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1 Introduction

A model that correctly describes the whole evolution of the universe is one of the main
challenge of modern cosmology. In the standard model, the universe starts with the big bang
in a very hot and dense phase dominated by quantum effects, while the energy density is
greater than Planck energy. Then the universe suffer an abrupt expansion known as inflation
and evolves dominated by its material content, first radiation, followed by dark matter and
finally some kind of dark energy at late times. All models describing these phases can be
tested with great precision after the recent results from Planck mission [1–3]. In particular,
dozens of inflationary models based on a single-scalar field have been considered in [4, 5]
by using Bayesian statistical analysis and surprisingly they found that the better model is
described by the simplest version of inflation, a kind of vacuum decay model. A natural
question that appears is: what happens to the scalar field after inflation, since the universe
must enter a matter dominated phase? The answer coming from standard model is that the
universe passes to a reheating phase, where the oscillation of the scalar field transfers energy
to radiation and then to matter dominated era. In this way, any model that would be an
alternative to the evolution of the universe must describe all these phases satisfactorily.

Very recently, a class of mass dimension one fermions named Elko, initially proposed by
Ahluwalia and Grumiller [6–12] as a natural candidate to a fermionic dark matter particle,
underwent a profound overhaul in the definition of their duals, culminating with a field that
is local and Lorentz covariant [12, 13] (see also [14] for some additional support). Thus,
the interest for such class of non-standard spinors (NSS), or dark spniors, has increased in
recent years, since they are naturally neutral and has mass dimension one,1 which leads them
to satisfy only a Klein-Gordon type equation. The Elko field is constructed as a spin-1/2
field describing fermions that are eigenstate of the charge conjugation operator.2 Moreover,
as neutral fields, they are good and natural candidate to particles of dark matter in the
universe, an open problem in cosmology. Models in which the Elko field is considered as

1Dirac fermions have mass dimension 3/2.
2Dirac fermions are eigenstate of parity conjugation operator.
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candidate to dark matter or dark energy in the universe have been proposed recently [15–
35]. In the present work we are interested in the Elko field as a possible candidate to drive
inflation, following a matter dominated era and finishing as the responsible for the recent
cosmic acceleration of the universe. In this final phase, the Elko field just rolls down to the
minimum of a potential and acts as a cosmological constant term.

In order to compare the equations and results from a single scalar field driving the
inflation with the corresponding ones of Elko field, we present here a brief review of the scalar
field in a flat Friedmann-Robertson-Walker (FRW) background, following the references [4,
5, 36–38].

The Einstein equations for a single scalar field φ in a flat FRW metric are:

H2 =
κ2

3

[
1

2
φ̇2 + V (φ)

]
, (1.1)

Ḣ = −κ
2

2
φ̇2 , (1.2)

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (1.3)

with V ′(φ) ≡ dV/dφ, H ≡ ȧ/a the Hubble expansion parameter, κ2 ≡ 8πG = 1/m2
pl with

c = 1 and mpl ≈ 1019GeV is the Planck mass.
The energy density and pressure for the scalar field are given by

ρ =
φ̇2

2
+ V (φ) , (1.4)

p =
φ̇2

2
− V (φ) . (1.5)

Given a potential V (φ), inflation occurs if the slow-roll parameters ε and η satisfies [36]:

ε(φ) ≡ |Ḣ|
H2
' 1

κ2

(
V ′(φ)

V (φ)

)2

� 1 , (1.6)

|η(φ)| ≡

∣∣∣∣∣ φ̈Hφ̇
∣∣∣∣∣ '

∣∣∣∣∣ 1

κ2
V ′′(φ)

V (φ)

∣∣∣∣∣� 1 , (1.7)

which justifies to neglect the kinetic term from (1.1) (φ̇2/2� V (φ)) and the acceleration term
from (1.3) (φ̈� 3Hφ̇). Although being necessary conditions to drive inflation, the smallness
of such parameters is not sufficient to guarantee that those terms can be neglected [36].
Sometimes, the additional assumption φ̇ ' −V ′/3H is also needed. Such parameters are
used to restrict the form of possible potentials and these conditions ensure that the onset of
expansion is approximately exponential, as required by all inflationary theories.

An alternative expression for the condition to inflation occur is given by [36]:

d

dt

H−1

a
< 0 , (1.8)

showing that the comoving Hubble length H−1/a is decreasing with time.
Dozens of potential have been proposed in last decades in order to drive the inflationary

phase of expansion of the universe. Some of them have physical motivations whilst other
are just placed by hand in order to furnish correct results. References [4, 5] makes a de-
tailed statistical analysis on several potentials based on recent Planck mission results [1–3],
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indicating which of them are good or not to drive inflation. We just cite some potential of
interest, as power law potential (or chaotic inflation), exponential potential, inverse power
law potential, hill-top models, symmetry breaking potential, natural inflation, hybrid infla-
tion (or multi fields inflation), among others. In all these potentials there are parameters
to be adjusted according to duration of inflation for instance, measured by the number of
e-foldings N ≡ ln(aend/ainitial). Also to measure the correct transition to the end of the in-
flationary era, called reheating phase and most important, the correct prediction of density
perturbations, responsible for the formation of galaxies and cluster of galaxies and also for
the anisotropies in the cosmic microwave background (CMB) radiation. This last test throw
away several potentials based on Planck 2013 observations [1–3].

