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Abstract. Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equa-
tions, produces a negative pressure term which can be used to explain the accelerated ex-
pansion of the Universe. In this work we tested six different spatially flat models for matter
creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to
compare models considering goodness of fit and number of free parameters, penalizing excess
of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however,
neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three
other scenarios are discarded either because poor fitting or because of the excess of free pa-
rameters. A method of increasing Bayesian evidence through reparameterization in order to
reducing parameter degeneracy is also developed.
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1 Introduction

Since evidences for the accelerated cosmic expansion have been found [1–3], a large number
of possible explanations for this unexpected behaviour have been proposed.

The most accepted proposal, the ΛCDM model, is successful at explaining many obser-
vational data, e. g., the Cosmic Microwave Background Radiation (CMB), Baryon Acoustic
Oscillations (BAO) and H(z) [4–7]. However, the standard model has important conceptual
questions to be answered, namely, the Cosmological Constant Problem [8], Cosmic Coinci-
dence Problem [9] and some small scale problems [10, 11].

In order to test other possibilities and trying to overcome the above difficulties, many
alternatives to ΛCDM have been proposed. Among them, some models involve different kinds
of dark energy with negative pressure in order to provide acceleration inside the Einstein Field
Equations (EFE) while still assuming the Cosmological Principle (CP) [12]. Other proposals
to be considered are modified gravitation theories [13] and the breaking of the CP [14].

On the other hand, the early investigations of the quantum particle creation from dy-
namical gravitational potentials [15–17] has shown that this process may result in a positive
acceleration due to its negative creation pressure in the level of EFE.

This gave birth to the so-called Creation of Cold Dark Matter (CCDM) cosmologies, in
which the creation rate of particles can influence the cosmic expansion rate [18–23]. In this
scenario, many of the different models were phenomenologically proposed through dimen-
sional arguments about the particle creation rate. In a different approach, recently, it was
proposed a CCDM model which was equivalent to ΛCDM with respect to the background
equations, the so called LJO model [21]. Evolution of density perturbations were calculated
in the context of LJO, in a Neo-Newtonian framework, and it was shown that this model
can be distinguished from ΛCDM in the linear order, but it can be compatible with observa-
tions if some amount of entropy perturbations are considered [24]. Later, it was shown that,
even with no entropy perturbations, if one separates the obtained Cold Dark Matter (CDM)
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density as a clustered and a smooth components, this model is equivalent to ΛCDM even at
higher orders of density perturbation theory [25, 26].

Meanwhile, more fundamental treatments of CCDM models were developed, as a par-
ticle creation rate calculated from quantum particle creation in a curved spacetime [27], and
as the development of a kinetic theory of particle creation [28].

The most reliable way to compare the mentioned models and to determine which mech-
anism has been driving the late stage of cosmic accelerated expansion is by using Bayesian
criteria to differentiate among them in light of current observational data [29].

In the present work, we focus on SNe Ia observations as it is the most straightforward
evidence of cosmic acceleration with currently large amount of data, enabling the best model
selection in what concerns the background evolution equations.

Through the use of different model selection criteria, namely, Bayesian Information Cri-
terion (BIC), Akaike Information Criterion (AIC) and Bayesian Evidence (BE), we ranked
some models of interest, including some CCDM models and the ΛCDM model. Our conclu-
sions are drawn by considering one of the currently largest Supernovae Ia data sample, the
Union 2.1 [3].

In section 2, we discuss the dynamics of the universe with negative pressure due to
matter creation. In section 3, we discuss the model selection methods used here. In sec-
tion 4, we find the observational constraints from SNe Ia over some CCDM models, apply
the model selection methods to distinguish among CCDM models and compare with other
results obtained in literature. Finally, we summarize the main results in conclusion.

2 Creation of Cold Dark Matter (CCDM) models

We start by regarding the homogeneous and isotropic FRW line element (with c = 1):

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)
, (2.1)

where k can assume values −1, +1 or 0.
In this background, the Einstein Field Equations are given by

8πG(ρrad + ρb + ρdm) = 3
ȧ2

a2
+ 3

k

a2
, (2.2)

and

8πG(prad + pc) = −2
ä

a
− ȧ2

a2
− k

a2
, (2.3)

where ρrad, ρb and ρdm are the radiation, baryons and CDM density, respectively, prad =
ρrad/3 is the radiation pressure and pc is the creation pressure.

