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ABSTRACT

A lot of images are currently generated in many domains, requiring specialized knowledge of identifi-
cation and analysis. From one standpoint, many advances have been accomplished in the development
of image retrieval techniques based on visual image properties. However, the semantic gap between
low-level features and high-level concepts still represents a challenging scenario. On another standpoint,
knowledge has also been structured in many fields by ontologies. A promising solution for bridging the
semantic gap consists in combining the information from low-level features with semantic knowledge.
This work proposes a novel graph-based approach denominated Semantic Interactive Image Retrieval
(SIIR) capable of combining Content Based Image Retrieval (CBIR), unsupervised learning, ontology tech-
niques and interactive retrieval. To the best of our knowledge, there is no approach in the literature
that combines those diverse techniques like SIIR. The proposed approach supports expert identification
tasks, such as the biologist’s role in plant identification of Angiosperm families. Since the system exploits
information from different sources as visual content, ontology, and user interactions, the user efforts re-
quired are drastically reduced. For the semantic model, we developed a domain ontology which repre-
sents the plant properties and structures, relating features from Angiosperm families. A novel graph-based
approach is proposed for combining the semantic information and the visual retrieval results. A bipartite
and a discriminative attribute graph allow a semantic selection of the most discriminative attributes for
plant identification tasks. The selected attributes are used for formulating a question to the user. The
system updates similarity information among images based on the user’s answer, thus improving the re-
trieval effectiveness and reducing the user’s efforts required for identification tasks. The proposed method
was evaluated on the popular Oxford Flowers 17 and 102 Classes datasets, yielding highly effective results
in both datasets when compared to other approaches. For example, the first five retrieved images for 17
classes achieve a retrieval precision of 97.07% and for 102 classes, 91.33%.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

CBIR approaches consider various visual properties such as shape,
texture, and color, extracted through global and local low-level fea-

The increasing image availability accessible through different
technologies has demanded the development of effective retrieval
and recognition methods. In this scenario, various image process-
ing techniques have been developed and applied to digital media
content (Arvor, Durieux, Andres, Laporte, 2013). Many recent ad-
vances have been made through the development of techniques
that use quantitative features extracted by visual descriptors, ca-
pable of retrieving and indexing images. Most of these approaches
are based on Content-Based Image Retrieval (CBIR) systems, which
retrieve images by taking into account their visual content. The
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tures (Datta, Joshi, Li, & Wang, 2008; Kurtz, Depeursinge, Napel,
Beaulieu, & Rubin, 2014; Lew, Sebe, Djeraba, & Jain, 2006). Re-
cently, Convolutional Neural Networks (CNNs) have also been ap-
plied towards this goal with significant results (Hoi, Liu, & Chang,
2010; Jia et al., 2014; Razavian, Azizpour, Sullivan, & Carlsson,
2014). Therefore, the main aspects of such retrieval methods are
based on feature extraction techniques by visual descriptors.
Besides the visual features, advances have been achieved in
other stages of the retrieval pipeline. Approaches which exploit
the user feedback through supervised learning methods have been
integrated to CBIR techniques, improving the image retrieval ef-
fectiveness and adaptability to user inputs (Cheng, Jing, & Zhang,
2009; Liu, Liu, Qin, Ma, & Li, 2007b; Thomee & Lew, 2012). More
recently, unsupervised learning has also attracted a lot of attention
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Fig. 1. Proposed retrieval approach for Plant Image Retrieval.

of the research community, once such methods exploit the dataset
structure for improving the retrieval effectiveness, dispensing user
interventions. In this scenario, unsupervised rank-based methods
have been proposed achieving significant effectiveness gains (Bai &
Bai, 2016; Bai, Bai, & Wang, 2015; Pedronette, Gongalves, & Guil-
herme, 2017; Pedronette & da S. Torres, 2013; 2014).

Despite the continuous development of visual features, super-
vised, and unsupervised learning methods, retrieving relevant im-
ages based on the user needs still is a challenging task. The main
challenge is to relate the semantic information of an image do-
main with the numerical values of low-level features recovered by
pattern recognition algorithms. This problem refers to the seman-
tic gap, which is defined as a lack of coincidence between the in-
formation that can be extracted from the visual content and the
interpretation that the same data present to the user in a given
situation (Datta et al., 2008; Smeulders, Worring, Santini, Gupta, &
Jain, 2000). The semantic gap remains one of the most challenges
of CBIR approaches, directly affecting the retrieval effectiveness.

On the other hand, ontologies have been widely used as a
representation technique, allowing the reuse of knowledge since
they transcribe a common understanding of a specific area. On-
tologies declare explicit semantic, realizing significant statements
and supporting the information sharing of attributes and relation-
ships (Gruber, 1993; Guarino, 1998; Lacy, 2005). However, despite
the recent advances, there is still a challenge to integrate tech-
niques that use quantitative features with the semantics of struc-
tured knowledge representation in ontologies.

In addition, image analysis and identification tasks require spe-
cialized knowledge in many research fields, such as Systematic
Botany. Traditionally, plant samples and field photographs are an-
alyzed with many systematic descriptions, that allow the identifi-
cation of organisms and their classification into groups. The iden-
tification of Angiosperms (plants with flowers and fruits) requires
a vast knowledge of structures and properties of a specimen sub-
ject (Souza & Lorenzi, 2007). The identification task is even more
challenging when performed solely from image sources since some
plant regions are hidden. The image may not show, for example,
internal structures in vegetable organs, such as the ovary. Nilsback
and Zisserman state in Nilsback and Zisserman (2006) that image
classification of flower branches is difficult even for humans, who
need a complete knowledge of the domains. In this scenario, it is
imperative the development of approaches for better representing
the knowledge of many research fields in ontology structures, such
that it can be interpreted and processed by both humans and ma-
chines.

In this paper, a novel interactive image retrieval approach is
proposed aiming at bridging the semantic gap in plant identifi-
cation tasks. The proposed approach, entitled Semantic Interactive
Image Retrieval (illustrated in Fig. 1), consists of an automatic in-
teractive system which combines Content Based Image Retrieval
(CBIR) techniques, Unsupervised Learning, knowledge representa-
tion structured in Ontologies and interactive retrieval mechanisms.
Given an image input defined by the user, the system extracts low-

level features (Fig. 1A) and executes an unsupervised learning algo-
rithm (Fig. 1B) in order to improve the retrieval results. Addition-
ally, the system uses as an input the structured knowledge given
by the ontology (Fig. 1C), which is defined by a domain specialist.
The integration between the image retrieval results and the ontol-
ogy knowledge constitutes the most relevant contribution of the
proposed approach (Fig. 1D). The system exploits both information
in order to establish a better interaction with the user, defined in
terms of textual questions. A bipartite ontology graph and a dis-
criminative attribute graph are proposed to select the most infor-
mative attributes from the ontology, capable of better discriminat-
ing the plant in the query image from those retrieved based on
low-level features.

The proposed approach involves various research challenges of
different areas. The main contributions of the paper are summa-
rized in the following, enumerated according to Fig. 1:

e A. CBIR and features extraction: (i) extraction of visual
features using recent CBIR and deep-learning frameworks
(LIRE; Lux, 2013 and Caffe; Jia et al., 2014); (ii) evaluation of
several features and identification of the most effective features
for plant image retrieval tasks;

B. Unsupervised learning: (iii) use and evaluation of a recent
rank-based unsupervised learning method (RL-Sim; Pedronette
& da S. Torres, 2013) in plant image retrieval to improve the
effectiveness of initial retrieved results;

C. Ontology modeling: (iv) the development of a systematic
botany ontology, which describes and conceptualizes properties
and structures of Angiosperm families;

D. Semantic Guided Interactive Image Retrieval: (v) a graph-based
integration approach which combines the retrieval results in-
formation with the structured knowledge given by the ontol-
ogy; (vi) the proposal of a semantic-guided interactive image
retrieval system, in which the questions presented to the user
are defined according to the most discriminative attributes of
the ontology.

