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Abstract
The quantum mechanical three-body problem is a source of continuing interest due to its complexity
and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect
where infinitely many bound states of identical bosons can arise at the threshold where the two-body
problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial
dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible
in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry
and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here
we present a framework for studying the three-body problem as one (continuously) changes the
dimensionality of the system all the way from three, through two, and down to a single dimension.
This is done by considering the Efimov favorable case of a mass-imbalanced system and with an
external confinement provided by a typical experimental case with a (deformed) harmonic trap.

Keywords: three-body problem, efimov effect, low-dimensional structures

(Some figures may appear in colour only in the online journal)

1. Introduction

Few-body quantum systems are a theoretical and experimental
playground for the study of the basic structure of quantum
mechanics and what kind of states are possible in small systems,
and they also serve as guidance when we want to understand
many-body problems [1–4]. While the two-body problem is
essentially solvable, at least numerically, three interacting
quantum particles already provide a much more complex, and
thus interesting, venue for exploration. A surprising feature is the
Efimov class [5] of infinitely many three-body bound states
(trimers) of three bosons with resonant short-range two-body
interactions in three dimensions (3D). This effect has generated
tremendous attention in the last decade due to its observation in
cold atoms [6] and lately in helium trimers [7]. The experimental
techniques used to observe such states are extremely versatile
with tunable interactions [8] geometries [9, 10], and usage of
different atomic species [11–25].

A prediction that has not yet been fully explored is the fact
that the Efimov effect only occurs in 3D and not in 2D [26–32].
More precisely, by performing a well-defined mathematical

extension to non-integer dimensions, it has been predicted that
Efimov trimers of identical bosons are only allowed for
dimension d in the interval 2.3<d<3.8 [33]. This is a
peculiar theoretical prediction that, superficially, appears basi-
cally inaccessible in actual experiments. On the other hand,
non-integer dimensions play a prominent role in for instance
high-energy physics [34] and also in low-energy effective field
theories [35], and it would be extremely useful to have a
practical manner in which to study changes in dimensionality
and how they affect basic quantum few-body physics.

The purpose of the present article is to investigate how the
energies of mass-imbalanced Efimov states in 3D behave under
strong external confinement. To handle the experimentally
accessible interesting mass asymmetric cases we have developed
a new advanced technique to study the trimer properties in the
continuous transition from 3D to 2D. One surprising result is that
the Efimov 3D scaling properties are maintained in a substantial
part of the way to 2D.

The infinitely many 3D bound states reduce to a finite
number in 2D, which may be reduced further as 1D is
reached. This provides both qualitative and quantitative
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answers to the question of how much squeezing Efimov tri-
mers can survive, as well as how trimers will disappear into
the continuum threshold, defined by equal trimer and dimer
bound state energies. Some recent studies of Efimov trimers
of three identical bosons under confinement have been
reported [36, 37], as well as earlier work on fermions in quasi-
2D [38] and mixed-dimensional confinement [39]. However,
no previous study has been able to provide continuous
dimensional squeezing from 3D to 2D, and all the way down
to 1D with non-identical particles. Furthermore, the formal-
ism we present can be applied to any confinement geometry
in principle. Here we focus on the most widely applied
experimental situation with a deformed harmonic confine-
ment, and on mass asymmetric systems which are a current
focus of three-body physics [40–47]. The harmonic confine-
ment in one direction is achieved by a mapping onto a lattice,
such that the oscillator length is associated to the lattice size
(see the appendix below).

2. Method

We consider an AAB system with two identical (bosonic) A
particles of mass mA and a B of mass mB. The reduced mass is
defined by μ=mA mB/(mA+mB). In order to reduce the
number of parameters, we assume that the A particles are
not interacting, while the AB subsystem has a short-
range interaction that we model by a Gaussian potential,

rS rexp AB0
2

0
2- -( ), where rAB is the relative coordinate of the

AB system. The non-interacting nature of the AA system is a
matter of convenience and not essential as our formalism
applies to general systems (see appendix below for details).
The interaction range, r0, is kept small while the strength,
S0>0, is tuned so that it reproduces a fixed 3D (vacuum)
scattering length, a3D, in the region close to the resonance at
2μb2S0/ÿ