As already pointed out above, another important characteristic of inflationary models is
how inflation ends. The scalar field, after rolling down to the bottom of the potential, needs
to leave the scene in order to next phase of the universe takes place. In other words, the
scalar field must decay to its minimum value in order not to act any more. This process is
called reheating. A hot universe at the end of the inflation is a necessary condition in order to
radiation dominate and also the conventional matter start to form while the temperature is
cooling down. In the modern inflationary model, the scalar field oscillates while rolls down to
the bottom of the potential, transferring energy to other matter fields, or even decaying into
standard particles. The details of reheating are an important subject into the inflationary
cosmology. Some models add a phenomenological decay term to the equation of motion of
the scalar field (after inflation, the term φ̈ is important again):

φ̈+ 3Hφ̇+ V ′(φ) + Γφ̇ = 0 , (1.9)

where Γ is considered a decay rate of the field φ into other particles [36, 39, 40]. Such friction
term is also needed to make fine adjustments in theory, not allowing inflation to occur forever
for instance. Such term can be calculated in standard models of inflation in terms of the
coupling between the inflaton field and the particles it couples in order to control the damping
of oscillations during the reheating [40].

After all, having the inflation occurred, the scalar field rolling down to the bottom of
the potential and oscillating accordingly with the last term of (1.9) to correctly stop the
inflation, a final key question still prevails. What is such scalar field? It is named inflaton,
the particle responsible for the inflation, but his very nature is not known yet. The only
fundamental scalar particle detected in the nature is the Higgs field, responsible for the
electro-weak symmetry breaking, which also put scalar field based inflation scenarios as the
most attractive ones. For this reason alternative models would also have the same behaviour
as the standard scalar field one.

All the observed matter in the universe are constituted by fermions, which motivated
us to construct an inflationary model with the fermionic dark spinor called Elko. Being a
good candidate to describe dark matter in the universe we have found that it can drive the
inflation and the dark matter evolution after inflation, very close to standard scalar field based
models. Also, the recent accelerated expansion of the universe can be correctly described if
a cosmological constant like term be added to the potential of the field. Finally, since the
dark matter does not interact electromagnetically with other baryonic matter, the presence
of an additional electromagnetic radiation term into the original Lagrangian would reproduce
the radiation dominated phase after inflation, responsible for the nucleosynthesis, before the
dark matter dominance.3 In the present study we do not include an electromagnetic radiation

3We recommend to the reader the books by Kolb-Turner [39], specifically pages 73 and 274 where the
thermal history of the universe is traced by interesting figures, with very realistic orders of magnitude for
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term, thus only inflation, dark matter dominance and accelerated expansion are addressed
in this model. We aim to place the Elko inflationary model as an alternative to standard
scalar fields based models once it has basically the same behaviour but could also describe
the missing dark matter in the universe, which we believe to be described by a fermionic field.

The paper is organized as follows. In section 2, we introduce the main Elko equations
in cosmology. In section 3 we study numerically how Elko field can be a good candidate to
drive inflation, dark matter and late time cosmic acceleration. Section 4 finish with some
concluding remarks. Appendix A include a brief deduction of the main equations used in
section 2, for completeness. Appendix B present some details on the numerical analysis of
the coupled system of equations.

2 Elko dynamics in FRW

In momentum space, the mass dimension one fermionic Elko field [6–12] is represented by
λβ(k)S/A and constructed as fermions that are eigenstate of the charge conjugation oper-

ator C, satisfying a relation of type
¬
λβ (k)S/Aλβ′ (k)S/A = ±2mδββ′ , where λβ′ (k)S/A and

¬
λβ (k)S/A are the usual spinor and its dual, respectively, the index β stands for the two
possible helicities of the spinor and S/A stands for the self-conjugate spinor (S) and anti-
self-conjugate (A). The dual must be conveniently defined, and the first formulation defined

it as
¬
λβ= iεαβλ

†
αγ0, with εαβ = −εβα = +1 and γ0 the Pauli matrix. More details can be found

in [12–14] with another definition for the dual. While profoundly altering the quantum struc-
ture of the field, the definition for the dual of Elko does not alter its classical formulation,
so that cosmological applications remain valid. The four spinors λβ(k)S/A will act as ex-
pansion coefficients to construct the quantum analogue of the field, which we will call just
as λ(xµ). The positivity of energy will requires an anti-commutation relation for the fields,
thus the fermionic character of the quantum field is confirmed, along with all properties
that characterize a fermionic field, such as Pauli’s exclusion principle and obey Fermi-Dirac’s
statistics [7, 12].

