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Abstract We investigated flowering phenology in a

semiarid macroclimate along an environmental gradient

encompassing neotropical savanna, transition, and season-

ally dry tropical forest (SDTF) areas in the Chapada Dia-

mantina Mountains, northeastern Brazil. We expected to

find divergence in flowering patterns between the plant

communities studied that would be explained by distinct

functional traits selected by differences in rainfall volumes

and soil properties. Bud and flower productions were

monitored in 809 individuals between January 2010 and

March 2012. The savanna exhibited a continuous flowering

pattern, while the transition and SDTF areas showed sea-

sonal flowering associated with rainfall. Environmental

variables and plant traits (wood densities, water potentials,

and water storage capacities) were related to the observed

flowering strategies of woody species. The high diversity

of functional groups in the savanna was determined by

higher plant water potentials that were related to low wood

densities and the availability of soil water. The role of

rainfall, especially the rainfall volumes during the dry

season, is critical in defining different flowering patterns at

the community level. The physical properties of the soil

selected the presence of species with distinct water-use

strategies (low wood density species in savanna areas, and

high wood density species in the transition zone and for-

est), which in turn affected their flowering.

Keywords Functional groups � Heterogeneity �
Seasonality � Water potentials � Wood density

Introduction

Savannas and seasonally dry tropical forests tend to occur

in close association with environmental gradients in

neotropical regions, especially under seasonal climates

(Pennington et al. 2009). Savannas are seasonal ecosystems

(with 2–3 dry months) that grow on diverse, but normally

deep, soils in regions subject to frequent fires while

showing high arboreal and herbaceous species richness and

diversity (Oliveira Filho and Ratter 2002). Seasonally

deciduous forests, on the other hand, are mainly comprised

of arboreal species exposed to longer periods of water

shortage (3–5 dry months), growing on a diversity of soil

types that are normally shallower than savanna soils (and

relatively rich in clay and nutrients). In these systems, the

degree of canopy deciduousness is proportional to rainfall

levels and soil water availability (Pennington et al. 2009;

Coelho et al. 2013; Sánchez-Azofeifa et al. 2013).

Patches of savanna and seasonally dry forests often

occur side by side in the Chapada Diamantina Mountains in

northeastern Brazil (Juncá et al. 2005; Funch et al. 2009;

Neves et al. 2016). These vegetation types experience

different levels of water availability, created by differences

in the physical properties and depths of their soils, although

subject to a similar highly seasonal and semiarid condition

(rainfall 688 mm year-1) (Harley et al. 2005). As such, soil
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has been considered one of the main conditioning factors

selecting for functional adaptations and determining the

floristic composition and the spectrum of life forms that

define the transition of savannas to seasonally dry forests

over reasonably short distances (Neves et al. 2016).

Studies of functional plant traits allow us to better

understand plant survival strategies and distribution pat-

terns (Violle et al. 2007) in relation to their environments

(Reich 2014). Understanding the link between environ-

mental heterogeneity and plant persistence based on

observational studies remains a challenge due to the diffi-

culties encountered in quantifying the many attributes

involved, variable sampling effort among species, and the

arbitrary choice of the investigative scale (Carmo et al.

2016; Violle et al. 2015). In tropical semiarid regions,

environmental seasonality, the water regime, and the

heterogeneity of habitat conditions have great influence on

the selection of functional aspects, especially those related

to phenology, wood density, and leaf water potential (Lima

et al. 2012; Mason et al. 2013; Méndez-Alonzo et al. 2013;

Rossatto et al. 2013a; Worbes et al. 2003).

The flowering patterns of tropical plant communities are

mainly associated with the degree of regional seasonality

(Borchert 1994, 1996; Pirani et al. 2009; Lima et al. 2012),

but species compositions and their associated functional

aspects can have significant effects on community pheno-

logical responses (Ramirez 2002; Oliveira et al. 2014). A

considerable fraction of woody savanna species bloom at

the beginning of the rainy season, while others produce

flowers during periods of high water stress (Monasterio and

Sarmiento 1976; Batalha and Mantovani 2000; Ramirez

2002; Gottsberger and Silberbauer-Gottsberger 2006;

Pirani et al. 2009). It is well established that woody species

growing in seasonally dry forests tend to flower at the end

of the dry season and/or beginning of the rainy season

(Amorim et al. 2009; Neves et al. 2010; Lima et al. 2012;

Souza et al. 2014) because most species are essentially

dependent on water availability for flowering (Méndez-

Alonzo et al. 2013), although water stress can act as a

trigger for this phenophase in some species (Sakai et al.