The proposed approach was experimentally evaluated on the
two popular datasets: Oxford Flowers with 17 and 102 Classes. Ex-
perimental results demonstrated that significant effectiveness gains
can be obtained through the interactive retrieval process, indi-
cating the decrease of effects of the semantic gap. The proposed
method also yields very high effectiveness results in both datasets
when compared to other approaches.

The paper is organized as follows: Section 2 discusses related
work and Section 3 presents the CBIR techniques used in plant
image retrieval (Fig. 1A). Section 4 discusses the unsupervised dis-
tance learning method (Fig. 1B) while Section 5, the ontology mod-
eling (Fig. 1C). Section 6 presents in details the Semantic Guided
Interactive Image Retrieval (Fig. 1D). Section 7 presents the exper-
imental evaluation and Section 8 discusses the proposed approach.
Finally, Section 9 presents the conclusion and directions for future
work.
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2. Related work

Currently, one of the main challenges in image and multimedia
retrieval research is to reduce the semantic gap (Hui, Mohamad,
& Ismail, 2010). An updated review of the problem is presented
in Liu, Zhang, Lu, and Ma (2007a), where the authors discuss the
technical state-of-the-art approaches to reduce such gap, dividing
them into five categories.

The first category uses an ontology to define high-level con-
cepts (Manzoor, Usman, Balubaid, & Mueen, 2015; Reddy &
Bandikolla, 2008). The second one uses learning methods, like su-
pervised or unsupervised learning, to associate low-level features
and input concepts of a particular query (Liu et al, 2007b; Pe-
dronette & da S. Torres, 2013). The third technique is based on rel-
evance feedback in recovery loop for continuous learning (Kundu,
Chowdhury, & Bulo, 2015; Kwan, Welch, & Foley, 2015). The fourth
one consists in generating a semantic template to support high-
level retrieval of images (Manzoor et al., 2015), while the fifth cat-
egory uses a textual information obtained from the Web in order
to retrieve image content from Web images (Feng & Chua, 2003;
Reddy & Bandikolla, 2008).

Ontologies can assist in image retrieval by supplying a semantic
model based on what occurs in the image (such as objects, events,
etc.); or even enabling the association of images to the same con-
cept through the use of URIs (Halaschek-Wiener, Schain, Grove,
Parsia, & Hendler, 2005). The use of ontologies provides a common
standard, thus allowing other individuals to process the contents
of such previously annotated images (Coto, 2008).

Various authors (Manzoor et al., 2015; Pandey, Khanna, &
Yokota, 2015; Reddy & Bandikolla, 2008; Vogel & Schiele, 2007)
also evaluated a collection of images and presented semantic mod-
els for CBIR systems. In Manzoor et al. (2015), Manzoor compared
the low-level features of images and inferred certain concepts such
as colors. Their study further evaluated whether some concept
defined in the ontology features such coloring. A ranking of the
most relevant images that shared those characteristics and con-
cepts were then displayed to the user aided by other extracted fea-
tures from the image and some optional textual input.

Vogel and Schiele (2007) used a semantic model of natural
landscapes, also defined by images: sky, grass, sand, among others;
as well as the concept position within the image (i.e.: the sky is at
the top). Each image segment was analyzed separately and then
compared to previously defined concepts. It was possible to de-
termine, from an established metric, which conceptual image was
referenced, depending on the number of concepts in the landscape.

Reddy and Bandikolla (2008) presented an image retrieval ap-
proach by using textual information and Web image characteris-
tics of the 2007 Cricket World Cup. An ontology was created with
the concepts related to the championship. In their study, the au-
thors evaluated pictures of different websites and extracted their
low-level features, in addition to evaluating image labels. Then, if
an image had an annotation, such as the name of a given cricket
player, it could be inferred on the ontology that the player was the
captain of a certain team.

Our bibliography survey found a lot of studies that only
addressed the analysis of low-level plant images characteris-
tics (Caballero & Aranda, 2010; Goéau et al, 2013; Kebapci,
Yanikoglu, & Unal, 2009; Nilsback & Zisserman, 2006). However,
there are few studies that addressed the issues mentioned in the
semantic analysis of plant images (Walls et al., 2012). Much of this
is due to the complexity of such images, since the plants have
small structures and/or internal flower components that are not
clearly shown in flower branches (Nilsback & Zisserman, 2006).

To reduce the semantic gap, improve the effectiveness of im-
age retrieval and assist researchers interested in identifying An-
giosperm families, we developed the proposed approach. We ad-

dressed the difficulties associated with plant identification by sim-
ply analyzing the low-level features of an image by proposing a
Semantic Guided Interactive Image Retrieval, which employs an in-
novative integration system that combines Content Based Image
Retrieval (CBIR), unsupervised learning, ontology information and
interactive image retrieval mechanisms.

3. CBIR and features extraction

This section presents a formal definition of the image retrieval
model and describes the techniques used to extract the low-level
features from the images.

3.1. Image retrieval model

A general image retrieval model is considered for defining our
approach. Let C = {img,, img,, ...,img,} be an image collection,
where each image represents a plant species and n is the size of
the collection. Let p(i, j) denotes a distance function between two
images img; and img;, according to a given visual feature.

Based on the distance function p, a ranked list 74 can be com-
puted in response to a query image imgg, which also defines a
plant species. The top positions of ranked lists are expected to con-
tain the most similar images with regard to the query. The ranked
list g = (imgy, imgy, ..., imgy,) can be defined as a permutation
of the subset Cs c C, which contains the most similar images to
query image imgq, such that and |Cs| = ns. A permutation 74 is as
a bijection from the set Cs onto the set [ns] ={1,2,...,ns}. For a
permutation 74, we interpret 74(i) as the position (or rank) of im-
age img; in the ranked list 7.

Based on each image feature, a distance matrix A can be com-
puted, containing the distances among all images of the collection.
We can also take every image img; € C as a query image imgg, in
order to obtain a set 7 = {71, Ty, ..., Tn} of ranked lists for each
image of C. The objective of the unsupervised learning step con-
sists in exploiting the contextual information encoded in the dis-
tances and the ranked lists for improving the retrieval results. For-
mally, it can be defined as function f; which computes a new and
more effective distance matrix A = fr(A, T).

3.2. Visual features

Various distinct visual properties are considered in the fea-
ture extraction process. The descriptors were made available
through the LIRE (Lucene Image Retrieval) framework (Lux, 2013;
Lux & Chatzichristofis, 2008). The framework consists in a re-
cent open source Java library for CBIR, built based on index-
ing structures provided by the Apache Lucene textual retrieval
engine. The library allows the extraction of image features, its
storage and indexation for later retrieval (Lux, 2013; Lux &
Chatzichristofis, 2008). Various recent techniques involving global
and local features are available (Lux & Chatzichristofis, 2008). Af-
ter indexing the images dataset, the distance between each pair
of images is computed, such all images are compared to each
other (Lux & Chatzichristofis, 2008). According to Lux and Marques,
in Lux (2013), various metrics may be applied to compute the dis-
tance between images.

Convolutional Neural Network (CNN) features were also con-
sidered using the Caffe framework (Jia et al., 2014). CaffeNet was
trained to recognize 1000 object categories and the features from
the 7th fully connected layer (fc7) were used. The input images
were resized to 256 x 256 pixels and the feature vectors have 4096
dimensions. Features were considered in the Euclidean space (L2
distance function).

Several global (color, texture) and local descriptors besides the
CCN-Caffe were evaluated. This study presents only those de-
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scriptors that have achieved higher effective results in plant im-
age retrieval tasks: Auto Color Correlation (ACC) (Huang, Kumar,
Mitra, Zhu, & Zabih, 1997) and Border/Interior Pixel Classifica-
tion (BIC) (Stehling, Nascimento, & Falcdo, 2002) as color descrip-
tors; Speeded Up Robust Features (SURF) (Bay, Ess, Tuytelaars, &
Van Gool, 2008) as a local descriptor, which is based on Bag of
Visual of Words; and CNN-Caffe.