In order to use the Elko field as the matter content in the universe, we will work with
its classical formulation, or in terms of average values of its quantum field in a classical
background. Also, in a curved homogeneous and isotropic space-time we assume that the
Elko field is filling all the space homogeneously [15–35], thus we can assume that it can be
split into a time dependent part and a flat space-time dependent part, which carries all the
spinor structure, namely, λ(xµ) = φ(t)ξ(x), such that ξ stands here, for simplicity, for one of

the four kinds of Elko discussed above, normalized as
¬
ξ ξ = ±1. A convenient choice for the

bare spinor ξ and its dual
¬
ξ is:

ξ =
1√
2


±i
0
0
1

 ¬
ξ=

1√
2

(
i, 0 0, ∓1

)
(2.1)

We choose to work with a positive norm spinor. Also, since the spinor ξ is constant, we will
refer to Elko field just as Φ(t) ≡ φ(t)ξ.

some parameters of the standard model of cosmology, both during and after inflation. Also the most up-to-
date books by Weinberg [41] and Peter & Uzan [42] are good references.
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Another important characteristic that Elko fields carries is that due to its mass dimen-
sion one the possible self-couplings of the field are limited. In particular, for Elko fields, the

only two allowed self-couplings are of the type 1
2m

2
¬
λ λ and 1

4α(
¬
λ λ)2. There are also the

possibility to couple it to a Higgs field [6, 7, 11].

In this paper we study the Elko field coupled to gravity in a Einstein-Cartan framework
following recent results [30, 31], and we show how it can be the responsible for all phases
of the universe. Appendix A contain a brief derivation of the main equations. The action
for the Elko field coupled to gravity in a homogeneous and isotropic metric has been al-
ready presented in the literature [18–20, 23, 30–35], for both torsion free and torsion coupled
equations. The Friedmann equations are given by:

H2 =
κ2

3

[
Φ̇2

2
+ V (Φ) +

3

8
H2Φ2 +

3

4
HhΦ2

]
+

(
1 +

κ2Φ2

8

)
h2 , (2.2)

Ḣ = −κ
2

2

[
Φ̇2 +

3

4
HhΦ2 − 1

4

d

dt
[(H + h)Φ2]

]
− 3

(
1 +

κ2Φ2

8

)
h2 , (2.3)

and the motion equation for the scalar part of the Elko field can be obtained by deriving the
first equation and using the second one:

Φ̈ + 3HΦ̇ + V ′(Φ)− 3

4
(H + h)2Φ = 0 , (2.4)

where

h(t) = −1

8

κ2Φ2

(1 + κ2Φ2/8)
H , (2.5)

is the only non-null torsion function in the specific case of a homogeneous and isotropic
metric [44]. After substituting (2.5) into eqs. (2.2)–(2.4) and rearranging we are left with:

H2 =
κ2

3

(
1 +

κ2Φ2

8

)[
Φ̇2

2
+ V (Φ)

]
, (2.6)

Ḣ = −κ
2

2

(
1 +

κ2Φ2

8

)[
Φ̇2 − 1

2

HΦΦ̇

(1 + κ2Φ2/8)2

]
, (2.7)

Φ̈ + 3HΦ̇ +
dV (Φ)

dΦ
− 3

4

H2Φ

(1 + κ2Φ2/8)2
= 0 , (2.8)

together the equations for energy density and pressure [31]:

ρ =
Φ̇2

2
+ V (Φ) +

3

8

H2Φ2

(1 + κ2Φ2/8)
, (2.9)

p =
Φ̇2

2
− V (Φ)− 3

8

H2Φ2

(1 + κ2Φ2/8)
− 1

4

ḢΦ2

(1 + κ2Φ2/8)
− 1

2

HΦΦ̇

(1 + κ2Φ2/8)2
. (2.10)

Notice that the structure of such system of equations is much richer than those cor-
responding to a standard scalar field, eqs. (1.1)–(1.5). For this reason the Elko field can
be a good candidate to drive not only the inflationary phase of the universe, but also the
subsequent phases, as dark matter evolution and accelerated expansion. In which follows we
will considerer the above set of equations for each of these eras.

– 5 –
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Figure 1. Potential (3.1) (in units of m4
pl) constructed with v0 = 0 (black line) or shifted by

v0 = 3.0× 10−22 (red line).

3 Numerical results

In this section it is presented the numerical results concerning tree different phases of expan-
sion of the universe, namely the inflation, dark matter evolution and late time acceleration.
A few more details on the numerical equations and values for parameters used are given in
appendix B.