2006; Larcher 2010). Plant water storage capacity, related

to wood density, can also have a strong influence on plant

phenology (Borchert 1994; Lima and Rodal 2010).

Those phenological responses suggest important inter-

actions between physical factors and species traits in

structuring the phenological responses of savanna and dry

forest communities in the tropics. Wood density and the

values of leaf water potential are important parameters in

understanding the phenological responses of communities

growing in seasonal and semiarid regions (Tobin et al.

1999; Swenson and Enquist 2007; Lima et al. 2012),

especially those under very similar macroclimatic condi-

tions but very divergent in terms of soil water storage

capacities. Savanna plants have developed a wide range of

water-use strategies and have distinct wood densities (light

to high) (Bucci et al. 2005; Goldstein et al. 2008). Sea-

sonally deciduous tropical forests, by contrast, are usually

composed by plants with high wood densities and variable

water potentials but more resistant to embolism—an

important capacity in environments subject to water defi-

cits (Méndez-Alonzo et al. 2013).

In order to better understand plant flowering phenolo-

gies along an environmental gradient encompassing

savanna, a transition zone, and a seasonally dry tropical

forest (SDTF) in the Chapada Diamantina mountain range,

we examined environmental variables (rainfall, tempera-

ture, photoperiod, daily insolation, and soil properties) and

plant species traits (wood density, water potential, and

water storage capacity). We expected to find divergence in

flowering behavior between the different plant communi-

ties, which will be related to distinct functional traits

selected by differences in environmental variables (rainfall

volume and soil properties). As such, we expected to find

the savanna community with continuous flowering events

throughout the year while the flowering pattern in the

SDTF and savanna-SDTF transition would be concentrated

in times of greatest water availability. Such behavior would

imply that functional strategies to deal with water avail-

ability are more diverse in savanna environments than in

SDTF. Based on this assumption, we hypothesized that the

number of functional strategies (groups) would be higher in

savanna than in SDTF, and that SDTF and savanna-SDTF

would delineate fewer functional groups that would be

functionally equivalent in the water use and storage.

Materials and methods

Study area – The Chapada Diamantina mountain range

(11�360–13�560S and 40�400–43�560W) is located in the

northern section of the Serra do Espinhaço Range in

northeastern Brazil. It covers approximately 50,600 km2

several hundred kilometers inland from the coast in a

general N–S direction (Franca-Rocha et al. 2005) at alti-

tudes between 400 and 2030 m asl (CEI 1994). The region

is characterized by a mosaic of savannas, humid and dry

forests, and open rocky field vegetation (Harley 1995;

Funch et al. 2009). Extensive rocky outcrops and litholic

neosols (shallow, rocky, and of low-fertility) are found in

the mountain range, while latosols (deep, well-drained, of

low-fertility, and acidic) are more common on plateaus

(Juncá et al. 2005). The mesothermic climate defines a

rainy period between November and April and a 5-month

dry period generally between June and October (Nimer

1989). Mean monthly temperatures vary between 18 and

25 �C, and the mean annual rainfall (between 1961 and
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2011) was 1218 mm (data provided by the Brazilian

Meteorological Institute; Fig. 1a).

The present study was conducted in neighboring vege-

tation types: savanna (centered at 12�2600800S and

41�3100400W; 884 m asl), savanna-SDTF transition

(12�2600400S and 41�3200100W; 736 m asl), and SDTF

(12�2700600S and 41�3505200W; 697 m asl; Neves et al.

2016). These three environments were located along a

single 1-hectare transect in the vicinity of the Chapada

Diamantina National Park, Bahia State, Brazil. We estab-

lished 10 continuous plots (10 9 10 m) in each vegetation

type, and all living shrub–arboreal individuals in these

plots measuring C2 cm in diameter at soil level were

counted and their basal areas at soil level were calculated.

The savanna site presented some rock outcrops and was

composed of a continuous herbaceous stratum, with shrub

and tree cover varying between 5 and 50%. The plants

were B8 m tall and did not form a continuous or dense

canopy. Neither the savanna-SDTF transition nor the SDTF

had a continuous herbaceous stratum, and formed discon-

tinuous canopies with shrub and tree individuals up to

10 m tall.

