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Abstract
Chalcones a-b-unsaturated ketones are found in large plant species. Synthesis of chalcones and its three analogues hydroxy

group at 20, 30 and 40 positions (2–4) was carried out. The studies of thermal behavior were made by thermogravimetry

(TG) and differential scanning calorimetry, both under oxygen and nitrogen purge gases. In addition, the kinetic evaluation

was carried out under heating rates of 5, 10 and 20 �C min-1 with sample mass of 2 mg in open crucibles. The kinetic

results obtained by TG analysis showed that the thermal behavior under oxygen shows that the functional hydroxy group

substitution affects the thermal behavior of each molecule, with a gradual increase in the thermal decomposition. The

activation energy (Ea/kJ mol-1) showed under a nitrogen purge gas that the hydroxy group at 30 position (30-hy-chalcone

compound) has a different kinetic behavior, while the chalcone under oxygen showed a low activation energy when

compared with the other hydroxy groups.
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Introduction

Chalcones are a-b-unsaturated ketones found in large plant

species besides being a precursor for the biosynthetic route

of flavonoids. Natural and synthetic chalcones have

attracted attention in recent years due to the diversity of

biological activities exhibited as anti-inflammatory [1],

anticancer [2], antifungal [3] and leishmanicidal [4]. The

synthetic preparation of chalcones involves Claisen–Sch-

midt condensation reaction between ketone and aldehyde

under acid or basic catalysis. Several other catalysis

methods such as basic alumina, zinc chloride and Lewis

acid such as BF3 and AlCl3 had been used [5].

The a-b-unsaturated bond conjugated to carbonyl acts as

an electrophile and reacts with nucleophile allowing a

cyclization via Michael’s addition [6]. Structures contain-

ing hydroxy group in an ortho position might cyclize into

flavanones and aurones. Thus, research studies the report of

flavanones and aurones synthesis from chalcones and their

biological activities [7, 8]. Due to their versatile structure,

several synthetic routes were reported using chalcones as a

precursor for getting heterocycles such as pyrazoline,

oxiran, pyran, oxopyrimidine, isoxazoline [9], derivatives

of pyridine [10], derivatives of benzheteroazepine [11].

Besides this, the chalcones or 1,3-diphenyl-2-propen-1-

ones are considered as precursors of flavonoids and iso-

flavonoids, which in turn affect the taste of foods, and they

are also responsible for the color of flowers, fruits and

leaves [12–15]. Furthermore, others interest in compounds

1–4 are correlated to their broad medicinal relevance,

which includes antitumor (1 and 2) [16–18], antibacterial

(3) [19], anti-inflammatory (1) [20] and antiprotozoal (1

and 4) [21, 22].
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Another application of these compounds relates to its in

food technologies, which owing to the demand and inter-

esting for new food antioxidants, it becomes very inter-

esting to explore others molecules for the design, synthesis

and characterization of new antioxidant agents in order to

collaborate in food sciences [23–28]. Therefore, the aim of

the present study was to describe thermal characterization

of the chalcone (1) and it is three analogues with hydroxy

group at 20, 30 and 40 position (2–4), as seen in Fig. 1. The

solid compounds were characterized by thermogravimetry

(TG) and differential scanning calorimetry (DSC) at three

heating rates and also under nitrogen and oxygen purge

gases. In addition, TG curves were also used to obtain the

kinetic information about the thermal decomposition stage.

Experimental

Synthesis of chalcones and their derivatives
(Fig. 1: 1–4)

Chalcone (1) and its hydroxylated analogues (2–4) (Fig. 1)

were synthesized by Claisen–Schmidt aldol condensation

using protocols reported in previous studies from our group

[29–31].

In a 30-mL vial, the appropriated acetophenone

(2.5 mmol) and lithium hydroxide monohydrate

(0.5 mmol) were dissolved in methanol (10 mL), and the

mixture was stirred at 5 �C for 10 min. followed by the

addition of benzaldehyde (2.70 mmol). The reaction mix-

ture was stirred at room temperature and monitored by

TLC using hexane/ethyl acetate (3:1) as the mobile phase.

The reaction was quenched after 24 h by pouring into

100 mL of ice-cold water. In the synthesis of these com-

pounds as seen in Fig. 1, from 1 to 4, a stick mass was

observed in the aqueous solution after quenching. Thus, the

product was extracted by ethyl acetate (3 9 100 mL),

dried over sodium sulfate and concentrated under reduced

pressure. On the other hand, the synthesis of 2 and 3 led to

precipitation after quenching with cold water, and it was

then filtered and crystallized with hot acetone: ethanol

(1:1). For compounds 1–4, the crude products were purified

by flash chromatography using hexanes: ethyl acetate as

the solvent system in increasing order of polarity.

