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Abstract
The existence of Lie symmetries in differential equations can generate transformations in the dependent and independent

variables and obtain new equations that may be easier to integrate. In particular, in some situations, one can reduce the

order and it is possible to obtain first integrals. Thus, this article presents the application of the fundamental Lie theorem to

obtain the complete solution of a classical nonlinear problem of the dynamics of mechanical systems: the bead on a rotating

wire hoop. From the first integral obtained with the Lie symmetry generators, the exact solution can be found with the aid

of the Jacobi elliptic functions.

Keywords Lie symmetries � Classical mechanics � Jacobi elliptic functions

1 Introduction

Many problems found in engineering can be modeled

through differential equations [1–3]. This type of equation

provides detailed information regarding the distributions or

changes of the dependent variable as a function of inde-

pendent variables [4]. Several methods can be used to

obtain solutions of these equations, both numerically and

with analytical approaches. The ability to find a solution, or

else, the integrability of the system, is possible if there is a

sufficient number of invariants associated with symmetries

[5, 6].

The Norwegian Sophus Lie was the first to use contin-

uous group as a way to produce a transformation to leave a

differential equation invariant [7–10]. The procedure pro-

posed by Lie has allowed to join many usual techniques to

solve differential equations that were known until the

nineteen century. These coordinate transformations in time

or spatial domain involve Lie symmetries that can reduce

the order, decouple the variables or to make integration

easier [9, 11, 12]. If the number of symmetries is equal or

bigger than the number of degree of freedom, the system is

completely integrable [10]. A symmetry of a system of

differential equations is a transformation that maps any

solution to another solution [5, 13]. Such transformations

are groups that depend on continuous parameters and

consist of transformations (point symmetries), acting in the

system space of independent and dependent variables, as

well as in all the first derivatives of the dependent variables

[14, 15]. Elementary examples of Lie groups include:

translations, rotations, and scaling [6, 8].

The Lie symmetries are already used to solve different

kinds of problems in mechanics, as for instance, vortex

fluid dynamics [16], heat equation [17–19], wave equation

[20, 21], continuum mechanics involving plasticity [22, 23]

and elasticity problems of rod, beams and plates

[22, 24, 25], beyond others. However, the extensive

application of the Lie theory to solve engineering problems

is not common yet. Thus, the main goal of the present

paper is to illustrate how to use the Lie symmetries to find

the analytical solution of a classical dynamic problem: a

bead on a rotating wire hoop. Here we describe in full

detail to the reader unfamiliar with the Lie theory, that the

authors believe that is the case of the most part of the
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readers of Journal of the Brazilian Society of Mechanical

Sciences and Engineering. The original point in our article

is to present the solution of the bead on a rotating wire

hoop and the order reduction using Lie symmetries

extracted directly using the motion equation.

This paper is organized in four sections as follows. First,

a brief introduction about the model used in this work and

the use of Lie symmetries in dynamics. Next, the Lie

symmetries of the bead on a rotating wire hoop are illus-

trated. Finally, the application of the use of Lie symmetries

to reduce and to solve the motion equation of bead on a

rotating wire hoop and the concluding remarks are

presented.

2 Bead on a rotating wire hoop

Figure 1 shows a point mass m (bead) sliding freely

without friction in a hoop of radius ‘ spinning with constant

angular velocity x in a constant gravitational field with

acceleration g. Thus, this bead moves on a surface of a

sphere of radius ‘. The reference frame fx; y; zg used is

solidary to the circular hoop. The generalized coordinate

used to describe this motion is given by h (measured from

the negative z-axis). In these conditions, the kinetic energy

of the bead is:

T ¼ 1

2
m‘2ð _h2 þ x2 sin2 hÞ; ð1Þ

and the potential energy is given by:

V ¼ mg‘ð1� cos hÞ; ð2Þ

where we chose the zero potencial energy point at h ¼ 0

(see Fig. 1). Thus, the lagrangian L ¼ T � V is:

L ¼ 1

2
m‘2ð _h2 þ x2 sin2 hÞ þ mg‘ cos h� mg‘; ð3Þ

By applying in the Euler–Lagrange equation [26, 27]:

oL
oh

� d

dt

oL
o _h

� �
¼ 0; ð4Þ

is obtained the equation of motion described by:

€hþ g

‘
� x2 cos h

� �
sin h ¼ 0; ð5Þ

where hðtÞ is the position angle varying in time t, the dot

upper represents the derivative with respect to the time, x
is the wire constant angular velocity, g is the acceleration

of gravity and ‘ is the wire radius.