Environment variables – Rainfall data were obtained

using pluviometers installed in each vegetation type

(Fig. 1b), while relative humidity and temperature data

were acquired from a weather station located 8 km away

from the savanna, 10 km from the transition area, and

16 km from the SDTF site (Fig. 1c). Day length was cal-

culated using the Solar Photoperiod Calculator (http://sci.fi/

*benefon/sol.html). Daily insolation was obtained from

the NASA Web site (http://aom.giss.nasa.gov/srlocat.html)

using the Ocean–Atmosphere Model (Fig. 1d). The geo-

graphical coordinates of the study areas were used to the

determine photoperiod and insolation. The physicochemi-

cal properties of the soils were presented by Neves et al.

(2016) from samples obtained in each vegetation type at

depths between 0 and 20 cm; each pooled sample was

formed by three 330-g subsamples collected every 50 m in

each area.

Flowering phenology – Ninety-six species were moni-

tored monthly between January 2010 and March 2012: 41

species in the savanna vegetation area (495 individuals); 21

species in the transition zone (135 individuals); and 48

species in the SDTF (179 individuals) (Appendix S1),

corresponding to 84, 83, and 66% of the total numbers of

species in each vegetation type, respectively (Neves 2013).

The semiquantitative method developed by Fournier

(1974) was used to assess the phenological intensities of

the phenophases (flower budding and flowering) in each

monitored individual. Classifications of the duration, fre-

quency, and regularity of the flowering in each vegetation

type were made following Newstrom et al. (1994). Flow-

ering patterns were identified for the species in the

vegetation types based on the timing and frequency of

flowering, together with the relative density of species

(Neves 2013). The interspecific synchrony was calculated

using the percentage activity index of Bencke and Morel-

lato (2002).

Water potential and wood density – The water

potentials (W) of 20 savanna species (40% of the total

species sampled in this vegetation type), 14 savanna-SDTF

transition species (47%), and 14 SDTF species (17%) were

measured in March and September 2010 using a Scholan-

der-type pressure chamber (PMS, Model 1000, PMS

Instrument Co., Corvallis, OR, USA). These species were

chosen considering their importance value indices in the

investigated vegetation types (Neves 2013). Water poten-

tials at predawn (WPD) (04:30 h) and at midday (WMD)

(12:00 h) were measured in the field to determine the

highest and the lowest values. Measurements were taken on

three terminal branches that were removed from each

individual (per species) and stored in sealed plastic bags for

a maximum period of 90 min (to prevent water loss) before

measuring their water potentials. WPD reflects the nocturnal

capacity to recuperate water lost during the day, and is a

good indicator of moisture availability in the rhizosphere

(Wright and Cornejo 1990; Hernández et al. 2009). The

mean water potential of each vegetation type was calcu-

lated considering 20 replicates for savanna, 14 for the

savanna-SDTF transition, and 14 for the SDTF.

The wood densities of 35 savanna species (74% of the

species sampled in this vegetation type), 11 savanna-SDTF

transition species (37%), and 43 SDTF species (37%) were

determined from samples collected from three individuals

of each species, in each vegetation type (Neves 2013).

Mean values were calculated for each species in each

vegetation type. Wood densities (g cm-3) were calculated

by collecting branches 10 cm long (including bark, sap-

wood, and heartwood) and immersing them in distilled

water for 3 days. Their saturated masses were then deter-

mined using a precision balance and their volumes deter-

mined by water displacement in a 50-mL graduated

cylinder. The material was then dried at 60 �C to a constant

weight. These values were then used to calculate wood

density (D = Ms V-1) and the quantity of saturated water

[QWS = 100 (D = Msat - Md) Md-1]. Species with

densities below 0.5 g cm-3 were considered low density

(Borchert 1994).

Data analysis – The occurrence and intensity of flow-

ering phenophase seasonality in each vegetation type and

for each year was evaluated using circular statistics. The

frequency of each phenophase was calculated for the total

number of species in each year. Months were converted

into angles at 30� intervals (0� representing January, 30�
representing February, and so forth, until 330� representing
December). The mean angles, angular standard deviations,

The roles of rainfall, soil properties, and species traits in flowering phenology along a… 667

123

http://sci.fi/%7ebenefon/sol.html
http://sci.fi/%7ebenefon/sol.html
http://aom.giss.nasa.gov/srlocat.html


668 S. P. S. Neves et al.

123



and r vector lengths were calculated. Angle significance

was tested using the Rayleigh test (z) for circular distri-

butions (Zar 2010). The flowering phenological events with

significant mean angles (P\ 0.05) were transformed into

mean data. Statistical calculations were carried out using

Oriana software (demonstration version 4.02, Kovach

Computing Services, Anglesey, UK) (Kovach 2004). The

Watson–Williams F test was used to compare mean dates

for each phenophase (Zar 2010) in each vegetation type.