2=2.68 where a b3D = ¥∣ ∣ . For concreteness, we
focus on the case where a3D>0 so that a two-body bound

state with small binding energy, E2
3D=ÿ2/(2μa3D

2 ), exists. In
order to squeeze the system, we assume the same external
one-body harmonic oscillator potential on each particle along
two directions, m x yx y

1

2
2 2 2 2w w+( ), where m, x and y are mass

and single-particle Cartesian coordinates of particles A or B.
For simplicity we use identical external confinement on each
particle as this decouples the center-of-mass motion (see
appendix below for details). We expect the physics to remain
qualitatively the same with unequal trapping. Defining
bx x mw= and by y mw= , we squeeze the system
starting from large values of bx or by and decreasing these
towards bx→0 or by→0.

In order to solve the three-body problem we use a
momentum-space approach and the integral Faddeev
equations [48, 49]. These equations are modified to allow for
squeezing by imposing periodic boundary conditions along
one or several directions, effectively compactifying those
dimensions on a ring of radius Rx/y. This implies that the
momenta along the compact directions are discrete. In the
limit where Rx/y→0, the gap in the spectrum along a com-
pact dimension goes to infinity, which eliminates motion in
that direction, whereas in the limit Rx y  ¥, the gap van-
ishes and we recover the usual continuous spatial x/y
dimension. The results presented in this article show that this
formalism is capable of addressing the full crossover between
different (integer) dimensions for general three-body systems
of any mass.

The concrete implementation of our compactified Fad-
deev equations uses effective zero-range interactions. How-
ever, as is well-known from previous three-body Efimov
studies [5], the decisive parameter(s) are the two-body bind-
ing energies between pairs of particles, which are typically
parameterized by a3D. In our setup, we have AB interactions
with two-body energy E2

3D. It is important to stress that our
input is the two-body energy calculated in a fully 3D setup
that includes the external confinement. This is done by cal-
culating E2

3D using a correlated Gaussian numerical technique
[50] with fixed a3D while varying the trap by decreasing for
instance by. We then relate by and Ry by demanding that the
two-body energy subtracted by the zero-point energy is equal
to the two-body energy computed with the periodic boundary
condition, in the relative coordinate (see appendix below for
details). Numerically, we find the remarkably simple result
b R2y yp» , and clearly see that by→0 will correspond to the
2D limit as expected.

This choice of periodic boundary condition is forced
upon us by the method. The relation to the harmonic con-
finement is not rigorous and strictly the equivalence is an
assumption. However, we believe the difference is unessential
as also suggested by the simple numerical finding providing
our mapping between the two boundary conditions.

Further squeezing from 2D down to 1D is accomplished
by starting from a 2D version of the Faddeev equations [51]
and is otherwise analogous (see appendix below for details).
This method can be extended to other kinds of confinement
through the two-body subsystems.

Figure 1. (a) The two-body energies normalized to the 2D limit (E2
2D) as

functions of by/a3D for different a3D/r0. The black points indicate where
by=r0. (b) The corresponding 2D to 1D transition as function of bx/
a3D. The length scale a2D is defined through E e a42

2D 2 2
2D
2 2 m= g- -∣ ∣ ( ) ,

where γ is Euler’s constant.
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Beyond the oscillator length and the two-body scattering
length, the van der Waals length and thermal wavelength may
play a role. The former measures the two-body potential
range, but since we are interested in the universal regime
where states are weakly bound, a characteristic of Efimov
states, they live outside the potential range. For the latter, we
assume that the temperature is sufficiently low for it to have
negligible effect. Our formalism allows for finite temperature
to be included in observables such as recombination rates in
the same way as done without squeezing.