The analytical solution of this motion equation is

already known, using other methods [28–30]. However,

several transformations could be applied to keep it invari-

ant and thus to solve it. The procedure proposed by Lie is a

powerful procedure to integrate differential equation. First

of all, it is necessary to find an infinitesimal generator for

all variables. After that, the prolongations are computed to

describe the higher order derivatives. By applying the Lie

theorem, the determining equations are obtained and can be

solved to find the symmetry generators [8, 31–34]. Next

section describes all above steps in full detail for the

beginning readers.

3 Lie symmetries

This section shows a brief introduction to Lie symmetries

and how to apply them in a dynamic problem described by

an ordinary differential equation to reduce the order and to

obtain an analytical solution.

3.1 Infinitesimal generators

A group transformation involving t and h to a continuous

parameter e 2 R can be taken from [8, 32, 33]:

�t ¼ wðt; h; eÞ; �h ¼ /ðt; h; eÞ; ð6Þ

where w and / are analytic functions that perform possible

transformation. One can expand �t and �h with MacLaurin

series close to e using:

�t � t þ e
ow
oe

����
e!0

� �
; �h � hþ e

o/
oe

����
e!0

� �
; ð7Þ

since e ! 0 constitutes the identity of the group. By

defining new functions called by infinitesimals:

Fig. 1 Bead on a rotating wire hoop
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nðt; hÞ ¼ ow
oe

����
e!0

; gðt; hÞ ¼ o/
oe

����
e!0

: ð8Þ

So the Eq. (7) becomes:

�t � t þ enðt; hÞ; �h � hþ egðt; hÞ: ð9Þ

One can define the tangent vector field, c ¼ n gf gT , of the
group at the point (t; h), where g and n are unknown and

need to be found to perform the symmetry transformation.

However, in addition to changes in the variables t and h, an

extension for the derivatives _h and €h must be obtained

before.

3.2 Prolongation of transformations and their
generators

The last section was concentrated on transforming the

dependent and independent variables by one-parameter

point transformations and to find their infinitesimal gen-

erators. However, if one wants to apply a point transfor-

mation to this differential equation, the changes of the

derivatives should also be known [35]. Moreover, one

needs to extend the infinitesimal generators. By obtaining
_�h:

_�h ¼ d�h
d�t

ð10Þ

where d�h ¼ dhþ edg and d�t ¼ dt þ edn. Differentiating

these terms with respect to t:

d�h
dt

¼ _hþ eDtðgÞ;
d�t

dt
¼ 1þ eDtðnÞ;

since that e ! 0 and applying the binomial rule1, Eq. (10)

becomes:

_�h ¼
_hþ eDtðgÞ
1þ eDtðnÞ

� f _hþ eDtðgÞg 1� eDtðnÞf g

¼ _h� _heDtðnÞ þ eDtðgÞ � e2DtðgÞDtðnÞ � _hþ ebð1Þ;

ð11Þ

where Dt is the total derivative given by:

Dt ¼
o

ot
þ _h

o

oh
þ €h

o

o _h
; ð12Þ

and the high order terms were disregarded (if e � 0, so

e2 ¼ 0), thus:

bð1Þ ¼ DtðgÞ � _hDtðnÞ ¼
og
ot

þ og
oh

� on
ot

� �
_h� on

oh
ð _hÞ2;

ð13Þ

hence, this is the first prolongation [11].

In systems of differential equations with higher order

terms as in the cases described by Eq. (5), should extend

the extension for these variables. One can write €�h due to the

vector field c ¼ n gf gT and e with the same procedure as

above from:

€�h ¼ d _�h
d�t

¼ Dtð _hþ ebð1ÞÞ
Dtðt þ enÞ ¼

€hþ eDtðbð1ÞÞ
1þ eDtðnÞ

�f€hþ eDtðbð1ÞÞgf1� eDtðnÞg � €hþ ebð2Þ;