4. Unsupervised distance learning

The unsupervised distance learning step is performed by the
RL-Sim Algorithm (Pedronette & da S. Torres, 2013), which is a re-
cently proposed re-ranking and rank aggregation method used for
improving the effectiveness of general image retrieval tasks. The
RL-Sim Algorithm (Pedronette & da S. Torres, 2013) exploits con-
textual information encoded in the similarity between ranked lists
aiming to improve the effectiveness in retrieval tasks. In general,
if two images are similar, their ranked lists should be similar as
well. In this way, ranked lists represent a relevant source of infor-
mation, since they establish a relationship among a set of images
contained in ranked lists, instead of only between pairs of images
(in distance functions).

4.1. Ranking contextual distance measure

In this section, the RL-Sim Algorithm (Pedronette & da S. Tor-
res, 2013) is described by using a ranking contextual distance mea-
sure based on similarity/dissimilarity of ranked lists.

The ranking contextual distance measure is iteratively learned
in an unsupervised setting, by incorporating the contextual infor-
mation provided by rank correlation measures.

Let us consider the neighborhood set A/(i, k) of an image img;,
which contains the k most similar images to img;, according to a
given distance (say p defined by the image descriptor). The set
N (i, k) can be obtained by the well-known k-Nearest Neighbor ap-
proach, where the cardinality of the set is denoted by | N'(i, k) |=
k.

Let d(z; 7j k) denote a rank correlation measure between
ranked lists t; and 7, considering their top-k positions given by
the sets A'(i) and N (j). The rank correlation measure considered
is based on the intersection between ranked lists (Pedronette &
da S. Torres, 2013). A non-iterative contextual distance measure
pc(img;, img;) based on the comparison of ranked lists 7; ; can
be defined as follows:
pc(img;, img;) = d(7;, Tj, k) (1)
Based on the conjecture that the contextual distance measure p.
represents a more effective distance between images, the distance
among all images in a collection can be recomputed based on this
measure. Therefore, a new set of ranked lists can be obtained,
such that the contextual distance can also be recomputed and the

process can be repeated in an iterative way. Let () denote the
current iteration and let ri(t) denote the ranked list at iteration

t. Let ,oc(o) be the contextual distance at first iteration, which is
equal to the distance defined by the image descriptor, such that
,oc(o)(img,»,imgj) = p(img;,img;) for all images img;, img; € C. The
iterative contextual measure is defined as:

p&V (img;, img;) = d(z®, 'L'j(t), k) (2)

It is expected that the effectiveness of the distance measure
improves along iterations, so non-relevant images are moved out
from the first positions of the ranked lists. In this way, the size
of the neighborhood k can be increased for considering more im-
ages along iterations. Therefore the contextual measure can be re-
defined as:

pe P (img;. img;) = d(r. 7" k+ 1) (3)

After a given number of T iterations, a new distance p is com-
puted based on contextual distance measure p¢:

p(img;, img;) = pi" (img;, img;) 4)
Finally, using the distance p, a new distance matrix can be

computed such f\,-j = p(img;, img;), providing more effective re-
trieval results.

4.2. Rank aggregation

The RL-Sim Algorithm (Pedronette & da S. Torres, 2013) can also
be used for combining different visual features, which can provide
complementary visual information. Each visual feature gives rise to
a distance matrix composing a set of matrices {Ay, Ay, ..., Ap}.

The RL-Sim Algorithm (Pedronette & da S. Torres, 2013) com-
bines the set of matrices in a unique matrix A. using a multiplica-
tive approach. Each position of the combined matrix is computed
as follows:

p
A, =T +A,). (5)
=1

Given a combined distance matrix Ac, a new set of ranked list
is computed and submitted to the original unsupervised distance
learning algorithm.

5. Ontology modeling

The ontology modeling was defined with a specific vocabulary
that represents concepts related to morphological structures, rela-
tionships and constraints of each Angiosperm family in a level that
was enough to differentiate all of the studied plants.

The modeling of the Angiosperm ontology was developed us-
ing Protege (Knublauch, Fergerson, Noy, & Musen, 2004) in OWL
(Web Ontology Language), following the Methontology proce-
dures (Fernandez-Lépez, Gomez-Pérez, & Juristo, 1997) and APG III
definitions (Angiosperm Phylogeny Group), as well as existing Sys-
tematic Botany bibliography (Souza & Lorenzi, 2005; 2007).

The whole process of modeling the Angiosperm families in-
volved a thorough analysis of plant parts and structures. The con-
cepts were categorized into classes based on their common fea-
tures. A class is defined by a series of properties. The basic condi-
tion for belonging to a given class is to have all of those properties.

Several specific relationships (object properties and datatype
properties) were also developed to relate classes defined in the
ontology. This process allowed to determine the domain - which
holds the relationship; and the range - which would be the tar-
get classes of said property; thereby increasing the expression of
semantic relationships in the ontology.

The modeling also follows the pattern described in Botany lit-
erature, in which a particular structure is specific to an organ. For
example, it is commonly said that a flower has a pistil, but the pis-
til is part of the gynoecium (Fig. 2). Thus, a flower indirectly has a
pistil, since a flower has a gynoecium, which in turn presents a pis-
til. Still, a flower only has a pistil if it is female or hermaphrodite,
since the pistil presence obligatorily requires a gynoecium.

The Fig. 2 exemplifies part of the ontology modeling in the
Ranunculaceae family - which features an apocarpous gynoecium.
The Flower class has an object property “HasFlowerStructure”
(whose domain is Flower and the range is FlowerStructure), which
relates to the Flower Structure class. The Gynoecium class, which
is a Floral Whorls, means that Gynoecium is a Floral Whorls sub-
class. Ranunculaceae family particularly has an Apocarpous Gynoe-
cium, which is implemented as a specific type of gynoecium as a
Gynoecium subclass.

The developed ontology defines 250 classes, 45 object prop-
erties and 1 datatype property for Oxford Flowers 17 Classes.
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Fig. 2. Ontology modeling for Ranunculaceae family.

While for the 102 Classes dataset, the ontology defines 429 classes,
66 object properties and 2 datatype properties. Constraint and
class relationships with their respective properties and specific at-
tributes allowed to model the basic features of each studied family
and thus defined concepts linked to the ontology domain.

6. Semantic Guided Interactive Image Retrieval

In this section, we describe the main contribution of this paper.
This approach represents the combination of the low-level feature
information with the knowledge modeling process, by guiding a
user with discriminative questions in order to improve the results
retrieved.

Since the mid-1990s, interactive mechanisms have been used
in image retrieval systems to optimize a similarity metric and to
iteratively correct errors made by the CBIR system (Kundu et al.,
2015). Interactive Image retrieval information is then used to mod-
ify the weights of the combination to reflect different feature rel-
evance (Giacinto, 2007). When interactive methods are used, the
search is considered an iterative process in which the original
query is refined interactively, to progressively obtain more accurate
results (Arevalillo-Herraez & Ferri, 2013).

One way to bridge the gap between the low-level features of
the images and the high-level semantic concepts is through user
interaction (Guan & Qiu, 2007). The main challenge of the pro-
posed approach is to identify relevant information related to the
query image and visual retrieval results, in order to define the in-
teraction with the user. In this way, our method allows the se-
lection of most discriminative attributes for distinguishing families
present in ranked lists. As a result, the retrieval and classification
results can be improved supported by the user responses. Fig. 3
illustrates the organization of the proposed interactive approach.