3. Two-body properties

We first consider the AB two-body subsystem. The energy as
function of by/a3D for fixed a3D is shown in figure 1(a) where
this ratio characterizes the dimension of the trap with respect
to the two-body radius. We have normalized the energy in
figure 1(a) to its value in the 2D limit (by→0). We see an
evolution from the 3D limit (far right side) with energies that
remain constant until around the point where by∼r0. This is
when the external confinement starts to be felt strongly by the
particles and the energy moves quite fast towards the 2D
limiting value. It is interesting to note that the energy at which
by=r0 (marked by black points in figure 1) is almost the
same, E2/E2

2D(by=r0)∼0.05, independent of a3D for
a3D/r0?1. The evolution from 2D to 1D is shown in
figure 1(b) and confirms our expectation that further binding
occurs as we approach the 1D limit.

4. Spectral flow from 3D to 2D

We now proceed to discuss Efimov trimer states as we con-
tinuously squeeze along one direction, i.e. as by decreases.
The mass ratio is taken to be mB/mA=6/133 [52]5 and is
relevant for current studies of trimers in 6Li–133Cs mixtures
[42, 43, 45, 47]. This gives a relatively small Efimov scaling
factor eπ/ s=4.788 [53, 54] so that many Efimov trimers can
be expected. We choose a large a3D/r0;105 to perform our
calculations.

The three-body energies of the Nth trimer, E3
N, relative to the

two-body energy are shown in figure 2 as function of by/a3D.
Here a3D is related to the three-body parameter expressed by κ*,
where E2 N2

3
0*k m = =( ) ( ) and E E aN

3
0

2 3D
2*k= == ( )

109. With our present choice of parameters we have the relation
κ* a3D≈3.15×10

4. The figure remains as function of κ*a3D
but with the numbers on the x-axis multiplied by 3.15×104. In
the 3D limit to the far right of figure 2, we are able to numerically
resolve five Efimov states which scale in energy with e2π/ s as
expected. In the strict 2D limit on the far left of figure 2, we find
that four states survive as expected [51]. The behavior in between

these two integer limits is intriguing and depends sensitively on
how we treat the two-body energy.

The dashed lines in figure 2 show the results obtained
when assuming that the two-body energy does not vary with
by and is set by the 3D value, E E by2 2

3D=  ¥( ). As by
decreases we see a number of systematically occurring abrupt
drops in E3

N. Each drop is from an initial value down to one of
the energies that the system is destined to reach in 2D where
the Efimov effect is gone.

Specifically, as we decrease by (going from right to left in
figure 2) the state that is weakest bound in the 3D limit first
decreases its energy to a value corresponding to the strongest
bound state in the 2D limit. It then has roughly constant energy
until the next level decreases its energy and demands the position
in the spectrum, and pushed the state down to an energy around
that of the first excited state in the 2D limit. These processes are
repeated until the four 2D positions are reached and the
remaining three-body state has disappeared into the continuum
(a single state in our case). They are reminiscent of the so-called
Zeldovich rearrangement [55], in which the short-range interac-
tions compete with the long-range influence of the confinement.

It is important to notice that before these abrupt changes
of the energies, the Efimov scaling among the states is intact.
Thus, we have a quantitative measure of how much squeezing
different Efimov states can survive. A rough estimate of the
jumps can be inferred by considering the Efimov attractive
inverse square potential which extends to around a3D [56, 57],
and therefore the radial extent of the least bound state is
roughly a3D. In turn, the first spectral jump is expected around
by∼a3D, since here the state becomes strongly influenced by
the trap [58]. Subsequent jumps now follow an Efimov
scaling law and occur when by∼a3D/e

Nπ/ s.
Keeping a constant E2 value is presumably experimen-

tally challenging as it requires tuning of interactions to
compensate for the effects of the confinement on E2. We
therefore now study the case where this is not done so that we

Figure 2. Trimer energies plotted in units of the two-body energy for
mB/mA=6/133 as functions of by/a3D. For the solid lines the two-
body energy varies with by while for the dashed lines it is kept
constant (see text for discussion). Solid and dashed lines have
different colors for visibility.