3.1 Chaotic Elko inflation

Now let us start considering the Elko field as a candidate to inflaton field in the universe.
We will consider a symmetry breaking potential type plus a constant v0, namely:

V (Φ) = v0 + Λ4

(
1− Φ2

σ2

)2

= V0 −
1

2
µ2Φ2 +

α

4
Φ4 , (3.1)

where V0 = v0 + Λ4, µ = 2Λ2/σ and α = 4Λ4/σ4, with Λ, σ and v0 � Λ4 positive constants.
It is well known that such kind of potential represents a particle of physical mass m =

√
2µ

and has a minimum at Φ = σ. Such minimum is zero if v0 = 0, as showed in figure 1 (black
line), or shifted by v0, as showed in figure 1 (red line).

Following the chaotic inflationary model by Linde [38] we consider the pre-inflationary
phase of the universe composed by Elko fields distributed chaotically over all the space. In
particular we consider that most of fields satisfies4 Φ & mpl ≈ 1019GeV and its time variation
is greater than the variation of Φ in a Hubble time, Φ̇ � HΦ, which means it is important
during inflation. If the inflation occurs at about t ∼ H−1 ≈ 10−34s ≈ 10−10GeV−1 we have

4Notice that a classical description of the evolution of the universe is possible for an energy density satisfying
ρ � m4

pl ∼ 1076GeV, thus our only requirement is V (Φ) � m4
pl which may be achieved if α � 1 for the

potential (3.1). From now on we will write explicitly κ2 = 8πG = 8π/m2
pl.

– 6 –
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H � mpl, thus the last terms of (2.7) and (2.8) can be discard and we have

H2 =
8π

3m2
pl

(
1 +

πΦ2

m2
pl

)[
Φ̇2

2
+ V (Φ)

]
, (3.2)

Ḣ ≈ − 8π

2m2
pl

(
1 +

πΦ2

m2
pl

)
Φ̇2 , (3.3)

Φ̈ + 3HΦ̇ + V ′(Φ) ≈ 0 , (3.4)

Except for the term inside curl brackets (that is important only in the limit Φ & mpl)
these expressions are quite equivalent to (1.1)–(1.3). Such impressive result shows that all
successful inflationary models with a (unknown) scalar field can now be used here, where
the inflaton field is the Elko field, a much more physically reasonable field that is a natural
candidate to dark matter particle. In particular, the slow-roll condition (1.6) responsible for
the beginning of the inflation is maintained (considering V � Φ̇2), since that the ratio Ḣ/H2

will exactly cancel the term inside curl brackets, which ensures that such inflationary model
starts exactly as in the standard scalar field model. For the second slow-roll condition (1.7)
it can be shown that it is written as:

|η(Φ)| '

∣∣∣∣∣ 1

κ2
V ′′(Φ)(

1 + κ2Φ2/8
)
V (Φ)

∣∣∣∣∣� 1 , (3.5)

so that when Φ � mpl the expression (1.7) is recovered and when Φ � mpl we have η '
(m4

pl/8π
2Φ2)(V ′′/V ).

After inflation start the field must decay according to the general equations (2.6)–(2.8).
We will present some numerical results for the complete system of equations (2.6)–

(2.10) taking the particular potential (3.1) in order to illustrate the validity of the model (see
appendix B for some details). Before that, let us make some estimates on the parameters
of V (Φ) in order to reproduce viable models of inflation. First notice that the parameter σ
is an energy scale that characterize the final evolution of the field Φ, since that the initial
field Φi > σ rolls down to the bottom of the potential and when Φ→ σ the potential vanish,
V (Φ → σ) = 0 and the inflationary mechanism ends. In this sense it will characterize the
number of e-foldings of the inflation. It is also directly related to the physical mass of the
field, together the parameter Λ, from (3.1). The parameter Λ characterizes the total potential
energy of the field and a strong constraint into it is V (Φi) � m4

pl, which guarantees that
the field energy is bellow Planck scale. We also expect inflation to occur after a initial time
ti ∼ 10−35 s, once we do not know exactly what happens before such time, and finish at about
tf ∼ 10−32 s. After that the universe expands according to the standard model of cosmology.

Now we will present the numerical results for the following set of parameters: v0 = 0,
Φi = 2.1mpl, σ = 1.0mpl and Λ = 5× 10−6mpl ' 6.1× 1013GeV. For our model we have at
the beginning of inflation:

H2(ti) '
8π

3m2
pl

(
1 +

πΦ2
i

m2
pl

)
V (Φi) ' 9.04× 10−19m2

pl , (3.6)

which leads to ti = H−1 ' 5.7 × 10−35s, a very reasonable value. Notice also that for such
Φi we have V (Φi) ' 7.2× 10−21m4

pl, which guarantees the condition V (Φi)� m4
pl. Also, for

such parameters we have ε ≈ 0.24 and η ≈ 0.011 for the slow roll parameters (1.6) and (3.5).

– 7 –
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The physical mass for such field is m =
√

2µ = 7.1× 10−11mpl ' 8.6× 108GeV and the value
of the self-coupling constant is α ' 2.5× 10−21.