Characterization by nuclear magnetic resonance
(NMR)

Chalcone (1) and its hydroxylated derivatives (2–4) were

identified by 1H and 13C NMR spectra data obtained from

Varian DRX-500 spectrometer (11.7 T). Chemical shifts

(d) were expressed in ppm. Coupling constants (J) were

expressed in Hz, and splitting patterns are described as

follows: s = singlet; br s = broad singlet, d = doublet;

t = triplet; m = multiplet; dd = doublet of doublets.

These data were extensively detailed in supporting

information.

Characterization by thermal analysis

TG/DTG curves were obtained from a SDT 2960 model

(TA Instruments). The evaluation of these compounds by

TG analysis were carried out with sample masses around

2 mg in an a-alumina crucible with heating rates of 5, 10

and 20 �C min-1 under nitrogen and oxygen purge gases

with flow of 100 mL min-1. In addition, the kinetic study

was performed using the three heating rates, which have

been extensively used in previous studies [32–36]. More-

over, the use of this standard in kinetic analysis is very

useful for future comparisons, besides allowing the repro-

ducing of results obtained by us and also by other research

groups. The kinetic methodology used in this work was

proposed by Capela and Ribeiro, which is an isoconver-

sional method and is based on approximation to the integral

temperature on the convergent of a Jacobi fraction [37–40].

The DSC curves were carried out using a calorimeter

SDT 2910 model, from TA Instruments, with heating rates

of 20 �C min-1 from 30 to 400 �C under nitrogen and

oxygen purge gases, with a flow of 50 mL min-1.

Results and discussion

The TG/DTG evaluations of the chalcone and its hydrox-

ylated derivatives under nitrogen and oxygen purge gases

with mass of 2 mg and heating rate of 20 �C min-1 are

shown in Fig. 2a–d, respectively.

The chalcone (Fig. 2a) shows that the initial thermal

decomposition begins to take place after 105 �C going to

250 �C for both purge gases. Also it is possible to see that

in oxygen, during the mass loss, there was a decrease in the

O

1 2 3 4

O O OOH
HO

HO

Fig. 1 Structures of chalcone

(1) and its hydroxylated

derivatives (2–4)
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temperatures, which is minor than that in nitrogen. The

opposite effect under nitrogen gas can also be seen with 30-
hy-chalcone (Fig. 2c), where the reaction occurs at an

interval of thermal decomposition from 150 to 326 �C.

These observed effects can be suggested as a relation of

heat transfer and thermal conductivity of the gases with the

samples.

The analyses with 20-hy-chalcone (Fig. 2b) show that

there is a similarity of thermal behavior of this sample

under both purge gases. The DTG curve showed that the

thermal decomposition stage occurs between 148 and

271 �C, without carbonaceous residues at the end of the

reaction. For the analysis of 40-hy-chalcone (Fig. 2d), it is

possible to see that the thermal decomposition is also

similar, but at the end of the reaction there was a difference

in behavior. Other curves were made to verify this

behavior, but the results were the same, being, therefore, as

suggestion a possible reaction between the sample and the

oxygen. For both analyses, there was the presence of car-

bonaceous residues, and the mass losses were 83.75 and

92.72% under oxygen and nitrogen purge gases.

For all samples seen in Fig. 2, it is possible to observe

that there is an inflection in the TG/DTG curves between

the initial temperature and before the thermal decomposi-

tion. This effect was attributed to the melting of the sam-

ples, which can be seen in the DSC curves in Figs. 3 and 4,

which are associated with the same temperature as the TG/

DTG curves. The DSC curves were carried out under

nitrogen and oxygen purge gases, respectively, and the

values of the melting points are indicated in the curves. The

difference observed between the melting point analyses

made with oxygen and nitrogen is attributed to the

arrangement of samples in the crucible and also to the fact

that samples analyzed are not a single crystal but are small

different sized crystals.

For a better understanding and also for a comparison

between these hydroxylated derivatives, the TG/DTG

curves in oxygen and nitrogen purge gases were overlap-

ping, as it is possible; see in Figs. 5 and 6, respectively.
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Fig. 2 TG/DTG curves of chalcone (a), 20-hydroxychalcone (b), 30-
hydroxychalcone (c) and 40-hydroxychalcone (d), with mass sample

around 2 mg in a-alumina crucible, under oxygen and nitrogen purge

gases and heating rate of 20 �C min-1
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Fig. 3 DSC curves of chalcone and their hydroxylated derivatives

compounds, with mass sample around 2 mg in aluminum crucible,

under nitrogen purge gas and heating rate of 20 �C min-1
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The thermal behavior in oxygen shows that the func-

tional hydroxy group substitution present at each position

in the chalcone affects the thermal conductivity of the

molecule, because there was a gradual increase in the

thermal decomposition temperature. In addition, the ther-

mal decomposition at 30 and 40-hy-chalcone shows a dif-

ference in carbonaceous residues generated at the end of

the reaction. However, this fact is not seen for the chalcone

and 20-hy-chalcone. For nitrogen analysis, the thermal

behavior is similar to that seen in oxygen purge gas, except

that there were no carbonaceous residues generated at the

end of the thermal decomposition.