The problem was split into five stages, according to Fig. 3 and
discussed as follows:

1. The first step consists in retrieving the entire information about
Angiosperm families from the modeled ontology, represented

in terms of a Bipartite Ontology Graph (Fig. 3A, detailed in
Section 6.1);

2. The second one computes a Family Rank-Based Histogram of
Angiosperm families based on the retrieved results, aiming at
identifying the most frequently families (Fig. 3B, Section 6.2);

3. The third step consists in combining both semantic and
low-level visual information into a Discriminative Attribute
Graph, which provides a structure for determining the most
discriminative attributes for identification purposes (Fig. 3C,
Section 6.3);

4, The fourth step performs the selection of the most discrimina-
tive attribute by exploiting the graph structure constructed in
the previous stage (Fig. 3D, Section 6.4);

5. Once an attribute is selected, a question is formulated and
showed to the user. Given the answer provided by the user, the
retrieval result is then updated and improved for the next iter-
ation (Fig. 3E, Section 6.5).

6.1. Bipartite Ontology Graph

A graph-based approach is proposed with the objective of rep-
resenting the semantic knowledge encoded in the ontology. In this
way, a Bipartite Ontology Graph (BOG) is proposed for defining the
relationships among each Angiosperms family and the attributes
from biological structures which compose them. Fig. 3A illustrates
the proposed graph-based approach. Based on the graph represen-
tation, the semantic knowledge encoded in the ontology can be ex-
ploited by the retrieval process, guiding the interactions with the
user.

Formally, the Bipartite Ontology Graph can be defined as an
undirected graph G, = (Vo, E,). Let F ={fy, f5,..., fr} be a set of
Angiosperms families being analyzed. Let A; = {ay,ay,....am} be a
set of attributes which represent plant properties modeled by the
ontology. The graph nodes V, are defined as a union of such sets,
Vo = FUA;.



EM.E. Gongalves et al./Expert Systems With Applications 91 (2018) 12-26 17

Ranked Family
Lists B. Rank-Based
,,,,,,,,,,,,,,,,,,,,,,,,,,, Histogram

Plant Families
Plant Properties

Ontology

A Bipartite

C ., Discriminative Ogtolor?y
E. Interactive " Attribute rap
" Image Graph
Retrieval v
8 - Question ‘ ‘ ‘ ‘ ‘ - ‘
D Semantic Plant Attribute
User " Selection
Fig. 3. Semantic Guided Interactive Image Retrieval for plant identification.
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Fig. 4. Computation of adjacency matrix O - Bipartite Ontology Graph.

An |F| x |A¢| ontology matrix O is used as an adjacency matrix
for defining the set of edges E, of the graph. The matrix O is com-
puted as:

0ij = fo(fi. aj), (6)
where f, is a binary function computed based on the ontology in-
formation which returns 1, if the family f; owns the attribute g;,
and 0 otherwise.

An edge e; between a family f; and an attribute g; indicates the
presence of such attribute for the family. Technically, the edge e;
is computed through the OWL API, responsible for querying the
ontology.

Fig. 4 shows an example on how the matrix O is computed
based on the information collected in the modeled ontology. The
value “1” for the element o,,  indicates the presence of a Capitu-
lum Inflorescence on the Asteraceae family.

6.2. Family rank-based histogram

While the ontology graph represents the semantic information,
a structure for modeling the low-level visual information is also
required. The ranked lists computed by the unsupervised distance
learning step are exploited with this objective.

An analysis is conducted considering the top-k positions of
ranked lists computed for each query image img,. The objective is

3 —Iridaceae

4 — Liliaceae

5 — Primulaceae

7 — Violaceae

A

[ |
Fam | 0 | 1 | 2 | 3 ] 4 | 5 | 6| 7|
0

Freq. 0,2 0 0,5 0 0,1 0 0,2

Histogram — Families = h

Fig. 5. Histogram for a hypothetical ranked list.

to compute the frequency of each family in the retrieved results. A
histogram is computed with this purpose, as illustrated in Fig. 3B.
The number of bins is defined according to the number of families
analyzed, as |F|.

The histogram is formally defined as follows: let A'(q, k) be a
neighborhood set which retrieves the k-nearest neighbors of im-
age imgq, such that |[N(q, k)| = k. Let h(i) be the number of im-
ages from the family f; in the neighborhood set A (q, k). Let h(i)
be the normalized frequency of family f;, which can be defined as
h(i) = h(i)/k. We can also say that:

> h() =1, (7)
i=1

where r represents the number of families, such that r = [F|. In
this way, the histogram h is proportionally defined according to the
frequency of each family at top positions, providing a summarized
information extracted from visual characteristics.

Fig. 5 presents the histogram of the families on the top-10 po-
sitions of a ranked list. The Asteraceae family has 5 images on the
first 10 positions of the rank, resulting in a h[2] = 0.5.

6.3. Discriminative Attribute Graph

Each plant attribute has a distinct potential for identifying plant
families. For example, an attribute which is present in many fam-
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Fig. 7. Matrix D fully computed.

ilies can be useless for identification purposes. Additionally, such
discriminative potential can vary according to the most frequent
families at the top retrieved images.

In this way, the Discriminative Attribute Graph (DAG) aims at
providing a graph structure for determining the most discrimina-
tive attributes for identification purposes. The main idea consists
in combining both semantic and low-level visual information into
a single graph. In fact, such step consists in one challenging task
of the proposed approach, where the semantic gap problem is ad-
dressed.

The Discriminative Attribute Graph (DAG) combines information
from the Bipartite Ontology Graph (BOG - Fig. 3A) and the Fam-
ily Rank-Based Histogram (Fig. 3B). The proposed approach is illus-
trated in Fig. 3C. While the histogram identifies the most frequent
families at top retrieved images, the BOG graph is analyzed for dis-
covering the most appropriated attributes for discriminating such
families.

Formally, the DAG graph can be defined as an undirected graph
Gy = (V4,E4). The set of nodes V; is defined in the same way of
the BOG graph, as a union of sets of families and attributes, such
Vy = F UA;. The set of edges E; is defined by an adjacency matrix
D.

An edge e; between a family f; and an attribute g; indicates the
capacity of such attribute for discriminating the family f; from the
other families. Additionally, the value of the edge is weighted by
the frequency of families in top retrieved images, given by the his-
togram h. In this way, adjacency matrix D is computed as follows:

Dij = Y105 — Ojl x (h(i) x h(c)). (8)
c=1

Fig. 6 shows how to calculate, based on the equation above, the
element dy, o from the examples in Figs. 4 and 5. After comput-
ing all elements, matrix D is illustrated in Fig. 7. It is important to

Matrix D

[ Aa o | 1 | 2 | 3|

B o6 o1 012 o002
0 0 0 0
W o: o 02 o005
BEl o 0 0 0
Bl o 0 0 0
BE o2 005 004 009
Kl o 0 0 0
004 01 012 002

7
s(ay) =) dy
=0

0 1 2 3
\ZI' 032 050 048 0,18

Semantic Attribute Selection - s

Fig. 8. Computation of the accumulated adjacency.

notice that elements with value “0” refer to those families that are
not presented on the top-10 positions of the ranked list (Fig. 5).

6.4. Semantic Attribute Selection

The DAG graph combines semantic and low-level information
for identifying the most discriminative attribute for each family
(Fig. 3C). In this way, the adjacency information can be used for
identifying the most appropriated attribute to be used in the in-
teractive image retrieval step (Fig. 3D). The most discriminative at-
tribute is given by the node a; which presents the greater accu-
mulated adjacency (i.e.: the attribute which can be exploited for
differentiating the most frequent families).

Formally, a function s(a;) is computed defining the sum of the
adjacencies of a given attribute a;. The accumulated adjacency s(a;)
is computed based on the adjacency matrix D, as follows:

m
s(aj) =) dy 9
i=1
Fig. 8 illustrates the computation of the accumulated adjacency
in order to select the most discriminative attribute.
After this step, the attributes are sorted in decreasing order in
relation to their accumulated adjacency value. The attribute which
presents the greater accumulated adjacency is selected for com-
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Fig. 9. Choosing a question for the user.

posing an interactive retrieval step. A question is created for ask-
ing the user with regard to the presence of the selected attribute
in the query image, as illustrated in Fig. 9.