5 The dimensional requirement for the Efimov effect to occur, 2.3 < d < 3.8
[33] depends generally on the masses in the system and the numbers will thus
change for our ratio of mB/mA = 6/133, although the expected modification
could rather small, see [52] for related work.
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now have a varying E2(by). This changes the flow as seen in
figure 2. The decrease of energies will start for larger
values of by and have a considerably smoother behavior.
Remarkably, we see that the energy curves are roughly par-
allel on a double-log scale, thus showing that even in this case
we have signatures of Efimov scaling prominently featured.
We stress that, even though the abrupt changes found for a
constant E2 are now smoother, we still clearly see the rear-
rangements discussed above, and these features could be a
very clear experimental signature to confirm the present
predictions.

In order to investigate the Efimov scaling as function of
the squeezing, we now multiply the three-body energies by
e2πN/ s for the Nth Efimov state in the energies. The results are
shown in figure 3. For the case of constant E2 the results are
very similar to figure 2, while those with varying E2(by) now
more clearly shows a tendency to collapse onto a single curve
over an extended region. This region is limited by the
necessity for the states to match up with their 2D limiting
values, and they each leave the common curve due to rear-
rangements one at a time starting from the weaker bound
state. We can infer from the dashed lines in figure 3 that a
scaling of e2πN/ s on by would tend to also collapse the case of
constant E2 onto a single curve. This is not needed when E2

varies. The intriguing conclusion appears to be that the two-
body subsystem (E2(by)) already contains the information on
the scaling.

5. Squeezing down to 1D

Starting from the 2D limit results shown in figure 2, we may
consider what happens as we further squeeze the system
down to 1D by increasing the harmonic confinement along
the x-direction. Technically, we start from 2D Faddeev
equations and proceed as before (see appendix below for
details). The results of this are shown in figure 4. We notice
similar behavior with plateaus in 2D and 1D limits connected
by intermediate transitions where the energy changes rapidly.

Notice that for the mass ratio used, the 1D limit only holds
three bound states, and one state goes to the continuum during
the dimensional reduction.

As Efimov scaling does not extend to these low dimen-
sions, the natural quantities to analyze the system are slightly
different. As was recently discussed in [59], the root-mean-
square radius of the Nth 2D three-body state, Rrms

N , is pro-
portional to the inverse square root of E2

2D, with a pro-
portionality factor that depends on the state index N and the
mass ratio. Since the three-body equations depend only on the
quantity E2(bx) (see appendix below for details), the three-
body energy must be a function of E2(bx). In turn, the three-
body to two-body energy ratio will depend only on bx/
Rrms
N for the Nth state. The transition from 2D to 1D can

therefore be studied in a universal manner by using this
variable as done in figure 4. For comparison, we plot the
energies as function of bx/Rrms

0 with dashed lines in figure 4,
in order to follow each state for the same value of bx.

The bound state behavior under squeezing from 2D to 1D
is clearly different from the case of 3D to 2D. In particular,
we see in figure 4 that all the three states that survive to the
1D limit start to feel the squeezing already for relatively large
traps. If we focus on the dashed lines, we see that the center of
the drop is around bx/Rrms

0 ∼10 for all of the states, indi-
cating that we have a synchronized pattern of rearrangements
in contrast to the hierarchical pattern seen in figures 2 and 3.
In figure 4, the stronger bound state gets pushed to its 1D
limit and forces the other states to follow suit. However, it is
still very clear that there is a sizable effect of the squeezing
that should be observable.

6. Experimental implications and outlook

Observing the influence of squeezing on the Efimov effect
and the spectral flows that this generates should be possible
with the experimental techniques that have hitherto been used
to probe three-body physics with cold atoms. A much used

Figure 3. Energies as in figure 2 but now multiplied by the scaling
factor exp(2πN/s)=22.92N where N=0, 1, 2, 3, 4 for ground and
excited states.