The solutions of the EFE above are obtained considering an Energy-Momentum Tensor
(EMT) in the form [15, 28]:

Tµν = Tµνeq + ∆Tµν , (2.4)

where Tµνeq characterizes thermodynamic equilibrium in the fluid and the creation of matter
and entropy in universe are incorporated to the EFE through the correction term ∆Tµν =
−pc(g

µν − uµuν) [15–17, 28].
Therefore, the complete EMT (2.4) in the presence of matter creation has the ex-

plicit form:
Tµν = (ρrad + ρb + ρdm + prad + pc)u

µuν − (prad + pc)g
µν , (2.5)

satisfying the conservation law Tµν;ν = 0.
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Assuming solely the creation of dark matter component, the densities of radiation and
baryon components satisfy their respective usual conservation laws, namely:

ρ̇rad + 4
ȧ

a
ρrad = 0, (2.6)

and

ρ̇b + 3
ȧ

a
ρb = 0, (2.7)

where each overdot means one time derivative and we have used that prad = ρrad/3 and pb = 0.
On the other hand, considering the creation process, we have a source term at the level

of the EFE [16, 17]:
ρ̇dm

ρdm
+ 3

ȧ

a
= Γ, (2.8)

where Γ is the rate of dark matter creation in units of (time)−1.
As shown by [16, 17], the creation rate of cold dark matter may be related to the creation

pressure pc in eq. (2.3) by assuming an “adiabatic” creation, i.e., the scenario where the
entropy per particle is constant. The so called “adiabatic” regime is a simplifying hypothesis
in which the only source of entropy increase in the universe is the matter creation [15].
Mathematically, according to Calvão, Lima & Waga [16, 17]:

σ̇ =
Ψ

nT

(
β − ρ+ p

n

)
, (2.9)

where σ is the entropy per particle, Ψ is the numeric particle creation rate, n is the particle
density, T is the temperature and β comes from a phenomenological assumption on the
creation pressure:

pc = −βΨ

Θ
, (2.10)

where Θ = 3H is the bulk expansion rate and H ≡ ȧ/a. So, in case σ̇ = 0, as we assume, we
find β = ρ+p

n , then creation pressure is given by

pc = −ρ+ p

Θ

Ψ

n
= −(ρ+ p)

Γ

3H
. (2.11)

On the other hand, if σ̇ 6= 0, β remains as an unknown parameter, which can not be con-
strained by thermodynamics alone, as the second law of thermodynamics demands only
Ψ ≥ −nσ̇

σ . By assuming creation of CDM only, we have p = 0 in (2.11) and:

pc = −ρdmΓ

3H
. (2.12)

As a consequence of eq. (2.12), one can see that the dynamics of the universe is directly
affected by the rate of creation of cold dark matter, Γ. In particular, in the case Γ >
0 (creation of particles) we have a negative pressure creation and in the case Γ → 0 we
recover the well known dynamics when the universe is lately dominated by pressureless matter
(baryons plus dark matter).

Since we are interested only on the late phase of the dynamics of the universe, we can
neglect the radiation terms from now on. Thus, by combining eqs. (2.2) and (2.3), we find

ä

a
= −4πG

3
(ρb + ρdm + 3pc). (2.13)

– 3 –



J
C
A
P
0
9
(
2
0
1
7
)
0
3
0

Replacing pc from eq. (2.12), we may write

ä

a
= −4πG

3

[
ρb + ρdm

(
1− Γ

H

)]
. (2.14)

Using that ä
a = Ḣ + H2 and changing variables from cosmological time t to cosmological

redshift z, we find

dH

dz
=

H

1 + z
+
H2

0 Ωb(1 + z)2Γ

2H2
+
H2 −H2

0 Ωk(1 + z)2

2H(1 + z)

(
1− Γ

H

)
, (2.15)

where we have used the solution of (2.7) to baryon density, ρb = ρb0(1 + z)3, Ωb = ρb0
ρc0

is the

present baryon density parameter, and Ωk = − k
H2

0
is the present curvature density parameter.