One advantage of the proposed method consists in the capacity
of selecting the most discriminative attributes in order to reduce
the number of questions and interactions required. In this way,
the proposed approach can achieve more effective results requir-
ing fewer user efforts than traditional biological approaches, as a
dichotomous key.

6.5. Interactive image retrieval

In the interactive image retrieval step (Fig. 3E), given a selected
attribute g; (Fig. 3D), the system composes a question for the user.
The user answers “yes”, “no” or “do not know” to questions, trig-
gering a different system feedback for each situation. The answer
given by the user is used for updating and improving the retrieval
results.

For example, let g; be the selected attribute for a particular ex-
periment which indicates the presence of Capitulum Inflorescence.
The user would be asked:

“Does the family have a capitulum inflorescence?”

Suppose the queried image was referring to the Asteraceae fam-
ily and the answer would be “yes”. Thus, all images from fami-
lies that have a Capitulum Inflorescence would receive a distance
updating. The distances to such images would be decreased and
they would be moved to top positions of ranked lists, improving
the quality of results retrieved.

The approach used for the distance updating is based on a mul-
tiplication by a constant « < 1. Let imgq be a query image. Let img;
denotes an image which has a certain attribute a;. The answer
“yes” for the presence of the attribute g; implicates the decrease
of the distance between imgq and img;. Therefore the distance ma-
trix A is updated as follows:

quZquXOl. (10)

If the answer regarding of the presence of a certain attribute
is “no”, the distance updating follows the same principle. Let imgy
be an image which does not have the attribute, the matrix A is
updated as:

Ag =Agp x (1 + ). (11)

However, the answer “no” is inconclusive, since a family may
present more than one feature for the same category. This may
occur, if the queried image is, for example, a Primulaceae plant.
This family may have either a Raceme, Cymose or Panicle Inflores-
cence. If the chosen attribute g; is a Raceme Inflorescence and the
image does not have such feature (i.e.: has another inflorescence
type, such as Cymose or Panicle), the distance should not affect the
ranked lists in a strong way. Therefore, the value used for the con-
stant « is very small.

The final situation occurs when the user “do not know” the an-
swer. In this case, the next attribute with the greater accumulated
adjacency is used for composing a new question.

7. Experimental evaluation

An experimental evaluation was conducted aiming at assessing
the effectiveness of the presented approach. Section 7.1 discusses
the experimental protocol and Section 7.2 describes the datasets
considered. Section 7.3 shows a visual evaluation of the proposed
approach. Section 7.4 discusses the evaluation of visual features
and unsupervised learning while Section 7.5 describes the exper-
imental results of the proposed interactive approach.

7.1. Experimental protocol

The evaluation considers an experimental protocol mainly
based on retrieval tasks, in which all dataset images are considered
as query images. Various effectiveness measures are reported: the
precision at different depths (P@5, P@10), the Mean Average Pre-
cision (MAP) and the Precision x Recall curve (PR curve) before and
after the use of the proposed approach. In order to allow a deeper
experimental analysis and comparisons with other methods, classi-
fications tasks are also considered. A kNN classifier built upon the
retrieval results is evaluated by the accuracy of the recognition rate
obtained.

For both retrieval and classification tasks, the first steps in-
volved in the evaluation are the same. Initial experiments aim at
evaluating the effectiveness of visual features and the impact of
unsupervised learning step. The visual features are extracted, the
distances among images are computed and ranked lists are ob-
tained. Subsequently, the unsupervised learning step is performed
by the RL-Sim algorithm, considering isolated features and aggre-
gation of different features. In order to evaluate the impact of pa-
rameters of RL-Sim algorithm, an analysis is performed varying the
number of iterations in the range of 1-3 and the neighborhood
size k in the range 5-35 (in intervals of 5). The retrieval results
obtained before and after the RL-Sim algorithm are evaluated by
effectiveness measures, as precision, recall, and MAP. After the pa-
rameters definition, the execution of the unsupervised learning al-
gorithm is performed once for the whole dataset and used by the
next steps. Since no label information is used, the retrieval results
obtained at this stage can be shared by all query images.

Next, various experiments were conducted to assess the effec-
tiveness of Semantic Interactive Image Retrieval (Section 6). For
this stage, the interactive retrieval process is evaluated indepen-
dently for each query image. Ground-truth information used to
simulate the user’s responses is based on the Bipartite Ontology
Graph (Section 6.1), which encodes information about the pres-
ence or absence of attributes modeled for the plants. Such infor-
mation is available for the whole dataset, excluding the query im-
age. The number of users interactions ranged from 1 to 10 ques-
tions and the evolution of results are evaluated for each iteration.
The reported results represent the average of the measures ob-
tained for all query images, constituting a leave-one-out cross val-
idation. Both retrieval and classification tasks are considered. For
retrieval, precision, MAP and PR curves are reported as effective-
ness measures. For classification, the accuracy of kNN classifier is
considered.

7.2. Datasets

In order to evaluate the proposed approach, two popular flow-
ers datasets were considered. Firstly, the Oxford Flowers 17 Classes
dataset (Nilsback & Zisserman, 2006), which contains 17 classes
from different Angiosperm species. Each class has 80 images, to-
talizing 1360 images in the dataset.

We also used the Oxford Flowers 102 Classes dataset (Nilsback
& Zisserman, 2006). This dataset contains 102 classes from differ-
ent Angiosperm species and each class has a different number of
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Fig. 10. Ranked lists behavior after the use of the proposed approach (SIIR).

images, varying from 40 to 251 images per class. In this way, the
102 classes dataset presents a total of 8189 images.

The 17 classes dataset represents 8 Angiosperm families. Each
family was modeled on the developed ontology as well as their
specific characteristics that allow their identification in a total of
132 restrictions. The 102 classes dataset represents 47 Angiosperm
families. All of these families were modeled on the ontology, so as
their specific morphological characteristics, which presents a total
of 350 restrictions.

7.3. Visual evaluation

The capacity of the proposed approach in improving the plant
identification tasks is illustrated in this section. Fig. 10 shows a real
case which highlights the effectiveness improvements obtained by
the proposed approach for a given ranked list. Borders in red rep-
resent incorrect results considering the images classes (species),
while borders in green show the correct retrieved results for each
step. Borders in yellow represents an incorrect retrieved results
considering species, but a correct result considering the informa-
tion from the families.

The query image had its features extracted by SURF, and the
Rank A presents the top-10 similar images according to this de-
scriptor. According to Fig. 10A, P@10 accounts for only 40% of the
correct classification, since it has four images that belong to the
class of the query image. The precision of the families in the top-
10 (PF@10) represents a value of 60%

Fig. 10B shows the results of the ranked list for the query image
after the execution of the RL-Sim algorithm (k=20, t=2). It can be
observed that P@10 increased after this step, when compared with
the case in Fig. 10A, since its value represents now 50% at the top-
10 first positions in this rank.

Fig. 10C shows the results of the query image after 1 question
and suggests to the user that the family is Asteraceae. It can be no-
ticed that the proposed approach reaches P@10 with 80% of class
precision and PF@10 with 100% of family precision. Notice that
with only 1 simple question, our approach improved the precision
with a huge gain when compared with the initial ranks in Fig. 10A
and B.

The question “The inflorescence is Capitulum?” was chosen by
the Semantic Attribute Selection once the question is the most in-
formative for distinguishing the images in Rank B. Additionally, it
is an easy question to solve, since its concepts are known by biolo-

gists and botany enthusiasts, and represents a concept that can be
visually observed in the image.

7.4. Visual features and unsupervised learning

This section presents the experimental results obtained by: (i)
visual features; (ii) visual features + unsupervised learning; (iii) fu-
sion of visual features through rank aggregation.