Figure 4. The ratio of three- and two-body energies for
mB/mA=6/133 as functions of bx /Rrms

N . The dashed curves for all
states are with R R b m E D0.4742 0.2101 2A ABrms rms

0 = = = ( )
(see text for discussion). Solid and dashed lines differ in color for
visibility.
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tool is recombination rate studies where three-body states are
identified by peaks and interference minima in the rate. In the
case of squeezing from 3D to 2D, we have a finite by. We may
now vary a3D while keeping by fixed which will scan from
right to left in figure 2, and would expect to see a feature in
the recombination rate around the point where the least bound
state enters the continuum. Here we use that the flow depends
solely on by/a3D, but we note that the number of bound states
to work with depends on how large initial value of a3D one
can access in a concrete experiment. Similarly, if we consider
an experiment where by is tuned independently of a3D, then
we may take a fixed ratio by/a3D and vary a3D which will
cause bound states to cross into the continuum. Doing so for
several different values of by/a3D would allow verification of
our predictions. The same method can be applied in the case
where we go from 2D to 1D. An alternative to recombination
rate measurement is to use radio frequency association
[16, 17] to access the binding energies themselves. This is
more difficult but also yields more information. In this case
one should be able to observe the spectrum at several points
by varying by and/or a3D to see the flow of the states.

7. Outlook

In the present work we have focused our attention on a simple
setup in order to best illustrate the effects of squeezing on the
energies of Efimov trimers. Our formalism can be used to
discuss other quantities such as radial extension of states,
momentum distributions etc. We have also chosen a particular
mass ratio that corresponds to recent experiments, but sim-
plified our discussion by neglecting interactions between the
two heavy particles in the trimer. While we do expect quan-
titative changes when including this interaction, the qualita-
tive behavior should be the same. Likewise, we expect the
same behavior as discussed here in the case where a3D is large
but with negative sign. A cylindrical confinement may also be
accommodated by a simple modification of our formalism and
this will allow squeezing of the system along two directions
(bx=by→0). Initial investigations indicate that a direct
transition from 3D to 1D yields similar results to those pre-
sented above.
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Appendix A. Squeezed dimer

In this section we present the equations that are used to obtain
the dimer energy as we squeeze along one (3D→2D) or
along two (2D→1D) spatial dimensions. We will be using
units where ÿ=1 throughout the discussion in this supple-
mentary material.

A.1. Transition from 3D→2D

In our model we will assume periodic boundary conditions
along one direction (chosen to be the y-axis). Then, the
relative momenta along the plane are given by p p p,x z=^

 ( )
and

p
n

R
, A1y

y
= ( )

with n 0, 1, 2, ...=   . The length of the squeezed dimen-
sion corresponds to a radius, Ry, that interpolates between the
2D limit for Ry→0 and the 3D limit for Ry  ¥. As dis-
cussed in the main text, the choice of a periodic dimension is
not essential for our study, as we may map the physics of
other types of external confinement onto the system with
periodic boundary conditions. In the present case we consider
the case of a harmonic oscillator confinement that we map
onto the periodic setup.

First, we consider the case where we have zero-range
(ZR) interactions. In general, the dimer energy with zero-
range interactions E2

ZR is a function of Ry. A natural fixed
point of the dimer energy is the 3D limit where the shallow
zero-range dimer energy around for instance a Feshbach
resonance is experimentally measurable. We denote this
dimer energy of a 3D setup (no squeeze) by E2

3D. This implies
that the two-body T-operator in the limit Ry  ¥ has to
recover a pole exactly at E2

3D. Thus, for the zero-range
potential we must solve [60]

p
E R

p
E

d
1 1

d
1

0, A2

p

M
y n

p

M

n

MR

3

2
3D

2

2

2
ZR

2 2 y

2

2 2

2

ò

ò

å
-

-

´
- -

=^
^

( )

where M is the reduced mass of the dimer. The above
equation can be solved analytically giving:

ME
R

e1
sinh

2
, A3

y

R a

2
ZR 1

y 3D

p
- =

p
- ( )

where a E3D 2
3D= - is the two-body scattering length. The

explicit form of (A3) reads:

E
a

R

e e
ln

2 4
1 , A4

y

R a R a

2
ZR 3D

2

2
2

2y y3D 3D

p
= - + +

p p⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )

and for Ry→0 one has that, for a zero-range potential, the
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dimer energy changes as:

E MR

MR

sinh
1

2
0.023 462 27 . A5

y

y

2
ZR 2 1

2

2

p~ -

=

- -

-

⎜ ⎟⎛
⎝

⎞
⎠( )

( ) ( )

This result should not be valid for a finite-range potential, as
in this case we expect a finite dimer energy when the system
is confined in two dimensions (Ry→0).

