank initial positions. Fig. 16 shows that SURF descriptor had

 gain of 112.76% on this metric, after the SIIR approach been ap-

lied. It can be seen that BIC descriptor had a 101.45% gain in MAP,

hile the union CNN+BIC+SURF reaches a gain of 32.88%. 

When comparing the graphics of the confidence interval of the

02 classes dataset ( Figs. 15 (a), (b) and 16 ) with the graphics of the

7 classes dataset ( Figs. 12 (a), (b) and 13 ), it can be observed that

he confidence intervals of the analyzed points for the 102 classes

re smaller than those presented for the 17 classes. This is due to

he fact that the number of comparisons between the ranks and

he number of analyzed images is bigger in the set of 102 classes.

his way, even curves with higher values for the metrics tested

emonstrates the need to apply the proposed approach. 

When analyzing P@5, P@10 and MAP metrics for 102 classes

ataset, the gains on the first user’s interaction are lower than

hose presented by 17 classes, but also illustrates that the biggest

art of the gain ( Figs. 15 (a), (b) and 16 ) is related to the first inter-

ction and consequently, demonstrates the reduction on the effort

n classifying plants. 

Finally, we present the accuracy of the 20-NN images of An-

iosperm families ( Table 5 ). It can be seen that after 10 questions,

he family recognition rate reaches 85.39%. We also present Table 6
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Fig. 15. Evolution of Precision for Semantic Interactive Image Retrieval (SIIR) along with questions, on Oxford 102 Classes. 

Fig. 16. Evolution of MAP for Semantic Interactive Image Retrieval (SIIR) along with 

questions, on Oxford 102 Classes. 

Table 5 

Accuracy of 20-NN family classification of SIIR on 102 Oxford flower dataset. 

Methods Family recognition rate 

SIIR − CNN+BIC+SURF 1 question 74.94% 

SIIR − CNN+BIC+SURF 5 questions 81.13% 

SIIR − CNN+BIC+SURF 10 questions 85.39% 

Table 6 

Accuracy of 20-NN species classification of SIIR in comparison with state-of-the-art 

methods on 102 Oxford flower dataset. 

Methods Class recognition rate 

Ito and Kubota (2010) 53.9% 

Nilsback and Zisserman (2008) 72.8% 

Khan, van de Weijer, Bagdanov, and Vanrell (2011) 73.3% 

Kanan and Cottrell (2010) 75.2% 

Nilsback (2009) 76.3% 

Angelova, Wong, Zhu, Specht, and Lin (2012) 76.7% 

SIIR − CNN+BIC+SURF 1 question 79.15% 

Chai et al. (2011) 80.0% 

Angelova, Zhu, and Lin (2013) 80.6% 

Mattos, Herrmann, Shigeno, and Feris (2014) 80.8% 

SIIR − CNN+BIC+SURF 5 questions 84.89% 

SIIR − CNN+BIC+SURF 10 questions 88.88% 
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ith a comparison of SIIR with others methods presented in the

iterature. 

It is worth mentioning that the accuracy cannot be compared

recisely with others approaches presented in Table 6 since the

xperimental protocol of our method differs from the others. How-

ver, it can be seen that the accuracy of the top-20 images of SIIR

chieves high-accuracy results when compared to the others state-

f-the-art methods. 

The class accuracy of SIIR at 1-NN classification on 102 classes

sing CNN+BIC+SURF after 10 questions is equal to 90.36%. The

lass accuracy at the 5-NN classification of the same joined con-

guration is 90.31%, while the class accuracy at 10-NN is equal to

9.79%. 

. Discussion 

The difficulties associated with identification of Angiosperm

amilies is addressed by SIIR through a combination of low-level

eatures, ontology information and interactive retrieval. The major

dvantage of the proposed approach consists in the capacity of re-

ucing the user’s effort s by suggesting a question that can poten-

ially differentiate the highest number of families presented on the

op retrieved images. As demonstrated by experimental evaluation,

 single user response can improve significantly the retrieval re-

ults. Since a traditional dichotomous key has nearly by 188 leads

o identify an Angiosperm family, it represents a relevant contribu-

ion. 

The SIIR approach also yields very high effective retrieval and

lassification results in comparison with others approaches. For ex-

mple, our best results in accuracy reach 96.84% and 88.88% for the

xford 17 classes and 102 classes, respectively; when others state-

f-the-art approaches reach, respectively, 91.39% and 80.8% in ac-

uracy results for the same datasets. 

Another strong point of our proposed method relies on the fact

hat if the user has any doubts about what the plant structure or

he property means (i.e.: question with a selected attribute) it is

ossible to consult the ontology in order to understand and clarify

he meaning of that question. Since the object properties relate the

lasses of the ontology, the user has a full high-level concepts and

nformation about the Systematic Botany domain by analyzing the

ntology graph and/or reading the ontology annotations about that

oncept in doubt. 