The experimental results demonstrate the importance of com-
bining different features through unsupervised learning. Combin-
ing different approaches of visual features achieved the higher ef-
fective results in retrieval tasks. We experimentally evaluated more
than 19 features (color, texture, and local descriptors) and 1 feature
based on Convolutional Neural Networks (CNN). By combining a
color, a local and a CNN feature, we achieved the highest effective
results. Such positive results are mainly due to the complementar-
ity among diverse features and the capacity of the rank aggregation
based on unsupervised learning of combining in an effective man-
ner. It is worth mentioning the importance of improving the initial
retrieved results, since the ranks will be used for the next steps of
the proposed approach.

After features extraction evaluation, three descriptors (ACC, BIC
and SURF) were selected, as well as the Caffe framework (CNN)
to proceed with the image analysis. This criterion was set because
these tools presented the best results for the effectiveness met-
rics. Since we applied the proposed approach in two datasets, the
results of each one are shown in two distinct Sections 7.4.1 and
7.4.2.

7.4.1. Oxford Flowers - 17 Classes

In this section, we present the results for different features with
and without the unsupervised learning (UL) step on the Oxford
17 classes dataset. Table 1 summarizes the initial retrieval results
(without UL) and the considering the unsupervised learning with
the best parameters settings for each feature.

It can be noticed in Table 1 that Caffe framework (CNN), when
isolated (without Rank Aggregation), shows the best results among
the three metrics for visual features extraction method and for the
Unsupervised Learning. These results reach 87.71% on ranking pre-
cision for the five first positions after the execution of the RL-Sim
algorithm.

Considering the other three image descriptors (ACC, BIC and
SURF), it can be noticed that SURF presents the best results. For
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Table 1
Effectiveness results for various features and unsupervised learning (UL) on the Oxford 17 Classes dataset.

Effectiveness metrics ACC BIC SURF ACC+SURF CNN CNN+SURF

P@5 without UL 0.5310 0.6001 0.5204 0.6085 0.8569 0.8859

P@5 + UL 0.5394 0.6001 0.5518 0.6278 0.8771 0.9138

P@10 without UL 0.4215 0.5015 0.4184 0.5071 0.7959 0.8207

P@10 + UL 0.4440 0.5104 0.4530 0.5439 0.8411 0.8921

MAP without UL 0.1928 0.2625 0.2155 0.2466 0.5025 0.4804

MAP + UL 0.2410 0.3097 0.2391 0.3216 0.7023 0.7485

Table 2
Effectiveness results for various features and unsupervised learning (UL) on
the Oxford 102 Classes dataset.

Effectiveness metrics  BIC SURF CNN CNN+SURF+BIC
P@5 without UL 0.5399  0.3661 0.5751 0.7455
P@5 + UL 0.5432  0.4201 0.6009  0.8020
P@10 without UL 04269 0.2624 04816  0.6491
P@10 + UL 04353  0.3173 05292  0.7431
MAP without UL 0.1766 0.0979  0.1871 0.2872
MAP + UL 0.1905 0.1219 0.2645  0.4326

a combination of two features, a significant improvement can be
observed. The fusion of ACC+SURF shows an increase of approxi-
mately 16.39% for its best P@5 (0.6278; k = 35, t = 1), when com-
pared to the best result presented by ACC in this metric (0.5394;
k=10, t =1). Considering the aggregation of features that pre-
sented the best retrieval results (CNN+SURF), the gains in the ef-
fectiveness measures analyzed are even more significant.

The use of unsupervised learning through the RL-Sim algorithm
achieved a major advancement for the MAP gain for CNN+SURF in
55.8%, when comparing the value of the best MAP of the union
CNN+SURF (0.7485; k = 35, t =2) with the map without the ap-
plication of RL-Sim to the same union (0.4804).

7.4.2. Oxford Flowers — 102 Classes

This section presents the results of the visual features ex-
traction methods and the unsupervised learning for 102 classes.
Table 2 summarizes the initial retrieval results (without UL) and
the unsupervised learning (UL) with the best parameters settings
for the Oxford Flowers 102 Classes dataset.

As we can see in Table 2, the results are lower than those pre-
sented by the 17 classes. It occurs since the 102 classes dataset
presents a large number of classes, compared with 17 classes,
which difficult the retrieval of the correct results. Table 2 also
presents the aggregation results of three extraction methods
(CNN+SURF+BIC), since this combination shows the best retrieved
results for the 102 classes dataset. We also combined CNN+SURF,
CNN+BIC, BIC+SURF and also ACC with these selected methods,
but the results were lower than those presented by the union
CNN+SURF+BIC.

The results of aggregation of the three methods show how the
unsupervised learning assists the improvement of the proposed ap-
proach. The initial MAP results of CNN+SURF+BIC is 0.2872, while
the results obtained after the unsupervised learning is 0.4326, rep-
resenting a gain of 50.63%. Although SURF presented lowest re-
sults compared to the others methods chosen for the 102 classes
dataset, when aggregated with CNN and BIC it presented an excel-
lent gain.

It is worth mentioning that the higher gains obtained with
CNN+ SURF+ BIC aggregation, shown in Table 2, were due to the
fact that those extraction methods complemented each other. In
general, it means that those methods had same hits and different
misses for the same query. With a higher precision of the ranked
lists, more effective will be semantic image retrieval and therefore,
fewer user efforts will be required.

7.5. Semantic Interactive Image Retrieval

The results presented in this section are related to the experi-
ments using the Semantic Interactive Image Retrieval (SIIR). As the
configurations of the optimal points achieved by each metric were
different to the extraction methods (Tables 1 and 2), we used a
standardized parameters settings for all the experiments involv-
ing the SIIR evaluation (k = 20, t = 2). The value of the constant
o =0.01 was set through an empirical analysis. For the experi-
ments, 10 interactive sessions were considered, since we simulated
the user’s answer. But in practical applications the user decides
when to stop the retrieval process. We also computed the Confi-
dence Interval (CI) with a 0.95 confidence value.

7.5.1. Oxford Flowers — 17 Classes

Fig. 11(a) shows the improvements achieved by the proposed
approach in Precision x Recall (PR) curves considering ACC and
SURF descriptors. Fig. 11(a) presents three PR curves: the ACC
and SURF in isolation (without UL) and the ACC+SURF combined
through rank aggregation in the interactive image retrieval ap-
proach after 10 questions.

It can be observed that the gain - represented by the distance
between the curves of the two descriptors (ACC and SURF) and the
ACC+SURF aggregation with SIIR, reaches a very high value demon-
strating the effectiveness of the proposed interactive approach.

Fig. 11(b) illustrates analogous results considering the CNN-
Caffe feature. We can observe that higher effectiveness results
were achieved, demonstrated by Precision x Recall curves. The
CNN+SURF with SIIR curve shows the best results presented for
this analysis.

Significant improvements were also obtained considering other
effectiveness metrics. Fig. 12 (a) presents the results of precision in
the five first positions (P@5) of the ranks for the extraction meth-
ods analyzed.

It is observed that the P@5 value of CNN+SURF aggregation with
SIIR is the highest achieved in this experiment. The value of this
metric increases every question answered by the user, reaching its
maximum value within 10 questions answered (0.9707). This value
represents a gain of approximately 6.97% in relation to the initial
value of P@5 (0.9074) presented in Fig. 12(a).

If compared the maximum value of P@5 for CNN+SURF (0.9707)
after evaluation of the Semantics Interactive Image Retrieval, with
the P@5 of feature’s extractions for the same method without the
Unsupervised Learning (0.8859 - Table 1), it is observed a gain of
approximately 9.57%.

The analysis of the precision in the top-10 positions (P@10) also
shows an increase in the three extraction methods. Fig. 12(b) illus-
trates the obtained results for P@10, with similar gains to P@5. In
addition, for image family retrieval, the results, after 10 questions,
are even better: 99.17% on PF@5 and 99.11% on PF@10. It can be
observed in Fig. 12(a) and (b) that several points do not present
intersection of their respective error bars, thus demonstrating sta-
tistical differences between some points analyzed.