The argument above shows that the route toward Ry→0
depends on the form of the two-body potential. In order to
regularize EZR

2 for Ry→0, we assume a simple fitting
formula for the dimer energy as a function of Ry. This formula
will have two parameters constrained to the dimer binding
energies calculated numerically at the 2D and 3D limits as we
will now discuss.

To calibrate the zero-range model, we use the numeri-
cally highly robust stochastic variational method to calculate
the dimer binding energies in the presence of a harmonic trap
which is then squeezed along one direction. The zero-range
interaction is modeled by a Gaussian two-body potential.
Thus, we solve the following eigenvalue equation

H
p

M
V r

M
x

y e

2 2

, A6

AB
AB x AB

y AB

2
2 2

2 2
2

w

w

Yñ= + +

+ Yñ = Yñ

⎛
⎝
⎜⎜∣ ( ) (

))∣ ∣ ( )

where V r S e r r
0 AB

2
0
2

= -( ) is the two-body interaction at
(relative) distance rAB with strength S0 and range r0. When we
squeeze from 3D to 2D, we take ωx=0 and increase ωy. Note
that xAB and yAB are the Cartesian components of the relative
distance between the two particles, rAB. The center of mass
part of the trap decouples from the problem and can be
ignored in our case where we are only interested in the
intrinsic internal dynamics of dimer and trimer states. The
energy e H

2 = áY Yñ
áY Yñ

∣ ∣
∣

is calculated from a correlated Gaussian

basis used to expand the wave function [61].
Equation (A6) is now used to define E ey2 2 2

yw = - w( ) .
The subtraction of the zero-point contribution is important as
one would otherwise get a divergent contribution that would
reflect only the increasing trap energy and not the intrinsic
behavior of the dimer. We find that the dimer energy is
accurately described by the form

E b
a

b

e e4
ln

2 4
1 , A7y

y

b a b a

2
3D
2

2
2

2y y3D 3D

a b
= -

+
+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

where we have defined the oscillator length b M1y yw= .
This form is of course inspired by the zero-range dimer
energy above, equation (A4). In order to fix the parameters, α
and β, we may use the limiting expressions E2(bω→0)
≡E2

2D and E b E2 2
3D ¥ ºw( ) , which gives

a

E E

4
ln

1 5

2
and

1
. A83D

2

2
2D

2

2
3D

a bº -
+

º -
⎛
⎝⎜

⎞
⎠⎟ ( )

By comparison between equations (A4) and (A7), we may
now infer that the mapping between our setup with periodic
boundaries to that of the harmonic trap is obtained by

identifying 2πRy=by. Numerically, we find that this rela-
tionship is extremely accurate.

The procedure above may be performed for other con-
finement potentials with little extra complication as the sto-
chastic variational method is highly flexible [50] and can
provide the necessary dimer energies that we need to calibrate
our setup with zero-range interactions and periodic bound-
aries. The precise mapping relation between Ry and the length
parameters of other confining potentials may of course differ
from that presented here.

A.2. Transition 2D→1D

In this section we squeeze one of the two remaining directions
of the last subsection confining the dimer in 1D. This corre-
sponds to now increasing ωx. We repeat essentially the same
steps to obtain the binding energy of the dimer as a function
of Rx. Equation (A2) is changed so that it describes the
2D→1D transition. In this case it has the form

p

E R

p

E

d 1 d
0, A9

p

M
x n

p

M

n

MR

2

2
2D

2 2 2 2 x

2 2 2

2

ò òå
-

-
- -

=
¯

( )

where the two-body binding energy is written with a bar E2¯
and now depends implicitly on Rx. After performing the sum
over the discrete modes and the integration over one of the
momenta, we get the following transcendental equation for
the two-body binding energy as:

E

E
p

R E p M

E p M
ln 2 d

coth 2 1

2
.