Changing to dimensionless variable H(z) ≡ H(z)
H0

, we find

dH
dz

=
H

1 + z
+

Ωb(1 + z)2

2H2

Γ

H0
+
H2 − Ωk(1 + z)2

2H(1 + z)

(
1− Γ

H0H

)
. (2.16)

If the Universe is spatially flat, it can be further simplified:

dH
dz

=
3H

2(1 + z)

(
1− Γ

3H0H

)
+

Ωb(1 + z)2

2H2

Γ

H0
. (2.17)

By defining the dimensionless quantity ∆ ≡ Γ
3H0

, it can be written:

dH
dz

=
3

2

[
H−∆

1 + z
+

Ωb(1 + z)2

H2
∆

]
. (2.18)

So, if a CCDM model is defined with an expression Γ = Γ(H), we can find a dependence
∆(H), replace it at eq. (2.18) and solve it for H(z).

2.1 Models

We may regard Γ(H) as a natural dependence for the creation rate, as it represents a relation
between a creation rate and the expansion rate. Most of the CCDM models studied here
follow this dependence. Furthermore, almost every model studied here can be written in a
form ∆ = βH + αH−n, which corresponds to Γ = 3βH + 3αH0

(
H0
H

)n
. Another model we

are interested in analysing is the so called LJO model [21], with a dependence Γ = 3α ρc0
ρdm

H,
which has been shown to have the same background dynamics as the ΛCDM model. That
is, in this model, the cosmological constant is exactly mimicked by the creation of particles.
The models we have analysed are shown on table 1.

In all models analysed here we have taken into account the contribution of baryons.
The baryon density was assumed to be a fixed parameter, given by Planck as Ωb = 0.049.
For simplicity, we choose to work with a spatially flat Universe, as indicated from CMB and
preferred by inflation, i.e., Ωk ≡ 0 in our analysis. Using the general expression for the
creation rate, namely Γ = 3βH + 3αH0

(
H0
H

)n
, eq. (2.18) reads:

dH
dz

=
3

2

[
(1− β)H− αH−n

1 + z
+ Ωb(1 + z)2

(
α

Hn+2
+
β

H

)]
. (2.19)
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Model Creation rate Reference Priors/Fixed Parameters

M0 Γ =
3αH2

0
H [20] (JO) α ∈ [0, 1], β = 0, n = 1

M1 Γ = 3α ρc0
ρdm

H [21] (LJO) α ∈ [0, 1]

M2 Γ = 3αH0 [30] α ∈ [0, 1], β = 0, n = 0

M3 Γ = 3βH — α = 0, β ∈ [0, 1]

M4 Γ = 3αH0

(
H0
H

)n
— α ∈ [0, 1], β = 0, n ∈ [−10, 10]

M5 Γ = 3α
H2

0
H + 3βH [30] α ∈ [−2, 3], β ∈ [−2, 2], n = 1

Table 1. Model parameters and priors.

This equation covers all models studied here, except LJO (M1). However, even neglecting
spatial curvature, these models in general have no analytical expression for H(z), due to in-
clusion of baryons. One exception is LJO model, which recovers the ΛCDM dependence [21]:

H(z) =
H(z)

H0
=
[
α+ (1− α)(1 + z)3

]1/2
. (2.20)

Another case in which H(z) can be analytically obtained, even with the presence of baryons,
is model M3, where the creation rate is proportional to expansion rate. In this case:

H(z) =
[
(1− Ωb)(1 + z)3−3β + Ωb(1 + z)3

]1/2
. (2.21)

If baryons parameter density Ωb could be neglected, eq. (2.19) would yield:

H(z) =

[
α+ (1− α− β)(1 + z)

3
2

(n+1)(1−β)

1− β

] 1
n+1

. (2.22)

However, baryon density brings an important contribution and can not be neglected. So, one
has to resort to numerical or semi-analytical methods. Throughout our analysis, we solve
eq. (2.19) numerically.

3 Model selection methods

In this section, we summarize the model selection methods used in this work. The likelihood
function is the main ingredient of the analysis. It has to be built for each case and there is not
a general recipe for it [31]. Here, we assume N pairs of measurements (xi, yi) for which we
want to find the most likely relation between x and y. As a maximum likelihood estimator,
we can use the χ2 expression given by [32]:

χ2 =

N∑
i=1

[yi − f(xi, θ)]
2

σ2
i

= −2 ln
L
N
, (3.1)

where f(xi, θ) represents the model with parameters θ, N is a normalization constant and
L is the likelihood function. The best fit values for the set of free parameters minimizes χ2

while maximizing the likelihood. The likelihood function indicates not only the most likely
values for the relevant parameters of the statistical model, but also its distribution, in case
we have no prior information over them.