Flowering phenophases whose vector (r) lengths were[0.5

and for which the Rayleigh test indicated as significant

were considered seasonal (Morellato et al. 2010).

The normality of the distribution of phenological data

was evaluated using the Shapiro and Wilk test (Zar 2010).

The Spearman’s correlation coefficient (rs) between flow-

ering phenophases and the monthly variables of rainfall,

mean temperature, relative humidity, photoperiod, and

insolation were calculated using Statistica software (trial

version 13.0, Statsoft, São Paulo, Brazil).

Water potential data for each vegetation type were

submitted to analysis of variance (ANOVA) and the means

compared using the Tukey’s test (P\ 0.05) using Sisvar

(version 5.3, Lavras, Minas Gerais, Brazil) (Ferreira 2011).

Each data collection period (dry and rainy seasons) was

considered one treatment. We inserted the attributes col-

lected from the functional traits of the species (flowering

patterns, predawn water potential, wood density, and

quantity of saturated water) into a matrix, with species in

rows and traits in columns. We applied the Euclidian dis-

tance coefficient to the matrix and performed cluster

analysis using Past ver. 2.17c software (Hammer et al.

2001). Principal component analysis (PCA) was performed

to determine which of the functional traits analyzed were

grouping the species using Past software. To standardize

the measured traits, the average values of each trait were

subtracted from the observed values and divided by their

respective standard deviation (Kröber et al. 2012). The

Euclidean distance coefficient was applied to the matrix

and cluster analysis performed using UPGMA, using Past

ver. 2.17b software (Hammer et al. 2001). Multidimen-

sional scaling (NMDS) was performed to rank the attri-

butes of the species according to their functional

similarities. This method produces a graphical representa-

tion of the similarity between samples in a small number of

dimensions (Henderson and Seaby 2008).

The values of the physical and chemical soil analyses of

each vegetation type were submitted to analysis of variance

(ANOVA) and the means compared using the Tukey’s test

(P\ 0.05), using Sisvar software (version 5.3, Lavras,

Minas Gerais, Brazil) (Ferreira 2011). The Chi-square test

was used to compare the rainfall at each vegetation type, it

was calculated between the rainfall volume of the dry (June

to October) and wet (November to April) seasons in each

vegetation type, using data from November 2010 to April

2012.

Results

Flowering patterns and environmental seasonality –

Flowering patterns in the savanna area were continuous,

while flowering patterns in the transition and SDTF vege-

tation types were seasonal (intermediate and regular,

without variation in different years, with the phenophase

occurring only during the rainy season) (Fig. 2; Table 1;

the complete list of species is presented in Appendix S1).

The flowering phenophases were related to day length and

daily insolation in all vegetation types, and to rain only in

transition and SDTF sites (Table 2). At the population

level, we identified five patterns considering the timing and

frequency of flowering: continuous, biannual (events in the

dry and rainy seasons), annual in the rainy season, annual

in the dry season, and annual in the dry–rainy season

transition and extending into rainy season. Flowering in the

rainy season and in dry–rainy season transition with

extension into the rainy season were the two most impor-

tant patterns in terms of relative density (Table 3).

Water status of the plants and wood density – The

WPD in the rainy season differed from that of the dry season

in all of the monitored vegetation types (Fig. 3). The WMD

differed between the seasons in the SDTF and transition

zone but not in the savanna area. The WPD differed from

WMD in the savanna and transition sites in both seasons,

and in SDTF only during the rainy season. TheWPD did not

differ from the WMD in the SDTF during the dry season.

The mean wood densities of savanna, transition, and SDTF

species were 0.55, 0.71, and 0.68 g/cm3, respectively; the

proportions of species with high wood densities in the

savanna, transition, and SDTF vegetations were above

87%.