A10

x2

2
2D 0

2
2

2
2ò

p
=

- + -

- +

¥⎛
⎝⎜

⎞
⎠⎟

¯ ( ¯ )
¯

( )

In the limit Rx  ¥, equation (A10) reproduces the two-
body energy in 2D. However, it diverges in the limit Rx→0
and needs to be regularized. This is done by replacing
Rx
2→Rx

2+R0
2, in which R0 is an adjustable parameter that

allows us to obtain E R E0x2 2
1D= =¯ ( ) , where E2

1D is the two-
body energy in 1D which is calculated via the the stochastic
variational method using a Gaussian potential just as we have
done in the previous section. The mapping is again found to
be 2πRx≈bx, where b M1x xw= .

Appendix B. Squeezed trimer

The trimer we now consider is an AAB system with two
identical A particles of bosonic kind, and a third particle B
that may have a different mass. In what follows we detail the
integral equations for the bound state, in which we introduce a
compact dimension through a periodic boundary condition
quantizing the relative momentum of the third particle with
respect to the interacting pair. Furthermore the two-body
amplitudes for a given squeezing situation are defined such
that the two-body bound state energies come from
equations (A7) and (A10) for the transition 3D→2D and
2D→1D, respectively.
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B.1. Transition 3D→2D

To describe the trimer, we will use relative Jacobi coordi-
nates, where p


represents the relative momentum of a given

pair of particles in the three-body system and q

the momen-

tum of the remaining particle with respect to center of mass of
said pair. We are interested in the universal limit where the
ranges of all two-body interactions can be neglected. This
means that we consider zero-range interaction as in the dimer
case above. Zero-range interactions present a singularity
which is resolved by a subtraction in the kernel with the
introduction of a scale, μ2 [62]. For simplicity we will use
units where ÿ=mA=1 from now on and introduce the mass
number m mB A = . We will denote the three-body trimer
binding energy by E3 in the following.

The coupled and subtracted integral equations for the
spectator functions, fAA and fAB, of the trimer system can be
written down in the case where one direction of the relative
momenta, q


and p


, are quantized in the manner outlined in

equation (A1). They are given by
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˜ ( ), p p m,º ^

˜ ( ) and

q q
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2
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2
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The resolvents are defined by:
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2
,
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2
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The two-body amplitudes for finite Ry are given by

R E m
p
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2
d

d
, B3

x A R A
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A
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with β≡A or B, E m E2 A= b˜ (E<0) and E m E2A A A=b b b˜

and we chose the bound-state pole at EAβ for each Ry. The
reduced mass is mAβ=mA mβ/(mA+mβ). Performing the
analytical integration over p̂


and performing the sum, we get

that

E R m

m E R

m E R

4 ln
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sinh 2
. B4

A R y A

A y
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In the limit of Ry  ¥ the two-body amplitudes for AA
and AB reduces to the known 3D expressions

E E E

E E E

1

2

1

2
,

1

2
.
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In the 3D limit, the interaction energies of the AA and AB
subsystems are parametrized by the bound state energies EAA

and EAB.
We map EAA and EAB into the usual scattering lengths,

aAA and aAB through the relation E a 2µ -∣ ∣ . Throughout most
of this work we will focus on the region close to unitarity in
the AB system, i.e. aAB  ¥∣ ∣ or EAB→0.

We want now to introduce a new technique which can
improve the numerical treatment of the problem, as already
mentioned at the beginning of the section. Let us make a
variable transformation in the set of coupled integral
equations (B1), introducing

R E R E R, , , B6y A y A y3
2

3
2  m m= = =b b ( )

with the momenta rescaled as:

p R p q R q, . B7y y ^ ^ ^ ^
    ( )

The transformation above corresponds to put Ry→1 in
equations (B1) and (B3) provided the energies are substituted
by (B6).