Figure 2a shows the numerical result for the scale factor evolution for the parameters
indicated in the figure. We see that the scale factor grows for several order of magnitude
from an initial time ti ∼ 0 up to a final time of about tf ∼' 1.25 × 10−32 s as expected (tf
characterize the end of inflation, and we are using ti = 10−35 s in the numerical analysis).
The scale factor grows from ai = 1 to af ' 2 × 1040 during the inflationary phase, which
leads to an e-folding number of about N = 93, in reasonable accord to modern theories of
inflation. We have also verified numerically that the choice of the initial value of the field Φi

alters drastically the amount of e-foldings without to alter significantly its duration, which is
more sensitive to changes on the Λ parameter. Greater the values of Λ smaller the duration of
inflation. After this we observe that the exponential evolution stops and the universe evolves
in a non-accelerating phase.

Figure 2b shows the numerical behaviour for the field Φ(t). It starts from Φi = 2.1mpl '
3.9 × 1043 s−1 and Φ̇i = 0 and rolls down to the bottom of the potential, oscillating around
its minimal value of Φ̄ = σ = 1.0mpl in this case. The black line shows the numerical result
for the complete eq. (2.8), including its last term, and red line shows the behaviour in absent
of last term. It is clear that the presence of the last term causes a kind of damping while
the field rolls down, delaying its fall to the bottom of the potential. Such behaviour is an
analogous to that one of the phenomenological term proportional to Γ for the standard scalar
field (1.9).

Figure 2c shows the evolution of H(t) decreasing abruptly after inflation and figure 2d
the evolution of H(t)−1/a(t), showing that its time derivative are negative up to about
tf ∼ 1.20× 10−32 s, as required by (1.8).

3.2 Dark matter evolution

Now let us analyse how is the behaviour of the Elko field after inflation. As already indicated
by the figure 1, after inflation the scale factor evolution change its concavity and another
phase of evolution takes place. It is well known from standard model of cosmology that
the next phase is a radiation dominated universe, scaling as t1/2, since the hot universe just
after inflation is the responsible for the CMB radiation observed today, as the universe cools.
After radiation the universe enters a phase dominated by dark matter, scaling as t2/3, the
pressure of matter is null, indicating that particles stops its collisions and galaxies and cluster
of galaxies start to form.

Contrary to the standard inflationary model constructed with a scalar field, where the
inflaton field must decay to zero during the reheating in order to radiation and dark matter
start to dominate, in our model constructed with the Elko field the evolution continues driven
by equations (2.6)–(2.10). In figure 3a we show the numerical analysis for the evolution of the
scale factor for a very long time after inflation (black line), with the same parameters before.
We also plotted in the same figure a scale factor evolution of the form t2/3 (red line) for a
matter dominated universe, just for comparison. It is clear from the analysis of the figure
that the evolution after inflation is exactly like a matter dominated universe, as expected,
since the Elko field has exactly the physical characteristics of a dark matter particle.

Another way to analyse such evolution after inflation is by mean of the equation of state
parameter:

ω(t) =
p(t)

ρ(t)
. (3.7)
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(a) (b)

(c) (d)

Figure 2. Numerical results for the parameters a(t), Φ(t), H(t) and H(t)−1/a(t) during the inflation-
ary phase, from ti = 1.0× 10−35s up to tf = 3.0× 10−32s, obtained with the parameters Φi = 2.1mpl,
σ = 1.0mpl, Λ = 5 × 10−6mpl ' 6.1 × 1013GeV and v0 = 0. (a) Evolution of the scale factor a(t)
with initial condition ai = 1. (b) Decay of the field Φ(t) (in units of s−1) for initial values above
and also dΦ(0)/dt ≡ Φ̇i = 0 for the equation (2.8) in the presence of the last term (black line) and
in the absence of the last term (red line). (c) Evolution of H(t) (in units of s−1). (d) Evolution of
H(t)−1/a(t).

A numerical analysis for ω(t) taking (2.9)–(2.10) is showed in figure 3b. After start from
ω = −1, a vacuum type equation of state parameter, responsible for the acceleration during
inflation, the equation of state parameter starts to oscillate at the end of inflation. The first
amplitude grows from −1 to slightly above 1 while the second grows from −1 to above 0. It is
clear that the average oscillation is around 0, showing that during all the future evolution the
equation of state parameter is of dust type, or pressureless, as required by a dark matter field.
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(a) (b)

(c) (d)

Figure 3. (a) Numerical result for the scale factor evolution for a long time (black line). In red line
we plot the function a(t) = a0t

2/3 for comparison, with a0 = 1.30× 1062. (b) Numerical analysis for
ω(t) from (3.7). The average oscillation is around ω = 0. (c) Extrapolation of the curve a(t) = a0t

2/3

up to present time (red dashed line) and the numerical result for a(t) (black line) in logarithm scale.
(d) Numerical result for the evolution of the energy density (2.9) during the inflation (black line) and
extrapolated function up to present time (red dashed line) (in units of s−4).