Environmental variables – Chi-square tests performed

to rainfall volume in the dry (June to October) and wet

(November to April) seasons in each vegetation type,

measured between January 2010 and April 2012, showed

that rainfall volumes in the vegetation types differed only

during the dry season: savanna 9 transition 6.18

(p\ 0.05), savanna 9 SDTF 53.14 (p\ 0.05), and tran-

sition 9 SDTF 24.00 (p\ 0.05). The savanna soils

bFig. 1 Monthly means of environmental variables. a Rainfall and

temperature, 1961–2011 (National Institute of Meteorology

[INMET], Lençóis), b rainfall in each vegetation type, c relative

humidity and mean temperature (INMET, Lençóis), d daily insolation

(NASA Web site http://aom.giss.nasa.gov/srlocat.html using the

Ocean–Atmosphere Model). Day length was calculated using the

Solar Photoperiod Calculator (http://sci.fi/*benefon/sol.html)
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examined were classified as sandy, while the transition and

SDTF vegetations grew in clayey loam soils. The soils

were dystrophic (alkali saturation\ 50%), acidic

(pH\ 5), non-aluminous (Al\ 1.3 cmol/dm3, except in

the transition area), and had low cation exchange capacities

(CEC\ 13).

Functional groups – The cluster analysis, PCA, and

NMDS (final stress of 0.07 in SDTF and 0.12 in savanna

and transition) showed that the strongest factor for the

formation of groups in the vegetation types studied here

was their water potential (Figs. 4, 5).

The savanna cluster analysis identified four functional

groups: (1) The first group contained all of the species

showing annual flowering; with two subgroups: A—spe-

cies flowering in the rainy and dry–rainy transition; B—

bFig. 2 Production of buds and flowers between January 2010 and

March 2012. a, b Fournier intensity, c, d synchrony of individuals.

Horizontal bars indicate the dry season. Savanna-transition-season-

ally dry tropical forest continuum (SDTF) in the Chapada Diamantina

mountain range, northeastern Brazil

Table 1 Results of circular statistics of frequency of individuals

Frequency of individuals

Statistical

parameters

Bud Flower

Savanna Transition SDTF Savanna Transition SDTF

2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011

Mean angle 355.82� 358.28� 21.26� 344.39� 17.16� 337.52� 11.18� 16.91� 11.93� 344.36� 5.60� 340.20�
Mean date 25 Dec 28 Dec 22 Jan 14 Dec 18 Jan 7 Dec 12 Jan 17 Jan 12 Jan 14 Dec 6 Jan 10 Dec

R 0.17 0.20 0.50 0.56 0.28 0.59 0.17 0.17 0.59 0.71 0.18 0.66

Z 8.70 12.61 40.64 35.48 5.13 41.72 5.40 5.86 26.69 17.13 0.73 32.04

P 1.66e–

04

3.34e–

06

\1e–12 \1e–12 0.01 \1e–12 0.00 0.00 2.58e–

12

1.42e–

08

0.485 \1e–12

F (P) 0.43

(0.52)

0.73

(0.40)

1.46

(0.24)

0.55

(0.47)

1.85

(0.19)

3.27

(0.08)

Watson–Williams test

Bud Flower

F P F P

Savanna 9 transition 2010 6.80 0.02 11.57 0.00

2011 15.67 6.68e–04 53.04 2.71e–07

Savanna 9 SDTF 2010 46.48 7.54e–07 87.29 4.10e–09

2011 17.19 4.33e–04 15.08 8.02e–04

Transition 9 SDTF 2010 4.77 0.04 3.91 0.06

2011 2.00e–03 0.97 1.50 0.23

Savanna-transition-seasonally dry tropical forest continuum (SDTF), Chapada Diamantina mountain range, northeastern Brazil (P\ 0.05)

Table 2 Spearman (rs)

correlation between

environmental variables and the

proportion of budding species

(b), flowering species (fl), of

species carrying immature fruit

(if) and mature fruit (mf),

between January 2010 and

March 2012

Month of the event

Savanna Transition Seasonally dry tropical forest

b fl b fl b fl

Rainfall – – 0.40 0.72 0.74 0.58

Photoperiod 0.75 0.56 0.73 0.54 0.69 0.48

Temperature – – 0.64 0.39 0.38 –

Relative humidity -0.44 – – – – –

Daily insolation 0.76 0.54 0.73 0.51 0.68 0.48

Savanna-transition-seasonally dry tropical forest continuum, Chapada Diamantina mountain range,

northeastern Brazil (P\ 0.05)
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species flowering in the dry season; (2) the second func-

tional group contained species with continuous and bian-

nual flowering, and high WPD; (3) the third group

contained species with continuous flowering, and high

wood density and low water saturation; (4) the fourth

group contained species showing continuous flowering

and low WPD. Annona coriacea was set apart from the

other groups as it showed low wood density (0.33 g cm-3)