Kinetic evaluation

Figure 7 shows the overlapping of the three TG curves with

heating rates of 5, 10 and 20 �C min-1 of chalcone as a set

of curves to obtain the kinetic data. The other compounds

were not placed because they follow the same tendency of

displacement of the heating rates. Moreover, in others

works, we have used a pattern of at least three TG curves

for kinetic behavior analysis, as suggested by the ICTAC

committee [40–45]. In a similar way, for all curves (even

for those not shown), the result shows that there were no

changes to the thermal behavior, and therefore the profiles

of curves remained the same, that is, without apparent

overlapping of thermal decomposition reactions.

Table 1 shows the average of the values of activation

energy (with a coefficient variation), the linear correlation

obtained for compounds and the temperature intervals in

DTG curves that were used for kinetic evaluation. The low

activation energy values obtained for these compounds

indicate the dependence on temperature, which implies that

low temperatures are required for thermal decomposition.
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The relation between the activation energy versus con-

version degree under nitrogen and oxygen purge gases is

shown in Figs. 8 and 9, respectively. As can be seen in the

nitrogen purge gas, the kinetic behaviors are linear, with a

more pronounced difference for 30-hydroxychalcone, while

for analysis under oxygen purge gas, the major difference

occurs for chalcone. It is important to note that the kinetic

behavior in oxygen follows a pattern of minor activation

energy for chalcone to major activation energy for 40-hy-

chalcone. The minor activation energy of chalcone under

oxygen is probably due to the weak intermolecular

interactions, while for the other molecules this interaction

is similar, hence the motive of the closest activation

energies. However, under nitrogen, the 30-hy-chalcone has

major value of activation energy, which stands out from the

others. This behavior is a probable indication that this

molecule has an intermolecular interaction greater than the

others. In previous papers about the synthesis and thermal

characterization of flavanone and 60-hydroxyflavanone

flavanones, it was possible to see that there was an alter-

ation in the activation energy under nitrogen purge gas with

Table 1 Ea (kJ mol-1),

correlation coefficient (r) and

temperature intervals of DTG

curves for thermal

decomposition

Compounds Purge gases Temperature ranges (DTG curves) *Ea/kJ mol-1 *r

Chalcone Nitrogen (5 �C) 121–225 �C
(10 �C) 136–236 �C
(20 �C) 148–257 �C

87.76 ± 0.04 0.99646

Oxygen (5 �C) 105–219 �C
(10 �C) 114–230 �C
(20 �C) 121–255 �C

55.72 ± 0.01 0.96343

20-Hydroxychalcone Nitrogen (5 �C) 137–243 �C
(10 �C) 152–256 �C
(20 �C) 162–272 �C

85.97 ± 0.02 0.99661

Oxygen (5 �C) 122–237 �C
(10 �C) 150–262 �C
(20 �C) 168–272 �C

81.56 ± 0.04 0.99646

30-Hydroxychalcone Nitrogen (5 �C) 181–290 �C
(10 �C) 200–314 �C
(20 �C) 211–330 �C

106.45 ± 0.02 0.99964

Oxygen (5 �C) 168–290 �C
(10 �C) 187–309 �C
(20 �C) 201–329 �C

85.76 ± 0.01 0.99694

40-Hydroxychalcone Nitrogen (5 �C) 186–299 �C
(10 �C) 200–319 �C
(20 �C) 221–337 �C

85.77 ± 0.01 0.99895

Oxygen (5 �C) 194–302 �C
(10 �C) 203–315 �C
(20 �C) 218–334 �C

91.20 ± 0.04 0.99547

*Average
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hydroxy group in flavanone, with the increase in the acti-

vation energy to a higher value [26].

Conclusions

In the present study, we evaluated four chalcones by

thermogravimetry (TG), derivative thermogravimetry

(DTG) and differential scanning calorimetry (DSC), which

showed the comparisons of thermal behavior under nitro-

gen and oxygen purge gases. Besides, the present study on

these molecules showed that they have a thermal behavior

without presenting large variations of overlapping reac-

tions, which can be used as analysis standards. The thermal

decomposition showed that these compounds had homo-

geneous processes, and therefore they provide a good and

linear behavior for kinetic study. The kinetic evaluation

showed that the third position of the hydroxy group at

aromatic ring affects the kinetic behavior, as seen in the

nitrogen purge gas, but the analysis under the oxygen

indicates that the position little affects the kinetic behavior.
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