– 5 –
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∆AIC Support

∆AIC ≤ 1 Not worth more than a bare mention

4 ≤ ∆AIC ≤ 7 Significant/Weak

0 ≤ ∆AIC ≤ 2 Strong to very strong/Significant

∆AIC > 10 Decisive/Strong

Table 2. Akaike Information Criterion.

3.1 Ockham’s razor

Ockham’s razor was proposed by William of Ockham (1285–1349) who was an English Fran-
ciscan friar and scholastic philosopher and theologian. The principle establishes: “if there
are two models with some number of parameters, describing equally well a phenomenon,
the simplest model will be better than the most complex model”. This principle has two
main reasons: aesthetic and empirical. First, if the model is simpler, it is more aesthetically
beautiful because the simplest models would describe the Nature while excluding the least
likely hypotheses. Second, the Nature is optimized i.e., it is economic and makes everything
with parsimony. Ockham’s razor is the main prerequisite for the construction of statistical
models being used both in Frequentist and Bayesian analyses.

3.2 Akaike Information Criterion

The Akaike Information Criterion (AIC) provides a relative measure of the quality of models
to describe a given data set. to each of the other models. AIC is a type of model selec-
tion that emerges from Information Theory, specifically an approximate minimization of the
Kullback-Leibler (KL) information entropy which measures the distance between two proba-
bility distributions. Akaike [33] found this approximation to the KL quantity, which he called
the Akaike Information Criterion (AIC), given by

AIC = −2 lnLmax + 2p, (3.2)

where Lmax is the maximum likelihood and p is the number of free parameters of the model.

In our case, from eq. (3.1), we have L = N exp
(
−χ2

2

)
, thus

AIC = χ2
min − 2 lnN + 2p . (3.3)

The normalization constant cancels out when we calculate the difference ∆AIC between two
different models:

∆AIC = AICj −AICi = χ2
min,j − χ2

min,i + 2(pj − pi) . (3.4)

Table 2 shows how to interpret the outcomes of AIC. For two models, the ratio of
likelihoods of one model against the other, with a correction given by the numbers of param-
eters, is quantified by the difference ∆AIC. This approach is suitable for understanding the
goodness of fit of one model against the other.

– 6 –
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∆BIC Support

∆BIC ≤ 1 No worth more than a bare mention

1 ≤ ∆BIC ≤ 3 Significant/Weak

3 ≤ ∆BIC ≤ 5 Strong to very strong/Significant

∆BIC > 5 Decisive/Strong

Table 3. Bayesian Information Criterion.

3.3 Bayesian Information Criterion

The Bayesian Evidence, in general, is given by multidimensional integrals over the param-
eters, so it is usually hard to evaluate. A way around this difficulty is by using its approx-
imation, first obtained by Schwarz [34, 35], known as BIC. Differently from AIC, Bayesian
Information Criterion (BIC) [31, 32, 36] heavily penalizes models with different number of
free parameters. BIC incorporates Ockham’s razor when it favours simple models against
more complex models. BIC can be written as:

BIC = −2 lnLmax + p lnN, (3.5)

where N is the number of data, Lmax is the maximum of likelihood and p is the number of free
parameters. Due to the term p lnN , BIC drastically penalizes the excess of free parameters
for big samples. In our case, BIC is given by

BIC = χ2
min − 2 lnN + p lnN (3.6)

and the normalization constant N is cancelled out on ∆BIC:

∆BIC = BICj − BICi = χ2
min,j − χ2

min,i + (pj − pi) lnN . (3.7)

The interpretation of ∆BIC outcomes is described in table 3.

3.4 Bayesian Evidence

Bayesian Evidence (BE) emerges from Bayes’ Theorem and it is a product of two probability
distributions: likelihood and prior distribution. The posterior probability function is defined
by [37]:

P (θi,Mi|D) =
P (D|θi,Mi)P (θi,Mi)

P (D)
, (3.8)

where P (θi,Mi) is a prior probability for the model Mi with parameters θi and D denoting
the data. The P (D) term is just a normalization term, defined by:

P (D) =

∫
P (D|θ,Mi)P (θi,Mi)dθ. (3.9)

P (D) is calculated over all parameter space. One of the essential features of Bayesian frame-
work is the marginalization over all parameters, also called the Bayesian Evidence (BE):

E(Mi) =

∫
P (D|θ,Mi)P (θi|Mi)dθ. (3.10)

– 7 –
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lnBij Support

lnBij ≤ 1 Not worth more than a bare mention

1 ≤ lnBij ≤ 2.5 Significant/Weak

2.5 ≤ lnBij ≤ 5 Strong to very strong/Significant

5 < lnBij Decisive/Strong

Table 4. Bayesian Evidence.