and high water saturation (236%) (Fig. 4a). The savanna-

SDTF transition cluster analysis showed only one large

functional group (with species flowering in the rainy

season and dry extending for rainy season, which formed

two subgroups, respectively (Fig. 4b). Three species

remained isolated from this group: Cordia rufescens, due

its low wood density (0.42 g cm-3), and Bignoniaceae

sp.1 and Thyrsacanthus ramosissimus, due their low water

Table 3 Flowering patterns, considering flowering timing

Savanna Transition SDTF Savanna Transition SDTF Savanna Transition SDTF

Flowering timing Continuous Rainy Biannual

Number

Species 11 (27%) 1 (5%) – 11 (27%) 8 (38%) 11 (23%) 2 (5%) 1 (5%) –

Genera 9 1 – 10 8 10 2 1 –

Families 9 1 – 6 4 7 2 1 –

Relative density 29.75 5.16 – 11.42 47.28 26.23 2.21 4.34 –

Flowering timing Dry Dry–rainy Did not flower

Number

Species 2 (5%) 1 (5%) 3 (6%) 13 (32%) 9 (43%) 17 (35%) 2 (5%) 1 (5%) 17 (35%)

Genera 2 1 3 13 6 14 2 1 15

Families 2 1 3 10 4 9 1 1 8

Relative density 3.67 2.72 8.28 52.41 30.71 31.60 0.54 8.69 9.36

Savanna-transition-seasonally dry tropical forest continuum, Chapada Diamantina mountain range, northeastern Brazil

Values in brackets represent the percentage of species accompanied

SDTF seasonally dry tropical forest

Fig. 3 Means (±standard deviation, SD) of predawn (WPD) and midday (WMD) water potentials in a savanna-transition-seasonally dry tropical

forest continuum (SDTF) in the Chapada Diamantina mountain range, northeastern Brazil. Lowercase letters indicate comparisons of W between

the wet (March) and dry (September) season in each vegetation type. Uppercase letters indicate comparisons between the WPD and WMD of the

vegetation types in each season. Values followed by the same letter indicate no statistically significant differences (P\ 0.05)

cFig. 4 Cluster analysis (Euclidian distances) of the functional

attributes of woody species in a savanna-transition-seasonally dry

tropical forest continuum (SDTF) in the Chapada Diamantina

mountain range, northeastern Brazil. a Savanna, b transition, c sea-

sonally dry tropical forest
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potential values in the dry season and rainy season,

respectively (Fig. 4b). The SDTF cluster analysis showed

two functional groups: The first group contained the

species with high WPD (dry season). The second group

contained species with low WPD (dry season), with three

subgroups: A—species with high WPD in the rainy season;

B—species with high wood densities and low water sat-

urations; C—species with low WPD in the rainy season

(Fig. 4c).

We identified the most similar characteristics between

the species that strengthened the formation of the groups

using the spatial configurations of the cerrado species

generated by the NMDS and the PCA (Fig. 5a). We found

that the clustering of species with annual flowering was

driven principally by water potential and water storage

capacity. The formation of species groups with continuous

and biannual flowering was principally driven by wood

density and water potential in the dry season. The forma-

tion of species groups with continuous flowering was

principally driven by the combination of flowering group,

wood density, and water potential. The formation of spe-

cies groups with continuous flowering and low water

potentials was strongly influenced by water potential in the

dry season. Using the spatial configurations of the species

of the transition zone generated by the NMDS and the PCA

(Fig. 5b), we found that clustering of species with dry–

rainy transition flowering was driven principally by the

flowering group, and the species showing flowering during

the rainy season was driven by water potential in the rainy

season. Using the spatial configurations of the species of

the caatinga zone generated by the NMDS and the PCA

(Fig. 5c), we found that clustering of the species was dri-

ven by water potential during the rainy season, another

group was driven by the flowering group, and a third group

was driven by wood density and water saturation.