Due to numerical limitations (long time of calculations), we cannot cover all the time
scale up to present time for the evolution of the scale factor. Nevertheless, having the
function that plots the evolution after inflation, namely a(t) = a0t

2/3, we can extrapolate
such function up to present time. This is shown in figure 3c (red dashed line) in a logarithm
scale. In black line we shown the numerical result for a(t) up to t ∼ 10−28 s. Notice that the
end of time scale is about ' 1018 s, exactly today. The scale factor growth to about 1074,
exactly as predicted by standard model of cosmology [39, 41, 42].
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Another very important quantity concerning the Elko field during its evolution is its
energy density ρ, given by (2.9). During the inflationary phase we expect it to be nearly
constant. At the end of inflation the energy density of the universe must be about 1070 −
1065 g/cm3, depending exactly when the inflation ends [39, 41, 42]. In figure 3d we plot
in a logarithm scale the numerical result for the energy density (2.9) during inflation and
just after it. It is clear that the energy density is nearly constant at beginning and then
decreases abruptly after inflation ends. If the inflation ends at about tf ∼ 10−32 s, the
corresponding energy density at this time is about 10150 s−4 ∼ 1053 GeV4 ' 1070 g/cm3, in
a good agreement to estimates of standard model. This is an important constraint of the
model. Also, if we extrapolate the curve of the energy density up to present time, showed
in red dashed line of figure 3d, we obtain an energy density for the present time of about
1052 s−4 ∼ 10−45 GeV4 ' 10−28 g/cm3. The estimated value for the present time is about
10−27 g/cm3, also indicating a good agreement to standard model, since we must also add
baryonic matter and radiation to current model of cosmology.

3.3 Recent cosmic acceleration

As a final remark let us see how we can address to this model the recent accelerated evolution
of the universe. Looking for the potential from figure 1 with v0 = 0 (black line), it is clear that
as the field rolls down to its average value Φ̄ = σ and goes to the bottom of the potential we
have V (Φ̄)→ 0 and the evolution follows as t2/3. But we have noticed that, if the potential
is slightly shifted by a small v0, we have V (Φ̄) → v0 and such term will act exactly as a
cosmological constant term at the future evolution of the universe.

Figure 4 shows the numerical analysis in a arbitrary time scale for the behaviour of scale
factor in the presence of such term. It is clear that the universe starts in an inflationary phase
at ti that ends at tf , then it passes to a phase nearly proportional to t2/3 from tf to t∗ and
then it starts a new accelerating phase after t = t∗. In the numerical analysis we have used
v0 = 1.0×10−28m4

pl, but the value of t∗ is not realistic here, since the acceleration starts only
in the future. Even in this qualitative analysis, it is also obvious that the actual accelerating
phase is much more smooth than the inflationary evolution. We have also verified numerically
that the instant of time where the acceleration start to dominate is dependent just on v0.
When v0 → 0 the crossing between the two curves of figure 4 will occur each more in the
future, namely t∗ →∞. The precise value of v0 must be constrained by observations.

4 Concluding remarks

In this paper we have studied a cosmological scenery where the mass dimension one Elko
field subject to a symmetry breaking potential is the only matter content of the universe.
Following the chaotic inflationary model, for an Elko field characterized by a time evolution
represented by Φ(t) at an initial energy scale Φi > mpl, we have obtained numerically that the
dynamical evolution of the Elko field rolling down to the bottom of the symmetry breaking
potential has the desired properties of an inflaton field. The slow-roll conditions for the
system were obtained in the limit H � mpl and it was showed that they are satisfied for the
initial conditions in the present case.

Several important aspects can be found in the model after numerical results. First,
a nearly exponential growth of the scale factor from ti ∼ 10−35 s up to 10−32 s leads to
an inflation of about N = 93 e-foldings. After inflation, the field enters a dark matter
era evolving as t2/3, oscillating around the minimum of the potential, resting at an energy of

– 11 –



J
C
A
P
0
9
(
2
0
1
7
)
0
3
8

Figure 4. Evolution of the scale factor with a potential containing a shift term v0 (black line) and
the evolution proportional to t2/3 (red line), for comparison. The crossing of the curves occurs at t∗

that goes to infinity when v0 → 0.

about mpl, where the potential energy is null. The energy density at the end of inflation is the
expected one according to standard model, about 1070 g/cm3. By making an extrapolation
of the curve a(t) = a0t

2/3 up today, we have found that the scale factor growth to about
1074 order of magnitude, also in good agreement to standard model. Additionally, the energy
density of the field for present time is ρ ∼ 10−28 g/cm3, just one order of magnitude bellow
the predicted by standard model. Finally, if the potential is slightly shifted by a constant
term, the scale factor enters a new phase similar to a cosmological constant dominated
universe, reproducing the present accelerated phase of the universe. Such constraints on
different epochs are important results of the model, which must be better constrained with
observations and also including radiation and baryonic matter to the model.