BE conveys the principle of Ockham’s razor and allows one to compare different models,
through the Bayes factor [37–39]:

Bij =
E(Mj)

E(Mi)
. (3.11)

Note that in this definition we follow the convention of ref. [38] in such a way that if
E(Mj) > E(Mi) then lnBij is positive. The interpretation of BE through the Bayes factor
is the so called Jeffreys scale [40], which is shown on table 4 as modified by [29, 41].

As discussed on [38], the Bayesian evidence can be written as

E =

∫
L(p)π(p)dp, (3.12)

where π(p) is the prior probability distribution for the parameters. Assuming flat priors, we
may write:

E =
1

Vπ

∫
Vπ

L(p)dp, (3.13)

where Vπ is the volume in the parameter space spanned by the prior. As one may see, the
Bayesian evidence can be quite dependent over the prior choice, even if it is flat. However,
as discussed on [39], this dependence is weaker if one chooses large prior intervals. In fact,
if the prior volume is large enough to encompass all the region that the likelihood is non-
negligible, one can ensure that the logarithmic Bayesian evidence grows linearly with the
logarithmic prior volume, as expected. Based on this, we choose conservative priors for the
model parameters, ensuring that the 3σ likelihood constraints are quite inside of the prior
volume region. In some cases, we had to limit the priors with physical considerations. For
instance, to avoid big bangless models, we must impose α ∈ [0, 1]. However, these limits were
always inside the 3σ likelihood constraints, as one may see on figure 1.

4 Observational constraints

In this section, we used the 580 Supernovae Type Ia (SNe Ia) data set of Union 2.1 [3] in
order to obtain constraints over the free parameters of the models listed on table 1.

4.1 Supernovae type Ia constraints

The parameter-dependent distance modulus for a supernova at the redshift z can be computed
through the expression

µ(z|s) = m−M = 5 log dL + 25, (4.1)

– 8 –
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where m and M are respectively the apparent and absolute magnitudes, s ≡ (H0, α, β, n)
is the set of free parameters of the model and dL is the luminosity distance in units of
Megaparsecs.

Since in the general case, H(z) has no analytical expression, we must define dL through
a differential equation. The luminosity distance dL can be written in terms of a dimensionless
comoving distance D by:

dL = (1 + z)
c

H0
D . (4.2)

The comoving distance can be related to H(z), neglecting spatial curvature, by the
following relation [42]:

D′(z) =
1

H(z)
, (4.3)

where the prime denotes derivation with respect to redshift z. This equation, together with
eq. (2.19) can be seen as a system of differential equations over the variables (H(z), D(z)).
The initial conditions are, naturally, (H(z = 0) = 1, D(z = 0) = 0).

This system may now be solved numerically. In order to constrain the free parameters
of the models, we considered the Union 2.1 SNe Ia data set from Suzuki et al. [3]. The best
fit set of parameters s was estimated from a χ2 statistics with

χ2
SN =

N∑
i=1

[
µi(z|s)− µio(z)

]2
σ2
i

, (4.4)

where µi(z|s) is given by (4.1), µio(z) is the corrected distance modulus for a given SN Ia
at zi being σi its corresponding individual uncertainty and N = 580 for the Union 2.1 data
compilation.

As usual on SNe Ia analyses, we rewrite the distance modulus:

µ = 5 log(DL) +M∗, (4.5)

where DL = (1 + z)D is dimensionless luminosity distance and M∗ ≡ 25 + 5 log c
H0

comprises
all the dependence over H0. Then, we marginalize the likelihood over M∗:

L̃(α, β, n) = N
∫ +∞

−∞
exp

[
−1

2
χ2(M∗, α, β, n)

]
dM∗, (4.6)

where N is a normalization constant. The corresponding χ̃2 = −2 ln
(
L̃
N

)
is given by:

χ̃2 = C − B2

A
, (4.7)

where

A =

N∑
i=1

1

σ2
i

, B =

N∑
i=1

5 log[DL(zi)]− µo,i
σ2
i

, C =

N∑
i=1

{
5 log[DL(zi)]− µo,i

σi

}2

. (4.8)

The result of this analysis can be seen on figure 1.
As one may see on figure 1, the models are well constrained by SNe Ia Union 2.1 data.