Introducing the following functional,

p p m , B8y
m

y å d= -( ) ( ) ( )

we can rewrite the set of coupled equations (B1) as:
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where we have identified qy≡n in the equation set (B1). The
kernels are defined by:
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and the resolvents by
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The two-body amplitudes for the new variables are given by
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Let us proceed with the angular decomposition of the
spectator functions:
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The angular momentum projection of the kernel is given by:
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Performing the angular decomposition of equation (B9),
where we used the orthormalization of the spherical harmo-
nics, we get the final form of the coupled integral equations
for the bound state of mass-imbalanced systems for the
3D→2D transition:

F q E q

p p p K p q F p

K q p F p

F q q

p p p K q p F p

2

2 1

d , ;

, ;

2
2

4

d , ; , B16

L
AB

AB
L

L L L L
AA

L L
AB

L
AA

AA
L

L L L L
AB

3
2

0

2
,

2 1
3

2
3

3
2

0

2
,

2 1
3





















ò

ò

å

å

t

t

= - -
+
+

´

+

= - -
+

´

m

m

m

¢
¥

¢ ¢

¢

¢
¥

¢ ¢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ){ ( ) ( )

( ) ( )}

( )

( ) ( ) ( ) ( )

( )

( )

( )

where we have dropped the reference to the magnetic
quantum number due to the cylindrical symmetry of the
squeezed setup for the AAB system. The matrix element of the
functional (B8) for angular momentum states is
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B.2. Transition 2D→1D

The procedure here is very close to the one applied in the
previous section. We start now with one less dimension. The

coupled integral equations for the spectator functions, fAA and
fAB reads:
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The resolvents are defined by:
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The two-body amplitudes for finite Rx are given by
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with β≡A or B, E m E2 A= b˜ (E<0) and E m E2A A A=b b b˜
and we chose the bound-state pole at EAβ for each Rx. The
reduced mass is mAβ=mA mβ/(mA+mβ). The interaction
energies of the AA and AB subsystems are parametrized by the
bound state energies EAA and EAB.

Here, we continue to follow the procedure of the last
subsection. Consider the variable transformation as follows

R E R E, , B21x A x A3
2

3
2 = =b b ( )

with the momentum rescaled as:

p R p q R q, . B22x x  ( )

The transformation above corresponds to put Rx→1 in
equations (B18) and (B21) provided the energies are sub-
stituted by (B21).
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Introducing the functional given by equation (B8), we
can rewrite the set of coupled equations (B18) as:
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where we have identified qx≡n in the equation set (B18).
The kernels are defined by:
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The two-body amplitudes for the new variables are given by
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The angular decomposition of the spectator functions is
given by:
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The angular momentum projection of the kernel is given by:
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Performing the angular decomposition of equation (B23)
and using the orthonormalization of the angular states we
have the final form of the coupled integral equations for the
bound state of mass-imbalanced systems for the 2D→1D

transition:
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where the matrix elements of the functional (B8) in the 2D
angular momentum states are:
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B.3. Physical interpretation of the compactification procedure

Our technique, with an appropriate association between the
compactification radius and harmonic oscillator length, as
already discussed, exhibit the same behavior of the binding
energy when the two-body system is squeezed from
3D→2D and 2D→1D. It is only the limiting values at
integer dimensions that depend on the potential details.
Therefore, the input, namely the two-body amplitudes
equations (B4) and (B25), entering the kernel of the coupled
momentum space Faddeev equations express the squeezing
quantitatively.

The other important quantity that enters is the three-body
Green’s functions, equations (B2) and (B20) with quantized
momentum. These are the other components of the kernel of
the bound state integral equations that drive the trimer from
3D→2D and 2D→1D, respectively. The compactification
technique introduces the quantization of the relative
momentum of the spectator particle with respect to the center
of mass of the other two. At this point it is useful to recall that
the Green’s functions represent the one-particle exchange
mechanism, which produces the Efimov long-range potential
and also contains a Yukawa potential when mB=mA due to
the effective interaction between the heavy particle A and the
light particle B in the pair with the third particle A [63],
schematically represented by A+(AB)→(AB)+A. Fur-
thermore, in the present three-body model the spectator
function is analogous to a relative two-body wave function
(an old interpretation given by Mitra [64] when formulating
the integral equations for the bound and scattering states for
one-term separable potentials). In light of these previous
developments, the present three-body model has dynamics
that can be interpreted as an effective two-body dynamics.
This implies that the compactification method, which works
quantitatively on the two-body level as we have shown,
preserves the physical picture and thus should also work both
qualitatively and to a high degree also quantitatively at the
three-body level.
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