ð14Þ

where [32]:

bð2Þ ¼Dtðbð1ÞÞ � €hDtðnÞ ¼
o2g
ot2

þ 2
o2g
otoh

� o2n
ot2

� �
_h

þ o2g

oh2
� 2

o2n
otoh

� �
ð _hÞ2 � o2n

oh2
ð _hÞ3

þ og
oh

� 2
on
ot

� �
€h� 3

on
oh

_h€h;

ð15Þ

is the second prolongation and where Dtðbð1ÞÞ is:

Dtðbð1ÞÞ ¼
obð1Þ

ot
þ _h

obð1Þ

oh
þ €h

obð1Þ

o _h
:

Finally, the generalized procedure for high order prolon-

gation is given by [32]:

bðkÞðt; h; _h; €h; . . .; h
k

Þ ¼ Dtð Þkg�
Xk
j¼1

k!

ðk� jÞ!j! h
ðk�jþ1Þ

Dtð Þjn;

ð16Þ

where k ¼ 1; 2; 3; . . . is the number of prolongation.

3.3 Lie theorem

Once known, the vector field c ¼ n gf gT , an infinitesimal

generator of symmetry can be obtained from:

X ¼
n

g

� �
�

o

ot
o

oh

8><
>:

9>=
>; ¼ n

o

ot
þ g

o

oh
: ð17Þ

By applying the second order operator U00:

U00 ¼ bð1Þ
o

o _h
þ bð2Þ

o

o€h
: ð18Þ

By rewriting Eq. (5), in the following form:

F t; h; _h; €h
� �

� €hþ g

‘
� x2 cos h

� �
sin h ¼ 0: ð19Þ

Such that, the Lie condition is:
1 (1þ x)k ¼ 1þ kxþ kðk�1Þ

2! x2 þ � � �
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ðU00 þ XÞF ¼ 0 ) U00 þ Xð ÞF

¼ n
oF
ot

þ g
oF
oh

þ bð1Þ
oF
o _h

þ bð2Þ
oF
o€h

¼ 0:
ð20Þ

The infinitesimal invariance criterion, described by

Eq. (20), involves t and h, and the derivatives of h with

respect t, such that n and g and their partial derivatives with
respect to t and h. After eliminating all dependencies

through the derivatives involving h, can be equated to the

coefficients of the remaining partial derivatives from h to

zero. This gives a large number of partial differential

equations to determine the functions n and g. These

equations are known as determining equations for the

symmetry group of a given system [8]. To find the solu-

tions of the determining equations, some symbolic

manipulation packages can be used, such as wxMaxima,

Mathematica, Maple, MathLie [33], Sym [36], and others.

3.4 The Lie symmetries of the bead on a rotating
wire hoop

After applying the Lie condition, Eq. (20), into Eq. (5), one

obtains the following determining equations:

o2n

oh2
¼ 0; ð21Þ

o2g

oh2
� 2

o2n
ohot

¼ 0; ð22Þ

3 sin h
g

‘
� x2 cos h

� � on
oh

þ 2
o2g
ohot

� o2n
ot2

¼ 0 ð23Þ

2 sin h
on
ot

g

‘
� x2 cos h

� �
� sin h

g

‘
� x2 cos h

� � og
oh

� g �x2 sin2 h� g

‘
� x2 cos h

� �
cos h

� �
þ o2g

ot2
¼ 0:

ð24Þ

Equations (21) to (24) can be simplified to obtain the fol-

low equations:

g ¼ 0; ð25Þ

on
ot

¼ 0; ð26Þ

on
oh

¼ 0: ð27Þ

Finally, solving Eqs. (25) to (27) produces the follow

infinitesimal generator:

X 1 ¼
o

ot
:

So the infinitesimal functions are:

n ¼ 1 and g ¼ 0;

that corresponds to the temporal translation, that is the

classic invariant that shows the energy conservation, since

no dissipation is assumed in the model.

It should be noted that in this example only one gen-

erator is obtained and hence a single first integral. Since the

system has a degree of freedom, hðtÞ , this indicates that the
system is completely integrable. Note that in some equa-

tions of motion it is possible to have more than one sym-

metry generator, for example, in the harmonic oscillator

[37, 38].