For panels 1a–1d we may see the likelihood L for parameters α and β of models M0 to M3,
respectively. In panel 1e, we see the likelihood contours for model M4, with free parameters
α and n, corresponding to 68.3%, 95.4% and 99.7% c.l. The same corresponding contours we
may see on panel 1f for model M5, with free parameters α and β. The detailed results for
each model can be seen on table 5.
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Figure 1. The results of our statistical analysis, with constraints from SNe Union 2.1 data. Panels
(a)–(d): likelihoods for the parameters on each indicated model, M0–M3, including 68.3% and 95.4%
confidence levels. Panels (e)–(f): contours for 68.3%, 95.4% and 99.7% confidence intervals for each
indicated model, M4 and M5. Explanation of each model is on text and table 1.
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Model α β n χ2
ν

M0 : Γ =
3αH2

0
H 0.776+0.021

−0.023 0 1 0.97107

M1 : Γ = 3α ρc0
ρdm

H 0.722+0.019
−0.020 — — 0.97103

M2 : Γ = 3αH0 0.702± 0.024 0 0 0.97259

M3 : Γ = 3βH 0 0.622± 0.025 — 0.97916

M4 : Γ = 3αH0

(
H0
H

)n
0.766+0.098

−0.11 0 0.8+1.5
−1.3 0.97270

M5 : Γ = 3α
H2

0
H + 3βH 0.74+0.28

−0.34 0.03+0.27
−0.23 1 0.97270

Table 5. Results of the analysis for the different models. Limits on the parameters correspond to
68.3% c.l. as explained on text.

Model χ2
min χ2

ν ν ∆AIC ∆BIC VP lnBi0

M0 : Γ =
3αH2

0
H 562.251 0.97107 1 0 0 1 0

M1 : Γ = 3α ρc0
ρdm

H 562.227 0.97103 1 −0.024 −0.024 1 0.043

M2 : Γ = 3αH0 563.131 0.97259 1 0.880 0.880 1 0.155

M3 : Γ = 3βH 566.936 0.97916 1 4.685 4.685 1 0.955

M4 : Γ = 3αH0

(
H0
H

)n
562.220 0.97270 2 1.969 6.332 20 0.921

M5 : Γ = 3α
H2

0
H + 3βH 562.213 0.97269 2 1.962 6.325 20 1.463

Table 6. Results of the model selection analysis for the different models.

4.2 Model selection of matter creation models

Next, we have calculated AIC, BIC and Bayesian Evidence for all models studied here. AIC
and BIC are relatively easy to compute, as they are directly obtained from χ2

min (3.3), (3.6).
The results are shown on table 6.

The ∆AIC values for the six models studied here are shown on fifth column of table 6.
In the second column, we have the values of reduced chi-square, χ2

ν = χ2
min/ν. The values of

χ2
ν vary little for all the models studied here, favouring slightly the model M1, the so called

LJO model, which gives the same background dynamics as ΛCDM. ∆AIC goes in the same
direction and indicates an slight preference for LJO. The values of ∆AIC in this column are
relative to M0, the CCDM model where Γ ∝ 1

H . Let us call it JO, for short. The models
that are excluded by the Akaike criterion are M3, M4 and M5, but mainly M3, due to its
high χ2 value. Because AIC penalizes too weakly the number of free parameters, it favours
M4 and M5 over M3 because they provide a lower χ2

min, although M4 and M5 have more free
parameters than M3. A Bayesian criterion, one which drastically penalizes the excess of free
parameters is thus necessary.

The values of ∆BIC for CCDM are shown on sixth column of table 6. As one may see,
BIC excludes model M3 due to bad fitting (∆χ2 = 4.685 relatively to M0) and it excludes
M4 and M5 due to excess of parameters. In fact, although the χ2

min is slightly lower for
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Figure 2. The results of our statistical analysis for model M ′
5, with constraints from SNe

Union 2.1 data.

these models, this small advantage is quite penalized due to the term ln 580 = 6.363 in BIC
equation (3.7). We may say that the big effort of adding one free parameter in M4 or M5

can not be justified by the small improvement of fitting obtained.