We can observe that the first iterations are responsible for
the highest effectiveness obtained in the interactive retrieval pro-
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Fig. 11. Precision x Recall for extraction methods with Semantic Interactive Image Retrieval after 10 questions, on Oxford 17 Classes.
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cess. It is worth mentioning the fact that answering only one
question increases the effectiveness of the system in a positive
way. For example, Fig. 13 illustrates the significant increase of
the MAP measure, demonstrating the evolution of effectiveness

of the retrieval results. This result presents a major advancement
for Angiosperm families identification, since traditional identifi-
cation techniques based on a dichotomous key for Flowers with
Perianth and Polypetalous Corolla reaches 188 leads (Souza &
Lorenzi, 2007).

For example, analyzing the Fig. 13, from the total gain repre-
sented by the user’s interaction for ACC+SURF MAP on 17 Classes,
40.69% of this gain is reached after the first user’s interaction. It
also can be noticed in Fig. 13 that the MAP for CNN+SURF also
achieves a higher gain score on the first user’s interaction, 45.94%
from the total gain represented for this joined method, after SIIR
execution.

When compared with the initial values displayed in the Fig. 13,
the best MAP score achieved gains of 18.52% for CNN+SURF, 26.81%
for CNN, 50.49% for CNN+BIC, and 92.89% for ACC+SURF. These
gains are related only to the user’s interaction process.

These results demonstrate that the proposed approach showed
effectiveness to several cases of classification analysis and images
retrieval, for both metrics with low income and the best cases.

It is interesting to note that, in curves with low values of P@5,
P@10 and MAP, the distances between the confidence intervals
(Figs. 12(a), (b) and 13) are greater than the curves that present
higher values (CNN and CNN+SURF). This demonstrates the impor-
tance of asking more questions for low accuracy methods, as well
as corroborating the effectiveness of the proposed approach.
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Table 3
Accuracy of 20-NN family classification of SIIR on 17 Oxford flower dataset.

Methods Family recognition rate
SIIR —CNN+SURF 1 question 93.97%
SIIR — CNN+SURF 5 questions 97.20%
SIIR — CNN+SURF 10 questions 98.97%

Table 4
Accuracy of 20-NN species classification of SIIR, in comparison with state-of-the-art
methods on 17 Oxford flower dataset.

Methods Class
recognition rate
Visual Vocabulary (Nilsback & Zisserman, 2006) 71.76%
Discrim. Power-Invar. (Varma & Ray, 2007) 82.55%
Auto. Flower Classif. (Nilsback & Zisserman, 2008) 88.33%
Top-down color attention (Khan, van de Weijer, & 89%
Vanrell, 2009)

Bin-ratio information (Xie, Ling, Hu, & Zhang, 2010) 89.02%
BiCoS (Chai, Lempitsky, & Zisserman, 2011) 90.04%
RL-Sim — CNN+SURF 90.44%
Multi-scale fusion (Hu, Hu, Xie, Ling, & Maybank, 2014) 91.39%
SIIR — CNN+SURF 1 question 92.06%
SIIR — CNN+SURF 5 questions 95.22%
SIIR — CNN+SURF 10 questions 96.84%

Table 3 presents the accuracy of the 20-NN classification of An-
giosperm families. It can be seen that after 10 questions, the fam-
ily recognition rate reaches 98.97%. Since the results summarized
in Table 3 cannot be compared with other studies that use the
same dataset due to the lack of literature in similar works to the
proposed approach, we also present a class comparison (instead of
family comparison) with other state-of-the-art approaches.

Despite the fact that the experimental protocol of our method
differs from the others, a brief comparison is presented. Table 4
summarizes the recognition accuracies published for several meth-
ods from the literature, along with the accuracy of our proposed
approach (SIIR). The Semantic Interactive Image Retrieval obtained
the highest accuracy result, when compared to other approaches,
reaching 96.84% of accuracy for the 20-NN classification. Even
when the user answers only 1 question, the Semantic Interactive
Image Retrieval demonstrates its effectiveness illustrating a higher
value of accuracy than other approaches.

7.5.2. Oxford Flowers — 102 Classes

This section introduces the results of the Semantic Interactive
Image Retrieval for the Oxford Flowers 102 Classes dataset. The
configuration of the execution is the same as those presented by
the 17 classes.

Fig. 14 shows the improvement of the proposed approach for
the 102 classes dataset after 10 questions. It can be seen once
again the effectiveness of the SIIR by the distances of the curves.
The highest curves present the results from SIIR, while the low
ones show the results from the extraction methods only (with-
out UL). The aggregation of CNN+BIC+SURF with SIIR achieved the
highest precision scores for this dataset.

When compared the curves CNN+BIC+SURF after SIIR applica-
tion with the CNN+BIC+SURF without UL at the point of 20% of
the images classes recalled, it can be observed that the precision
reaches more than 80% for the curve with SIIR, while the curve
without the proposed approach shows a precision of less than 50%.

Fig. 15(a) shows the gain in precision on the top-5 posi-
tions in the ranked lists for the 102 classes. It can be seen that
CNN+BIC+SURF after 10 questions presents the best P@5. The gain
of this aggregation when compared with the initial value on this
curve represents 14.92%. The best gain was of SURF (64.04%).

Precision x Recall for 102 Classes
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Fig. 14. Precision x Recall for CNN, SURF and BIC with Semantic Interactive Image
Retrieval (SIIR) after 10 questions, on Oxford 102 Classes.

Fig. 15(b) also presents high values on P@10 after apply-
ing the questions selected from the Semantic Attribute Selection
(Section 6.4).

The precision on the first ten positions with SURF shows the
highest gain with 96.36%. When analyzed BIC only, it can be seen
that its gain is 67.31%, showing again that the proposed approach
is very effective in low retrieval values also.

It can be observed in Fig. 15(a) and (b) the non-intersection be-
tween the confidence intervals of some points, thus demonstrating
statistical differences between such analyzed points.

The precisions for image family retrieval for the results pre-
sented in 102 classes also demonstrates high scores after 10 ques-
tions: 93.20% on PF@5 and 91.59% on PF@10.

Fig. 16 shows that the improvement of the retrieved results just
not occur only in the first positions, but also above deeper posi-
tions over the rank. This analysis can be done because when the
user answers a question that corresponds to some attribute, even
the deepest plant images that contain that attribute can be moved
to the rank initial positions. Fig. 16 shows that SURF descriptor had
a gain of 112.76% on this metric, after the SIIR approach been ap-
plied. It can be seen that BIC descriptor had a 101.45% gain in MAP,
while the union CNN+BIC+SURF reaches a gain of 32.88%.

When comparing the graphics of the confidence interval of the
102 classes dataset (Figs. 15(a), (b) and 16) with the graphics of the
17 classes dataset (Figs. 12(a), (b) and 13), it can be observed that
the confidence intervals of the analyzed points for the 102 classes
are smaller than those presented for the 17 classes. This is due to
the fact that the number of comparisons between the ranks and
the number of analyzed images is bigger in the set of 102 classes.
This way, even curves with higher values for the metrics tested
demonstrates the need to apply the proposed approach.

When analyzing P@5, P@10 and MAP metrics for 102 classes
dataset, the gains on the first user’s interaction are lower than
those presented by 17 classes, but also illustrates that the biggest
part of the gain (Figs. 15(a), (b) and 16) is related to the first inter-
action and consequently, demonstrates the reduction on the effort
in classifying plants.

Finally, we present the accuracy of the 20-NN images of An-
giosperm families (Table 5). It can be seen that after 10 questions,
the family recognition rate reaches 85.39%. We also present Table 6
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Fig. 15. Evolution of Precision for Semantic Interactive Image Retrieval (SIIR) along with questions, on Oxford 102 Classes.
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Fig. 16. Evolution of MAP for Semantic Interactive Image Retrieval (SIIR) along with
questions, on Oxford 102 Classes.

