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Introduction

Living cells must be able to sense and adapt to environ-
mental stress to survive, which requires the involvement 
of a regulatory signaling network to control stress defense 
(reviewed in Ho and Gasch 2015). The response to ambient 
pH in fungi was first investigated in model organisms, such 
as the filamentous fungus Aspergillus nidulans and the yeast 
Saccharomyces cerevisiae. The transcription factors PacC/
Rim101, in A. nidulans and S. cerevisiae, respectively, are 
the central regulators of the pH signaling pathway, which is 
characterized by being triggered by alkaline pH, leading to 
the activation of a protein cascade that results in the tran-
scription factor’s activation by proteolysis (Arst and Peñalva 
2003; Peñalva et al. 2008; Maeda 2012). Six components, 
the Pal/Rim proteins in A. nidulans and S. cerevisiae, respec-
tively, are involved in the pathway by transducing the envi-
ronmental pH changes to PacC/Rim101 transcription fac-
tors. Although filamentous fungi and yeast share the major 
components of the pH signaling pathway, new components 
have been described and characterized in a few organisms. 
The A. nidulans zinc binuclear DNA binding protein PacX, 
which is absent in yeasts, was reported to play a role in pacC 
gene repression (Bussink et al. 2015), and the Cryptococ-
cus neoformans RRA1 protein was shown to be required for 
Rim101 activation (Ost et al. 2015).

The response to neutral alkaline transition results in pro-
tein activation by proteolytic processing leading to protein 
translocation to the nucleus and activation of genes respon-
sive to alkaline conditions. Two successive proteolytic 
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cleavage steps at the C-terminus are described in the A. 
nidulans PacC transcription factor yielding the PacC27 final 
product (Díez et al. 2002; Hervás-Aguilar et al. 2007). The 
first proteolytic cleavage is pH-dependent and activated by 
the products of the pal genes, while the second is proteas-
ome-mediated and pH-independent (Díez et al. 2002; Peñas 
et al. 2007). The S. cerevisiae Rim101p requires only a sin-
gle cleavage step to be activated and is processed under both 
acidic and alkaline conditions (Li and Mitchell 1997; Lamb 
et al. 2001). An additional processed form under acidic pH 
was also described in Candida albicans Rim101p, suggest-
ing functions independent of alkaline pH (Li et al. 2004). 
Whereas S. cerevisiae Rim101p was described to play a role 
as a repressor (Lamb and Mitchell 2003), the Candida albi-
cans Rim101p works similarly to the A. nidulans PacC, act-
ing as a transcriptional activator under alkaline pH (Ramón 
and Fonzi 2003).

Although the pH signaling pathway components have 
been well characterized in nonpathogenic species, impor-
tant contributions to their role in cellular processes have 
been made in different model organisms including patho-
gens. Cellulase production by filamentous fungi is influ-
enced by ambient pH (Stewart and Parry 1981; Sternberg 
and Mandels 1979), and recent studies in A. nidulans have 
demonstrated that PacC is required for the proper expres-
sion of genes encoding cellulolytic and hemicellulolytic 
enzymes (Kunitake et al. 2016). In Trichoderma reesei, the 
TrPac1 ortholog regulates the expression of cellulase genes 
affecting the cellobiohydrolase, β-glucosidase and endo-β-
1.4-glucanase activities under neutral conditions (pH 6.5), 
whereas in alkaline pH (pH 8.0), the enzymes activities were 
not detected (He et al. 2014). The involvement of the signal-
ing pathway in response to osmotic (Luo et al. 2017; Lukito 
et al. 2015; Zhu et al. 2016), oxidative (Cervantes-Chávez 
et al. 2010), and cell wall stressors (Cervantes-Chávez et al. 
2010) was also described in different fungi. Finally, in S. 
cerevisiae, the Rim101 pathway was demonstrated to con-
tribute to adaptation to ER stress caused by changes in lipid 
asymmetry (Obara and Kihara 2017).

More recently, the pH signaling pathway has been 
reported as involved in pathogenesis in some model organ-
isms. Ambient pH is an important signal for opportunis-
tic pathogens and changes in external pH result in meta-
bolic alterations necessary for adaptation and survival. In 
C. albicans, Rim101 is required to invade oral epithelial 
cells (Nobile et al. 2008), and the disruption of Rim101 
suppresses the alkaline pH-induced filamentation (reviewed 
in Du and Huang 2016) leading to severe defects in viru-
lence (Davis et al. 2000; Yuan et al. 2010). Additional stud-
ies describing the contribution of the signaling pathway 
in fungal pathogenesis were reported. In C. neoformans, 
Rim101 is associated with cell wall remodeling by regulat-
ing the expression of cell wall genes (O’Meara et al. 2013), 

which are required for its adaptation in the immunity host 
(O’Meara et al. 2014; Ost et al. 2017). In Ustilago maydis, 
Rim101/PacC also mediates changes in cell wall architec-
ture; however, rim101/pacC mutant cells are not affected 
in virulence (Aréchiga-Carvajal and Ruiz-Herrera 2005; 
Franco-Frías et al. 2014). Finally, transcriptomic data have 
shown that the pH signaling pathway plays a role in multiple 
cellular processes (Serrano et al. 2002; Canadell et al. 2015; 
Roque et al. 2016) indicating how broadly it impacts on cel-
lular physiology and metabolism.