Another interesting properties naturally follows from the system of equations. First,
the very similar form of the equations that governs the time evolution of Elko field with the
standard scalar field in the limit H � mpl. Also, the presence of a correction term similar to
a kind of damping term present in the standard scalar field model of inflation. Here such term
appears naturally. While the field is rolling down to the bottom of the potential its equation
of state parameter goes from −1 to an average oscillation around zero, which guarantees a
dark matter evolution after the initial exponential growth.

We have also verified numerically that greater the value of the initial field Φi greater the
number of e-foldings of the inflationary expansion. The σ parameter also alters the number
of e-foldings. Greater the value of the parameter Λ into the potential lesser the duration of
the inflationary exponential growth.

As a final remark concerning the inflation driven by Elko, if we consider the Elko field
just as a classical field, the numerical solutions shows that it has the desired properties to
drive inflation, but the physical mechanism to this can be better understood if we treat the
Elko field as a quantum one. The complete Elko field λ = Φ(t)ξ can be treated as an average
value 〈λ〉 of the quantum field, and the above set of equations must remain valid.

A possible way to understand the inflationary phase as a result of the Pauli exclusion
principle is as follows. In pre-inflationary phase the particles are filling the energy states
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according to Pauli exclusion principle, just one particle in the ground state, one particle in
the first excited state and so on, with a large energy spacing among them. But all particles
are rolling down to the bottom of potential, each one trying to occupy the minimal energy
state, while the degeneracy pressure prohibits particles of greater energy from occupying
lower energy states. Such system can stay in equilibrium in this configuration, as occurs in a
neutron star, or all particles can nearly reach the ground state energy (with a small energy
spacing among them) provided that the volume of the system increase significantly, as occurs
after inflation. It is well known that the energy spacing in some quantum systems are inversely
proportional to its volume. The effect of the degeneracy pressure is to enlarge the system,
given rise to inflation, where the volume of the whole system increases in order to allow the
particles to occupy nearly the lowest energy state. Thus the Pauli exclusion principle act as
a repulsive force and makes the whole system to expand, given rise to inflation. Notice that
such quantum interpretation is not possible for a bosonic scalar field, the main ingredient in
the standard model of inflation.

This and other properties deserves future investigations in order to place the Elko field
as a good candidate to drive inflation and other phases of evolution of the universe.

A Elko in Einstein-Cartan framework

The action for Elko field in a general Einstein-Cartan framework is:

S =

∫
d4x
√
−g
[
− 1

2κ2
R̃+

1

2
gµν∇̃µ

¬
λ ∇̃νλ− V (

¬
λ λ)

]
. (A.1)

The flat FRW metric with a lapse function N(t) can be written in terms of vierbein:

gµν = e a
µ e

b
ν ηab, (A.2)

where ηab = diag(1,−1,−1,−1) and e a
µ is given by

e a
µ = [N(t), a(t), a(t), a(t)] , eµa =

[
1

N(t)
,

1

a(t)
,

1

a(t)
,

1

a(t)

]
. (A.3)

Greek indexes stands for curved spacetime and latin indexes for Lorentz indexes. Dirac
matrices γµ in curved spacetime are related to γa in Minkowski spacetime by γµ = eµaγ

a,
satisfying:

γµγν + γνγµ = 2gµν , γaγb + γbγa = 2ηab. (A.4)

The covariant derivatives of a spinor and its dual are defined as

∇̃µλ ≡ ∂µλ− Γ̃µλ , ∇̃µ
¬
λ≡ ∂µ

¬
λ +

¬
λ Γ̃µ , (A.5)

where tilde denotes the presence of torsion. The spin connection Γ̃µ is given by [43]:

Γ̃µ =
1

8
ωµ

ab [γa, γb] , (A.6)

where ωµ
ab = eaν∂µe

νb + eaνΓ̃νµρe
ρb and the affine connection containing the contorsion Kρ

µν

is given by:
Γ̃ρµν = Γρµν +Kρ

µν , (A.7)
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where Γρµν is the standard Christoffel symbol. The contorsion is written in terms of the
torsion tensor T ρµν as:

Kρ
µν = −1

2
(T ρµν + T ρ

µν + T ρ
νµ ) . (A.8)

For a homogeneous and isotropic metric in a Riemann-Cartan spacetime, the non-vanishing
components of torsion are [44]:

T110 = T220 = T330 = −T101 = −T202 = −T303 = a(t)2h(t), (A.9)

Tijk = 2a(t)3f(t)εijk, (A.10)

and the functions h(t) and f(t) are general and εijk is the totally antisymetric symbol. The
non-vanishing components of the connection are [45]:

Γ̃0
00 =

Ṅ

N
, Γ̃0

ij =
aȧ+ a2h

N2
δij , Γ̃i0j =

ȧ+ ah

a
δij , Γ̃ij0 =

ȧ

a
δij , Γ̃ijk = −afεijk . (A.11)