Table 5
Accuracy of 20-NN family classification of SIIR on 102 Oxford flower dataset.

Methods Family recognition rate
SIIR — CNN+BIC+SURF 1 question 74.94%
SIIR — CNN+BIC+SURF 5 questions 81.13%
SIIR — CNN+BIC+SURF 10 questions 85.39%

Table 6
Accuracy of 20-NN species classification of SIIR in comparison with state-of-the-art
methods on 102 Oxford flower dataset.

Methods Class recognition rate
Ito and Kubota (2010) 53.9%
Nilsback and Zisserman (2008) 72.8%
Khan, van de Weijer, Bagdanov, and Vanrell (2011) 73.3%
Kanan and Cottrell (2010) 75.2%
Nilsback (2009) 76.3%
Angelova, Wong, Zhu, Specht, and Lin (2012) 76.7%
SIIR — CNN+BIC+SURF 1 question 79.15%
Chai et al. (2011) 80.0%
Angelova, Zhu, and Lin (2013) 80.6%
Mattos, Herrmann, Shigeno, and Feris (2014) 80.8%
SIIR — CNN+BIC+SURF 5 questions 84.89%
SIIR — CNN+BIC+SURF 10 questions 88.88%

with a comparison of SIIR with others methods presented in the
literature.

It is worth mentioning that the accuracy cannot be compared
precisely with others approaches presented in Table 6 since the
experimental protocol of our method differs from the others. How-
ever, it can be seen that the accuracy of the top-20 images of SIIR
achieves high-accuracy results when compared to the others state-
of-the-art methods.

The class accuracy of SIIR at 1-NN classification on 102 classes
using CNN+BIC+SURF after 10 questions is equal to 90.36%. The
class accuracy at the 5-NN classification of the same joined con-
figuration is 90.31%, while the class accuracy at 10-NN is equal to
89.79%.

8. Discussion

The difficulties associated with identification of Angiosperm
families is addressed by SIIR through a combination of low-level
features, ontology information and interactive retrieval. The major
advantage of the proposed approach consists in the capacity of re-
ducing the user’s efforts by suggesting a question that can poten-
tially differentiate the highest number of families presented on the
top retrieved images. As demonstrated by experimental evaluation,
a single user response can improve significantly the retrieval re-
sults. Since a traditional dichotomous key has nearly by 188 leads
to identify an Angiosperm family, it represents a relevant contribu-
tion.

The SIIR approach also yields very high effective retrieval and
classification results in comparison with others approaches. For ex-
ample, our best results in accuracy reach 96.84% and 88.88% for the
Oxford 17 classes and 102 classes, respectively; when others state-
of-the-art approaches reach, respectively, 91.39% and 80.8% in ac-
curacy results for the same datasets.

Another strong point of our proposed method relies on the fact
that if the user has any doubts about what the plant structure or
the property means (i.e.: question with a selected attribute) it is
possible to consult the ontology in order to understand and clarify
the meaning of that question. Since the object properties relate the
classes of the ontology, the user has a full high-level concepts and
information about the Systematic Botany domain by analyzing the
ontology graph and/or reading the ontology annotations about that
concept in doubt.

On the other hand, identifying a plant is not an easy task and
it is possible that the system will suggest a hard question to the
user. Despite the fact that the user can consult the ontology to
clarify the doubts about the question and sometimes that is the
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only question that needs to be solved, it would be necessary to
extend the approach to consider profiles of different users, asking
easy question for those inexperienced ones.

Another weakness of the system in its current formulation oc-
curs when the user answers the question in a wrong way. The sys-
tem will probably reduce the retrieval effectiveness, since it moves
the top ranked images that present the attribute answered incor-
rectly.

The SIIR approach also requires an ontology in some domain.
If there is no ontology developed for the studied domain of the
images, some features and functionality of the proposed approach
would not work properly. As the tendency is to provide informa-
tion in the patterns of a new Semantic Web, it can be said that
the development of specific vocabularies must grow in the coming
decades. When this development occurs jointly by a determined
community of researchers from different areas, following estab-
lished standards, the knowledge ends up interconnecting in sev-
eral areas and can be shared and reused. This way, it is possible to
affirm that the SIIR can be applied in others areas of knowledge.

9. Conclusions

In this paper, we have presented a novel approach for Interac-
tive Image Retrieval. The proposed approach reduces the semantic
gap between low-level features of the images and the high-level
semantic concepts by introducing a Semantic Guided Interactive
Image Retrieval.

The main idea consists in retrieving images based on their vi-
sual features, relating such images with their concepts, defined
by the developed ontology, supported by user interactions. A set
of experiments was conducted for assessing the effectiveness of
the proposed approach. The results demonstrated that high effec-
tiveness can be obtained in various scenarios. Experiments also
showed the effectiveness of SIIR in two different datasets, reaching
high values of the metrics analyzed in both. Additionally, showed
that SIIR can be very effective for both low and high-effective input
retrieved results.

The proposed approach can be also applied for educational pur-
poses since the information defined by the ontology represents
clear assertions for both humans and machines. In this way, ev-
ery restriction can be consulted by the user in order to clarify any
doubt about the concepts. Furthermore, the relationships between
each ontology entity show what structure or property belongs to
a particular class, thus facilitating the teaching through the devel-
oped ontology.

Future work focuses on the investigation of novel formulations
for distance updating in the Semantic Attribute Selection stage. Al-
though effective, the current formulation is extremely simple and
can be improved. We also intend to develop a species ontology, in-
stead of a family ontology used in this work. Since species presents
specific attributes (more restrictions when compared to families),
we believe that Semantic Attribute Selection will be more effective,
impacting positively the retrieval and classification process. With a
more specific attribute, the user’s answer will be more effective
regarding the interactive image retrieval process. More specifically,
the user answer “no” will be even more effective, since images that
does not present that value for the selected attribute also does not
belong to the specie of the query image and therefore should be
moved to lower positions in the rank.

Future work also focuses on an adaptive interaction process.
The main idea is to formulate the questions according to the user
profile, asking easier questions for those inexperienced ones. In or-
der to fulfill this feature, more information must be included in the
ontology. For example, the structures and properties easily view-
able in images can be annotated as an “easy” mark, while internal
attribute as a “hard” one. With this feature, the Semantic Interac-

tive Image Retrieval can reach different people and adapt itself for
many kinds of users.

The proposed approach is completely unsupervised until the
start of user interactions. Other line of investigation consists in the
use of semi-supervised learning, by exploiting training data relat-
ing low-level features and morphological structures in order to dis-
tinguish families or species. It is possible to use the feature vector
of each image and the attributes modeled in the ontology as in-
put to train a machine in order to group image plants into their
families.

Other possibility of future work is ranking images not only
based on their low-level features, but also taking into account their
attributes modeled in the ontology. The idea consists in sorting the
ranked lists considering the plant images that also have the biggest
similarity about their attributes. In addition, this idea simulates a
phylogenetic tree, which relates plants that present similar proper-
ties and structures.

Another promising line of investigation focuses on the use of
SIIR for different areas of knowledge, such as archaeology (to iden-
tify different kinds of remains), geology (to identify minerals and
rocks), ichthyology (in order to identify fish by their scales, for ex-
ample) and buildings (to identify the period of some construction,
for example, baroque). In fact, for applying SIIR in other domains
it is only required the creation of an ontology for the studied do-
main.

As the idea of a new Semantic Web is to provide, share and
reuse information in standards, it can be said that SIIR can be fit
in those patterns, since uses an ontology to represent concepts and
information about Angiosperm families. In this sense, the develop-
ment of new vocabularies must grow in the next decades, enabling
the relationship to several different domains and interconnecting
the knowledge in several areas, which also propitiate the expan-
sion and application of SIIR in other areas of knowledge.

Thus, the present work presented a novel approach with high
efficacy in image retrieval that unites the knowledge of the studied
domain (Systematic Botany) with the visuals images features.
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