New insights into the PAC‑3 signaling pathway 
function in Neurospora crassa

The fungus Neurospora crassa, a model organism in stud-
ies of gene expression, metabolism, circadian rhythm and 
signal transduction, is able to respond and adapt to different 
environmental sensing (Borkovich et al. 2004). Its genome 
was sequenced (Galagan et al. 2003), and collections of 
knocked-out strains are available to the scientific commu-
nity (Colot et al. 2006). N. crassa shares all pal/rim compo-
nents with the A. nidulans and S. cerevisiae pathways: the 
proteins PAL-1, PAL-2, PAL-3, PAL-6, PAL-8 and PAL-9 
and the zinc-finger transcription factor PAC-3. In addition, 
orthologs of ESCRT (endosomal sorting complexes required 
for transport) and VPS (vacuolar protein sorting) proteins 
required for signal sensing and proteolytic activation of 
PAC-3 in response to ambient alkaline pH were identified 
in its genome (http://fungidb.org/fungidb). In N. crassa, the 
pac-3 gene expression is highly induced under alkaline pH 
(7.8), confirming its role in alkaline pH response (Cupertino 
et al. 2012). PAC-3 is proteolytically processed in a single 
cleavage step at alkaline pH similar to the Rim101p process-
ing in S. cerevisiae; however, low levels of the processed 
protein can be observed at normal growth (5.8) and acidic 
pH (4.2) (Virgilio et al. 2016).

One of the first investigations regarding the role of the 
pH signaling pathway in N. crassa metabolism was related 
to the control of phosphatase secretion under regulation of 
the Pal/PacC signal transduction pathway (reviewed in Rossi 
et al. 2013). More recently, the participation of PAC-3 in the 
regulation of the xylanase, cellulolytic and endoglucanase 
activities was also reported (Campos Antoniêto et al. 2017). 
An important metabolic process regulated by the pH signal-
ing pathway in N. crassa is the metabolism of the reserve 
carbohydrates glycogen and trehalose. Both are important 
storage carbohydrates being accumulated/required under dif-
ferent environmental conditions, depending on the organ-
ism, and, under heat stress, N. crassa degrades glycogen and 
accumulates trehalose (Neves et al. 1991). However, little 
is known on how the reserve carbohydrates are regulated 
in microorganisms, mainly regarding which transcription 
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factors are directly involved in this regulation under differ-
ent environmental conditions. Both carbohydrate levels are 
highly dependent on pH in N. crassa; higher glycogen levels 
were observed under acidic pH (4.2), and lower glycogen 
and trehalose levels under alkaline pH (7.8) when compared 
to normal pH (5.8) (Cupertino et al. 2012; Virgilio et al. 
2017). The PAC-3 transcription factor regulates the expres-
sion of most of the genes encoding enzymes involved in the 
metabolism of both carbohydrates and binds to their promot-
ers under normal and alkaline pH (Cupertino et al. 2012; 
Virgilio et al. 2017). All the PAL components, with the 
exception of PAL-9 (the PalI/Rim9 ortholog), were required 
for the proper levels of glycogen and trehalose under nor-
mal and alkaline pH (Virgilio et al. 2017), suggesting the 
requirement of an active pH signaling pathway. However, 
it is uncertain whether the processed PAC-3 form observed 
at normal pH, therefore likely an active protein, contributes 
to the regulation of the proper levels under normal pH. This 
statement should be true if the PAC-3 pathway is the only 
mechanism regulating pH responsive genes in N. crassa. 
However, we recently demonstrated that the calcium and pH 
signaling pathways might cooperate to maintain proper gly-
cogen and trehalose levels in N. crassa (Virgilio et al. 2017).

The N. crassa mutant strains in the components of the 
pathway showed high melanin production even under nor-
mal growth pH, a pigment important for cell protection and 
associated with virulence in many human pathogenic fungi. 
In addition, the tyrosinase gene, which encodes one of the 
rate-limiting enzymes controlling melanin production, was 
overexpressed in all mutant strains, and PAC-3 binds to the 
tyrosinase gene promoter under normal and alkaline pH (Vir-
gilio et al. 2016). These data led us to raise questions regard-
ing the connection between the pH signaling pathway and 
melanin accumulation in N. crassa. High melanin accumula-
tion was also reported in a N. crassa mutant strain deleted 
in MAK-1, a component of the mitogen-activated protein 
kinase (MAPK) cascade (Park et al. 2008). The interplay 
between the pH signaling pathway and the MAP cascade 
in the regulation of secondary metabolism deserves further 
investigation. An interesting finding is that the tyrosinase 
gene, the PAC-3 and MAPK pathways were described as 
required for female development in N. crassa (Chinnici et al. 
2014), suggesting that these signaling pathways may interact 
each other to regulate this important cellular process.