On the other hand, identifying a plant is not an easy task and

t is possible that the system will suggest a hard question to the

ser. Despite the fact that the user can consult the ontology to

larify the doubts about the question and sometimes that is the
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nly question that needs to be solved, it would be necessary to

xtend the approach to consider profiles of different users, asking

asy question for those inexperienced ones. 

Another weakness of the system in its current formulation oc-

urs when the user answers the question in a wrong way. The sys-

em will probably reduce the retrieval effectiveness, since it moves

he top ranked images that present the attribute answered incor-

ectly. 

The SIIR approach also requires an ontology in some domain.

f there is no ontology developed for the studied domain of the

mages, some features and functionality of the proposed approach

ould not work properly. As the tendency is to provide informa-

ion in the patterns of a new Semantic Web, it can be said that

he development of specific vocabularies must grow in the coming

ecades. When this development occurs jointly by a determined

ommunity of researchers from different areas, following estab-

ished standards, the knowledge ends up interconnecting in sev-

ral areas and can be shared and reused. This way, it is possible to

ffirm that the SIIR can be applied in others areas of knowledge. 

. Conclusions 

In this paper, we have presented a novel approach for Interac-

ive Image Retrieval. The proposed approach reduces the semantic

ap between low-level features of the images and the high-level

emantic concepts by introducing a Semantic Guided Interactive

mage Retrieval. 

The main idea consists in retrieving images based on their vi-

ual features, relating such images with their concepts, defined

y the developed ontology, supported by user interactions. A set

f experiments was conducted for assessing the effectiveness of

he proposed approach. The results demonstrated that high effec-

iveness can be obtained in various scenarios. Experiments also

howed the effectiveness of SIIR in two different datasets, reaching

igh values of the metrics analyzed in both. Additionally, showed

hat SIIR can be very effective for both low and high-effective input

etrieved results. 

The proposed approach can be also applied for educational pur-

oses since the information defined by the ontology represents

lear assertions for both humans and machines. In this way, ev-

ry restriction can be consulted by the user in order to clarify any

oubt about the concepts. Furthermore, the relationships between

ach ontology entity show what structure or property belongs to

 particular class, thus facilitating the teaching through the devel-

ped ontology. 

Future work focuses on the investigation of novel formulations

or distance updating in the Semantic Attribute Selection stage. Al-

hough effective, the current formulation is extremely simple and

an be improved. We also intend to develop a species ontology, in-

tead of a family ontology used in this work. Since species presents

pecific attributes (more restrictions when compared to families),

e believe that Semantic Attribute Selection will be more effective,

mpacting positively the retrieval and classification process. With a

ore specific attribute, the user’s answer will be more effective

egarding the interactive image retrieval process. More specifically,

he user answer “no” will be even more effective, since images that

oes not present that value for the selected attribute also does not

elong to the specie of the query image and therefore should be

oved to lower positions in the rank. 

Future work also focuses on an adaptive interaction process.

he main idea is to formulate the questions according to the user

rofile, asking easier questions for those inexperienced ones. In or-

er to fulfill this feature, more information must be included in the

ntology. For example, the structures and properties easily view-

ble in images can be annotated as an “easy ” mark, while internal

ttribute as a “hard ” one. With this feature, the Semantic Interac-
ive Image Retrieval can reach different people and adapt itself for

any kinds of users. 

The proposed approach is completely unsupervised until the

tart of user interactions. Other line of investigation consists in the

se of semi-supervised learning, by exploiting training data relat-

ng low-level features and morphological structures in order to dis-

inguish families or species. It is possible to use the feature vector

f each image and the attributes modeled in the ontology as in-

ut to train a machine in order to group image plants into their

amilies. 

Other possibility of future work is ranking images not only

ased on their low-level features, but also taking into account their

ttributes modeled in the ontology. The idea consists in sorting the

anked lists considering the plant images that also have the biggest

imilarity about their attributes. In addition, this idea simulates a

hylogenetic tree, which relates plants that present similar proper-

ies and structures. 

Another promising line of investigation focuses on the use of

IIR for different areas of knowledge, such as archaeology (to iden-

ify different kinds of remains), geology (to identify minerals and

ocks), ichthyology (in order to identify fish by their scales, for ex-

mple) and buildings (to identify the period of some construction,

or example, baroque). In fact, for applying SIIR in other domains

t is only required the creation of an ontology for the studied do-

ain. 

As the idea of a new Semantic Web is to provide, share and

euse information in standards, it can be said that SIIR can be fit

n those patterns, since uses an ontology to represent concepts and

nformation about Angiosperm families. In this sense, the develop-

ent of new vocabularies must grow in the next decades, enabling

he relationship to several different domains and interconnecting

he knowledge in several areas, which also propitiate the expan-

ion and application of SIIR in other areas of knowledge. 

Thus, the present work presented a novel approach with high

fficacy in image retrieval that unites the knowledge of the studied

omain (Systematic Botany) with the visuals images features. 
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