However, as we know, BIC is only an approximation of the Bayesian evidence. Bayesian
evidence is the most reliable tool to perform model selection, from the Bayesian point of
view. We have then calculated Bayesian evidences.

In order to calculate Bayesian evidences, we have used Romberg’s integration method,
written in FORTRAN, as explained in [43]. This method is interesting because it runs fast
and provides full control of fractional error. As multiple integrals involved in computing BE
in models M4 and M5 are only bidimensional, we choose to keep a deterministic integration
method, by replicating the Romberg integration, as explained in [43]. In order to control
convergence, we have integrated the posteriors with fractional errors 10−6 and 10−7. No
significant deviation was found, indicating convergence was achieved.

We have compared the CCDM models by using the Bayes factor (3.11). As mentioned
before, we use a convention where lnBij is positive in case that Ej > Ei. The results of this
analysis for the models studied here is in the eighth column of table 6, where we show the
values of Bi0, the Bayes factors relatively to model M0 (JO).

As one may see on table 6, while models M3 and M4 were barely acceptable in com-
parison with model M0, the only model that can surely be discarded by this analysis is
model M5.

As shown on figure 1f, in the case of model M5, there is a strong degeneracy between
parameters α and β, which prevents their independent determination. In order to alleviate
the degeneracy, we reparameterize this model with x = α−β, y = α+β. Let us call this new
parameterization model M ′5. The resulting constraints from SNe Ia can be seen on figure 2.

As can be seen on figure 2, the degeneracy is alleviated in the plane x− y. In fact, the
correlation coefficient decreased from rαβ = −0.9971 to rxy = 0.9392. The best fit parameters
were x = 0.66+0.85

−0.88 and y = 0.664+0.082
−0.10 . The reduced χ2

ν = 562.213/578 = 0.97269.

As we have just reparameterized the model M5, we may calculate E(M ′5) from E(M5)

by changing variables in the integral (3.13). As the Jacobian determinant |J | =
∣∣∣ ∂(x,y)
∂(α,β)

∣∣∣ = 2,
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the new Bayesian evidence will be given by E(M ′5) = 2E(M5)Vπ
V ′
π

. Choosing V ′π = 15, given that

Vπ = 20, the new Bayesian evidence is E(M ′5) = 2.67E(M5) = 0.09891, that is, the Bayesian
evidence is increased in this case. It yields to a Bayes factor lnB05′ = 0.912, which makes M ′5
barely acceptable and more competitive than M3, M4 and M5. One must be aware, however,
that this parameterization is not known a priori, nor it has any physical motivation. It just
shows that M5 can not be surely discarded if one allows for a reparameterization in order to
break parameter degeneracy.

An obvious extension of the models studied here would be a model with creation rate
Γ = 3αH0

(
H0
H

)n
+ 3βH. However, in our preliminary study we have found that SNe Ia from

Union 2.1 alone are not enough to constrain this model. In fact, even values of n up to
n ∼ 100 are allowed by this analysis. Thus, we choose not to include this analysis, as more
data would be needed to constrain this model, which is beyond the scope of the present work.

In order to compare our results with the current literature, the ref. [30] have obtained
∆AIC for three models analysed here, M1, M2 and M5 (CCDM1, CCDM2 and CCDM3 in
their analysis, respectively). They have calculated ∆AIC relatively to M1. Comparing with
their analysis, our result for M5 is quite similar. However, we did not find such a large ∆AIC
= 33.21 as they have found. Our ∆AIC for M5, relatively to M1, is ∆AIC = 1.993.

5 Conclusion

We have compared 6 spatially flat CCDM models, including one that is degenerate with the
ΛCDM model. The JO model is slightly favoured over ΛCDM in the Bayesian evidence,
however, ΛCDM and Γ = 3αH0 can not be discarded from this analysis. Models M3 and M4

can be moderately weak and M5 can certainly be discarded, unless a reparameterization is
made in order to break the parameter degeneracy. At this point, it is important to mention
that JO model is equivalent to the late phase of the model from ref. [23].

Further investigations of CCDM models may include spatial curvature, other back-
ground data and the evolution of density perturbations.
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