Discussion

Based on a temporal set (27 months) of phenological

flowering data from 96 woody plant species (809

individuals), we examined the broad variety of flowering

patterns from savanna, transition, and seasonally dry

tropical forest species, and their associated drivers. We

show here that the regional austral summer climate in the

study area, with high rainfall, long day lengths, and high

daily insolation, favored flower production in all of the

vegetation types. The analyses of the frequencies and

durations of the phenophases of savanna, transition, and

SDTF plant species confirmed our hypothesis and showed

that their flowering patterns differed and that precipitation

plays a key role in flowering, especially in the transition

and SDTF areas. The differences in the rainfall volumes

during the dry season and the physical properties of soils

were found to be the main determining factors of the dif-

ferences in the frequencies of the flowering phenophases of

savanna (continuous), transition, and SDTF (annual) spe-

cies. The distinct soil properties of each site selected for

specific plant traits linked to maintain their water status,

with the SDTF and savanna-SDTF communities exhibiting

similar flowering patterns and appearing functionally sim-

ilar in terms of their use and storage of water thus delin-

eating similar functional groups.

The continuous flowering pattern observed in the

savanna vegetation area, with a discrete increase in flow-

ering soon after the beginning of the first rains, has been

reported for other Brazilian savannas by Silva et al. (2011)

and by Moraes (2011). This pattern results from the pre-

dominance of annual species flowering in sequence, and

this continuous phenological pattern appears to be mainly

related to edaphic factors. Savanna soils contain high

percentages of sand, which allows easier root penetration

and aeration; this sandy soil, however, is not able to retain

high amounts of water (Grohmann and Medina 1962;

Beutler et al. 2002). The availability of these deeper soils

to plant roots provides varied niches and strategies to be

explored by a great diversity of species (Rossatto et al.

2012) in distinct seasons (Rossatto et al. 2013a), which

helps to explain the continuous flowering patterns in

savanna areas. The flowering of a significant number of

savanna species during the dry season may be related to

specific adaptations to the physical properties of those

sandy soils. Savanna species showed less dense wood

(0.55 g cm-3), which is normally associated with the high

water storage capacity of their trunk parenchyma (Hacke

and Sperry 2001; Diniz 2009). In this way, some savanna

species can flower during the dry season due to the sig-

nificant amounts of water stored in their trunks (Bucci et al.

2005; Scholz et al. 2007; Meinzer et al. 2008), allowing

bFig. 5 Multidimensional scaling (NMDS) analyses of the sampled

species. a plus (species with annual flowering), square (species with

continuous and biannual flowering, and higher WPD), times (species

with continuous flowering, high wood density, and low water

saturation), diamond (species with continuous flowering, and low

WPD), circle (Annona coriaceae), b plus (species flowering in the

rainy season), square (species flowering in the dry season and

extending into the rainy season), circle (Cordia rufescens, Bignon-

iaceae sp.1, and Thyrsacanthus ramosissimus, c plus (species with

high WPD [dry season]), times (species with high WPD [rainy season]),

square (the species with high wood density and low water saturation),

triangle (species with low W PD [rainy season]), d, e, f Principal

component analyses (PCA) of the attributes of the sampled species.

(FG flowering group, QWS quantity of saturated water, WD wood

density, WP rainy season mean of maximum water potential in the

rainy season, WP dry mean of minimum water potential in the dry

season) in a savanna-transition-seasonally dry tropical forest contin-

uum (SDTF) in the Chapada Diamantina mountain range, northeast-

ern Brazil
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them to regulate their water potentials and provide water to

the buds (Goldstein et al. 2008). This strategy can be

confirmed in this study since predawn and midday water

potentials were similar between seasons, and always less

negative than plants growing in transition and STFD

vegetation sites.

The transition region and SDTF area investigated in the

present study were very similar in terms of their floristic,

physiognomic, and pedological characteristics (Neves et al.

2016), which was reflected in the frequencies and durations

of their phenological patterns. Flowering was almost

completely restricted to the rainy season in both sites,

characterizing an opportunistic phenological response to

temporal variations in water availability (Dyer et al. 2012).

Several approaches have been used to explain seasonal

variations in the reproductive phenophases of dry forest

species. Parente et al. (2012) reported that the most fre-

quent species flowered only after the beginning of the rainy

season. Lima et al. (2012) found that species with low

wood densities and greater water storage capacities flow-

ered between the dry and rainy seasons, while high wood

density species flowered only in the rainy season. A

number of studies have demonstrated the role of wood

density in drought resistance, and its importance in

modulating leaf behavior in dry forests (Worbes et al.

2003; Méndez-Alonzo et al. 2013).

In the present study, the SDTF species that flowered

only during the rainy season had the highest relative

population densities, and had elevated wood density val-

ues. These results indicate the degree to which these spe-

cies depend on water availability and the important

influence of wood density on their flowering strategies.