3.5 Order reduction of the ODE

We can introduce new coordinates f�hðt; hÞ; �tðt; hÞg sup-

posing that X is a vector field not vanishing at a point. The

change of variables is constructed using the methods for

finding group invariants. This implies that X is transformed

into the form o=o�t provided �h and �t satisfy the linear partial

differential equations [8]:

X 1ð�hÞ ¼ n
o�h
ot

þ g
o�h
oh

¼ 0;

X 1ð�tÞ ¼ n
o�t

ot
þ g

o�t

oh
¼ 1:

ð28Þ

To satisfy the condition (28) must be chosen �h ¼ h and

�t ¼ t. Expanding this condition to _�t e €�t, one obtains:

_�t ¼ d�t

d�h
¼ 1

_h
) €�t ¼ d _�t

d�h
¼ �

€h
_h3

ð29Þ

The new coordinates are used to rewrite Eq. (5):

�
€�t
_�t3
þ g

‘
� x2 cos �h

� �
sin �h ¼ 0: ð30Þ

A new projection j ¼ _�t and _j ¼ €�t is performed and the

Eq. (30) yields to:

� _j
j3

þ g

‘
� x2 cos �h

� �
sin �h ¼ 0: ð31Þ

After solving Eq. (31):

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2‘2 sin2 �hþ 2g‘ cos �hþC‘2

p
x2‘ sin2 �hþ 2g cos �hþ C‘

; ð32Þ

where C is a constant of integration.

The previous coordinates can be returned:

_�t ¼ d�t

d�h
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2‘2 sin2 �hþ 2g‘ cos �hþ C‘2

p
x2‘ sin2 �hþ 2g cos �hþC‘

; ð33Þ

so:

�t ¼
Z

d�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 sin2 �hþ 2 g

‘ cos
�hþC

q : ð34Þ
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Equation (34) cannot be solved using trigonometric func-

tions. To solve this integral, the Jacobi elliptical integrals

can be more useful [29, 39].

Defining the functions

snðu; kÞ � sin h ¼ sinðamuÞ;

cnðu; kÞ � cos h ¼ cosðam uÞ;

dnðu; kÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sn2u

p
¼ dðam uÞ

du
;

where am is the amplitude function and k is its modulus, sn

is the Jacobi’s elliptic sine function and cn is the elliptic

cosine function. From the definitions about Jacobi elliptic

and trigonometric functions, it is possible to obtain the

following identities [29, 40]:

sn2uþ cn2u ¼ 1;

dn2uþ k2sn2u ¼ 1;

cn2uþ ð1� k2Þsn2u ¼ dn2u:

Thus, Eq. (34) can be solved using the argument (u, k) with

attention in the transformation, thus:

hðtÞ ¼ 2 arctan
ffiffiffi
a

p
dn

1

2
xt

ffiffiffiffiffiffiffiffiffiffiffiffi
j p j a

p
;

ffiffiffiffiffiffiffiffiffiffiffi
a� b

a

r" #( )
; ð35Þ

where a � 1� cos h
1þ cos h

, b � 1þ cos h� 2 cos h
1� cos hþ 2 cos h

and

p � C � 1� 2 cos h.
Equation (35) represents the analytical solution of the

angle displacement of the bead on a rotating wire with

constant angular velocity x and is the same obtained in the

paper [29]. This specific problem is similar to the example

presented, however, in that paper Lie symmetries are not

used. Other examples are found, but the conditions are

quite different to allow a comparison [28, 30]. The first

one, the example is used to investigate the three-dimen-

sional bifurcation set of a system with two degrees of

freedom depending on a single bifurcation parameter and

the second one it is shown a new approach for creating a

one-dimensional gravitational ponderomotive trap.

4 Final remarks

The present paper presented the Lie symmetries to solve

analytically the motion equation of a bead on a rotating

wire hoop. From that, one proposes alternative ways to

reduce the order of the original motion equation to simplify

the integration of the new equations using the Lie theorem.

The Lie symmetries obtained can be effectively used to

perform it. The symmetry groups of differential equations

or variational problems have all been local transformation

group acting ‘‘geometrically’’ on the space of independent

and dependent variable. It can be seen that by applying the

Lie symmetries, the order is easily reduced and is possible

to obtain first integrals that can be solved using some

classes of special functions, such as Jacobi elliptic func-

tions. The method presented here can be extended to sev-

eral equations of motion founded in dynamic systems.

Besides this, the Lie theorem can be useful to explain when

a system cannot be integrated analytically or missing the

necessary symmetries, for example in Navier-Stokes

equations.
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