Signaling pathways coordinating responses 
to alkaline pH in N. crassa

The participation of additional transcription factors, in addi-
tion to PacC/Rim101/PAC-3, in the response to stressful pH 
conditions should be considered in coordinating functions or 
in a network regulation among different signaling pathways. 

The interaction of the PAC-3 signal transduction pathway 
with the calcineurin signaling pathway in the regulation 
of glycogen and trehalose levels in N. crassa was recently 
reported (Virgilio et  al. 2017). However, the molecular 
mechanisms involved in this interaction have not been yet 
investigated. The concerted action of both these signaling 
pathways, in addition to other pathways, in the high pH 
response is very well characterized in S. cerevisiae, and the 
data contribute to the understanding of the transcriptional 
responses under this condition (Serrano et al. 2002; Kullas 
et al. 2007; Ariño 2010; Serra-Cardona et al. 2015; Roque 
et al. 2016).

We demonstrated, in N. crassa, that glycogen and/or 
trehalose metabolism is regulated by the CRE-1 (Cuper-
tino et al. 2015), PAC-3 (Cupertino et al. 2012) and SEB-1 
(Freitas et al. 2016) transcription factors. In addition, we 
described that the CRZ-1 transcription factor cooper-
ates with PAC-3 to regulate the metabolism of both these 
carbohydrates under pH stress (Virgilio et al. 2017). The 
PAC-3 transcription factor was also described to regulate 
the expression of genes encoding holocellulolytic enzymes 
influencing the cellulase and xylanase activities (Campos 
Antoniêto et al. 2017). The production of cellulolytic and 
xylanolytic enzymes is regulated by glucose through the 
action of the CreA (A. nidulans), CRE-1 (N. crassa) or 
CRE1 (T. reesei) transcription factors. An in silico analy-
sis of the pac-3 promoter revealed the existence of numer-
ous putative DNA binding sites for transcription factors 
including the PAC-3 site itself (5′-BGCCVAGV-3′), the 
CRZ-1 (5′-RDGGCKNWR-3′) (Weirauch et al. 2014), the 
CRE-1 (5′-SYGGRG-3′) (Sun and Glass 2011; Cupertino 
et al. 2015), and the SEB-1 (5′-CCCCT-3′) sites (Freitas 
et al. 2016) (Fig. 1a). This suggests the existence of a cross-
regulation of all signaling pathways in different cellular 
processes in N. crassa. It was demonstrated that the PAC-3 
transcription factor binds to its own gene promoter under 
alkaline stress suggesting a feedback regulation (Virgilio 
et al. 2016). The expression of pac-3 was induced under 
calcium stress and the crz-1 gene expression was regulated 
by PAC-3 under neutral pH, suggesting the existence of a 
cross-regulation between the pH signaling pathway, medi-
ated by PAC-3, and the calcium pathway mediated by CRZ-1 
(Virgilio et al. 2017). We also demonstrate, by RNA-seq 
analysis, that the SEB-1 transcription factor regulates the 
pac-3 and pal-8 gene expression under heat stress (Freitas 
et al. 2016). Interestingly, CRE-1 and SEB-1 transcription 
factors are also required to maintain the proper levels of gly-
cogen and/or trehalose in N. crassa, revealing the existence 
of a regulatory protein network controlling the transcrip-
tional dynamics of this important biological process. Based 
on these results, we propose a model, in which we suggest an 
integrated regulation among the signaling pathways involv-
ing the PAC-3, CRE-1, CRZ-1, and SEB-1 transcription 
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factors in the regulation of reserve carbohydrate metabolism, 
melanin production, holocellulolytic enzymes activities and 
sexual development in N. crassa (Fig. 1b).

Conclusion

Extracellular pH impacts on a variety of cellular processes 
and the molecular mechanisms governing the response to 
pH may involve multiple signaling pathways resulting 
in the coordinated action of numerous proteins. The pH 
signaling pathway, mediated by the PACC/Rim101p tran-
scription factors, initially described in A. nidulans and S. 
cerevisiae, is the best studied pathway. Additional path-
ways are also involved in pH stress response, playing a 
role in parallel with the PACC/Rim101p signaling path-
way, and as consequence of these interactions, changes in 
numerous biological processes are expected. Additionally, 

recent studies have highlighted the important role of the 
pH signaling in fungal pathogenesis and virulence. In N. 
crassa, the PAC-3 pH signaling pathway was recently 
characterized, and has been shown to be involved in the 
regulation of diverse metabolic processes. The control of 
the reserve carbohydrate metabolism, under alkaline pH 
stress, requires the PAC-3 signaling pathway, and the cal-
cium signaling pathway may cooperate in such control. 
Finally, additional signaling pathways may interact with 
the pH pathway in the regulation of specific processes, 
highlighting the variety of cellular functions affected by 
pH stress in fungal species.
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Fig. 1   Schematic representation of a cross-regulation likely exist-
ing in N. crassa. a Schematic representation of the pac-3 promoter 
and the respective transcription factors DNA binding sites. b Cellular 

processes regulated by the concerted action of PAC-3, CRE-1, CRZ-
1, and SEB-1 transcription factors. Dotted line between PAC-3 and 
CRE-1 indicates an interaction likely existing, but not yet investigated
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