This importance can clearly be seen in terms of their water

potential values, which were very variable between the

different seasons (Fig. 3). The transition and SDTF vege-

tations grow on clayey soils, which have a high water

retention capacities (Hall et al. 1977). This, and the fact

that transition and SDTF species have elevated wood

densities, appears to be the cause of the restriction of

flowering to the rainy season or the dry–rainy transition.

Changes in the water conductivity of roots, and in the

longitudinal water pressure gradient between the roots and

the aerial portions, may interfere with the physiological

activities of those aerial organs (Tyree 1997). The higher

densities of shrub–arboreal individuals in the transition and

SDTF areas as compared to the savanna site indicate

greater root masses in those soils that should intensify

water stress in plants growing in the first two areas, espe-

cially during the dry season (Gerhardt 1996). Thus, as

rainfall volumes were significant during the dry season

across the three sites, water stress scenarios in the transition

and SDTF areas would be more severe due to the high

competition for soil water resources. The absence of a

continuous herbaceous stratum (as seen in the savanna site)

that can retain humidity and lessen evaporation presumably

also aggravates water stress (Giambelluca et al. 2009), and

the lack of a continuous canopy in the transition and SDTF

sites diminishes the capacity to retain humidity. The sea-

sonal variations in rainfall and soil water availability

appear to be the main causes of the seasonal characters of

the flowering observed in the SDTF and transition areas. In

savannas, the vertical partitioning of soil water (i.e., the use

of ground water at different depths by grasses, herbs, and

trees growing side by side) results in a more complex

pattern of soil water extraction (Rossatto et al. 2013b)

which, together with the availability of soil water

throughout the year, would favor the continuous flowering

observed in our study.

The greater diversity of functional groups in the savanna

area was determined by plant water potentials, reflecting

the variability in wood densities of the species and the

availability of soil water, unlike the transition and SDTF

areas where the plants had lower water potentials and

flowering occurring only in the rainy season. The diversity

of phenological strategies observed in the savanna, SDTF,

and transition areas reflects factors such as species com-

position, soil characteristics, and wood density that pro-

mote adjustments in flowering patterns based on resource

allocation and the influence of community structure (Ar-

beláez and Parrado-Rosselli 2005; Oliveira 2008) and

SDTF (Jara-Guerrero et al. 2011).

We have shown that the role of rainfall, especially the

rainfall volumes during the dry season, is critical in

defining different flowering patterns at the community

level. The physical properties of the soil select for the

presence of species with distinct water-use strategies (low

wood density species in savanna areas and high wood

density species in the transition zone and forest) which in

turn affected their flowering phenophases. The specific

physical characteristics of the savanna soil and subsoil

water reserves favored strategies based on the retention of

large quantities of water in the plant body that could be

used throughout the year, in contrast to the elevated root

competition in the soils in the transition and SDTF areas.

Therefore, the water potential of plants, which is affected

by both water availability in the soil and by wood density,

plays an important role in the continuous phenological

patterns observed in savanna vegetation and in the seasonal

patterns seen in the transition and SDTF sites. Lastly, this

study advances our understanding of the link between

environmental heterogeneity and plant persistence in

communities under semiarid climate.
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Rev Bras Ciênc Solo 26:829–834. doi:10.1590/S0100-06832002

000300029

Borchert R (1994) Water storage in soil or tree stems determines

phenology and distribution of tropical dry forest trees. Ecology

75:1437–1449

Borchert R (1996) Phenology and flowering periodicity of neotropical

dry forest species: evidence from herbarium collections. J Trop

Ecol 12:65–80

Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello PF,

Scholz G (2005) Mechanisms contributing to seasonal home-

ostasis of minimum leaf water potential and predawn disequi-

librium between soil and plant water potential in neotropical

savanna trees. Trees 19:296–304. doi:10.1007/s00468-004-039

1-2

Carmo FF, Campos IC, Jacobi CM (2016) Effects of fine-scale

surface heterogeneity on rock outcrop plant community struc-

ture. J Veg Sci 27:50–59. doi:10.1111/jvs.12342

Coelho M, Fernandes WG, Sánchez-Azofeifa A (2013) Brazilian

tropical dry forest on basalt and limestone outcrops: status of

knowledge and perspectives. In: Sanchez-Azofeifa A, Powers JS,

Fernandes GW, Quesada M (eds) Tropical dry forests in the

Americas: ecology, conservation, and management. CRC Press,

Boca Raton, pp 55–68

Centro de Estatı́stica e Informação—CEI (1994) Informações básicas
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