The Ricci curvature scalar is:

R̃ = −6

[
1

aN

d

dt

(
ȧ+ ah

N

)
+

(
ȧ+ ah

aN

)2

− f2
]
. (A.12)

By assuming the Elko fields as λ = φ(t)ξ ≡ Φ(t), such that ξ is a constant spinor and
¬
ξ ξ = 1,

the lagrangian density reads:

L = − 1

N

(
3aȧ2

κ2
− 3a3h2

κ2
− 1

2
a3Φ̇2 − 3

8
a(ȧ+ ah)2Φ2

)
−N

(
3a3f2

κ2
+

3

8
a3f2Φ2 + a3V (Φ)

)
,

(A.13)
where V (Φ) is the potential.

Taking the Euler-Lagrange equations with respect to N(t), a(t), Φ(t), h(t) and f(t) we
obtain (setting N → 1 at the end), respectively

3H2 = κ2
[

Φ̇2

2
+V (Φ) +

3

8
H2Φ2+

3

4
HhΦ2

]
+3

(
1+

1

8
κ2Φ2

)
h2+3

(
1+

1

8
κ2Φ2

)
f2 ,

(A.14)

−2Ḣ − 3H2 = κ2
[

Φ̇2

2
− V (Φ)− 3

8
H2Φ2 − 1

4

d

dt
[(H + h)Φ2]

]
+ 3

(
1 +

1

8
κ2Φ2

)
h2

− 3

(
1 +

1

8
κ2Φ2

)
f2 , (A.15)

Φ̈ + 3HΦ̇ +
dV (Φ)

dΦ
− 3

4

(
(H + h)2 − f2

)
Φ = 0 , (A.16)

h(t) = −1

8

κ2Φ2

(1 + κ2Φ2/8)

(
ȧ

a

)
, f(t) = 0 , (A.17)

where H = ȧ/a, as usual. Written in this form, the right side of (A.14) and (A.15) are,
respectively, energy density and pressure of the field. Substituting h(t) and f(t) from (A.17)
into (A.14), (A.15) and (A.16) we obtain, after some algebraic manipulations, the equa-
tions (2.2), (2.3) and (2.4).

– 14 –



J
C
A
P
0
9
(
2
0
1
7
)
0
3
8

B Numerical analysis of the system of differential equations

In this appendix we will briefly present in a few more details the numerical method for
solution of the coupled system of differential equations (2.6)–(2.10) in order to construct the
figures of section 2. We use the DEtools Package from Maple 15 Software, where numerical
solutions are found by the method rkf45− dae, which is an extension of the rkf45 method,
which finds a numerical solution using a Fehlberg fourth-fifth order Runge-Kutta method
with degree four of interpolation.

For the figures concerning the scale factor a(t) and the field Φ(t) we use the equa-
tions (2.6) and (2.8) in the form:

da(t)

dt
− a(t)

√
κ2

3

(
1 +

κ2Φ(t)2

8

)[
1

2

(
dΦ(t)

dt

)2

+ V (Φ)

]
= 0 , (B.1)

d2Φ(t)

dt2
+ 3

1

a(t)

da(t)

dt

dΦ(t)

dt
+
dV (Φ)

dΦ
− 3

4

[
1

a(t)

da(t)

dt

]2 Φ(t)

(1 + κ2Φ(t)2/8)2
= 0 , (B.2)

The differential equation for a(t) is of first order while for Φ(t) is second order. Given a
potential V (Φ) we just need three initial conditions:

a(t = 0) = ai, Φ(t = 0) = Φi,
dΦ(t = 0)

dt
= Φ̇i (B.3)

We use:

V (Φ) = v0 + Λ4

(
1− Φ2

σ2

)2

. (B.4)

For the figures 2a, 2b, 2c and 2d, 3a, 3b, 3c and 3d we have used ai = 1, Φi = 2.1mpl =
3.9× 1043s−1 and Φ̇i = 0, σ = 1.0mpl, v0 = 0 and Λ = 5× 10−6. In figure 4 (black line) we
use the same parameters before with v0 = 1 × 10−28m4

pl. We have used κ2 = 8π/m2
pl with

mpl = 1.22× 1019GeV= 1.86× 1043s−1. Thus all the time scales are in units of seconds.

For the figure 3b notice that the pressure (2.10) contain a term Ḣ, which requires an
initial condition for ȧ(t = 0). To work around this issue we have used the expression (2.7)
for Ḣ in the form:

Ḣ = −κ
2

2

(
1 +

κ2Φ(t)2

8

)[(
dΦ(t)

dt

)2

− 1

2

1

a(t)

da(t)

dt

Φ(t)

(1 + κ2Φ(t)2/8)2
dΦ(t)

dt

]
, (B.5)

into the corresponding term of (2.10), thus the differential equation is of first order and the
above initial conditions are sufficient to evaluate ω(t).
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