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Abstract

In this research, we have investigated whether the chlorophyll-a (chl a) retrieval algorithms based on OLCI Sentinel-3A bands are
suitable for cyanobacteria-dominated waters. Phytoplankton assemblages model optical properties of the water, influencing the perfor-
mance of bio-optical algorithms. Understanding these processes is important to improve the prediction of photoactive pigments in order
to use them as a proxy for trophic state and harmful algal bloom. So that, both empirical and semi-analytical approaches designed for
different inland waters were tested. In addition, empirical models were tuned based on dataset collected in situ. The study was conducted
in the Funil hydroelectric reservoir, where chl a ranged from 2.33 to 208.68 mg m�3 in May 2012 (austral fall) and 4.37 to 306.03 mg m�3

in October 2012 (austral spring). OLCI Sentinel-3A bands were tested in existing algorithms developed for other sensors and new band
combinations were compared to analyze the errors produced. Normalized Difference Chlorophyll Index (NDCI) exhibited the best per-
formance, with a Normalized Root Mean Square Error (NRMSE) of 9.30%. Result showed that wavelength at 665 nm is adequate to
estimate chl a, although the maximum pigment absorption band is shifted due to phycocyanin fluorescence at approximately 650 nm.
� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The wastewater discharge in freshwater bodies causes
unbalance in aquatic ecosystem such as eutrophication
and fish kills (Anderson et al., 2002). Eutrophication leads
to growing the primary productivity (Anderson et al.,
2002), which may become the water inappropriate for mul-
tiple uses such as drinking water supply. In reservoirs, the
eutrophication may be more intense due to water level con-
trol, increasing the water residence time and providing
https://doi.org/10.1016/j.asr.2018.04.024
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⇑ Corresponding author.
E-mail address: fernanda@fct.unesp.br (F.S.Y. Watanabe).
nutrients for longer time (Soares et al., 2008, 2012). In
these condition it is common to detect harmful algal
blooms and, therefore, their monitoring is important to
keep the quality of the aquatic life and public health.

In natural waters, phytoplankton assemblage is composed
for different species, but there can be dominance of specific
specie depending on the aquatic system conditions.
Cyanobacteria dominance is commonly associated with high
retention time (Carvalho et al., 2011; Romo et al., 2013),
water column mixing in tropical waters (Calijuri and dos
Santos, 1996) and high trophic state (Calijuri and dos
Santos, 1996; Ogashawara et al., 2013; Mishra et al., 2014;
Costa et al., 2014). Variations in phytoplankton communities
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consequently change the optical properties (Richardson,
1996; Ruiz-Verdú et al., 2008). Ruiz-Verdú et al. (2008) com-
pared the absorption coefficients of cyanobacteria, chloro-
phyta and diatomaceous and showed that the maximum
cyanobacteria absorption peak in the red region is shifted into
longer wavelengths, probably caused by phycocyanin fluores-
cence at approximately 650 nm (Schalles and Yacobi, 2000).

Chlorophyll-a (chl a) content, pigment found in all
phytoplankton species, has been used as proxy of their bio-
mass and, due to its photoactive characteristic remotely
sensed imagery becomes a powerful tool to monitor harm-
ful algal blooms. Several bio-optical algorithms have been
designed to retrieve the chl a concentration in inland waters
adopting different band combinations (Dekker, 1993;
Dall’Olmo et al., 2003; Mishra and Mishra, 2012). In inland
waters, red and near-infrared (NIR) bands are widely used
in order to reduce the interference of other optically signif-
icant constituents (OSCs) (Gilerson et al., 2010).

Different remote sensors have been tested to achieve the
best performance, such as Landsat (Watanabe et al., 2015;
Bernardo et al., 2017), MODIS (Carder et al., 1999; Mishra
and Mishra, 2010), MERIS (Moses et al., 2009; Gilerson
et al., 2010; Gurlin et al., 2011; Mishra and Mishra,
2012) and hyperspectral systems (Olmanson et al., 2013;
Tan et al., 2015). However, in general, the phytoplankton
species are not always considered in parameterizing chl a
prediction algorithms. Therefore, we hypothesized that
performance of NIR-red algorithms could be hampered
in cyanobacteria-dominated inland waters due to shifting
of the absorption feature of chl a in the red light region
caused by phycocyanin fluorescence.

With the launch of the Ocean and Land Colour Instru-
ment (OLCI) onboard Sentinel-3A. there is a new alterna-
tive for mapping chl a in inland waters and, therefore, the
hypothesis might be responded. The aim of this work was
to investigate if phycocyanin fluorescence in the red spec-
tral region impairs the performance of chl a prediction
algorithms based on OLCI Sentinel-3A bands in the red
and NIR spectral region. In turn, the specific objectives
were (a) to evaluate existing empirical NIR-red algorithms
and semi-analytical algorithms based on absorption at 665
nm; (b) to calibrate NIR-red algorithms considering the
dataset acquired in a cyanobacteria-dominated aquatic sys-
tem; (c) to design a chl a prediction algorithm based on
phycocyanin feature at 620 nm; and (d) to compare the per-
formance of all tested algorithms in estimating chl a. We
expected that the findings of this study could be useful to
understand the influence of the spectral features of phyto-
plankton pigments in estimating chl a content and there-
fore to monitoring the trophic status.

2. Data and methods

2.1. Study area

The study area was the Funil hydroelectric reservoir
(FHR, 22�33048.9700S, 44�36013.2400W), located in the
Paraı́ba do Sul River, in the southern Rio de Janeiro State,
Brazil (Fig. 1). Operating since 1969, the FHR has 40 km2

flooded area and 890 � 106 km3 volume, with an average
retention time of 32 days. Paraı́ba do Sul River is located
in a populous and industrialized region, responsible for a
high sewage discharge, causing eutrophication in the reser-
voir (Soares et al., 2012). Eutrophication and retention
time have been pointed as responsible for intense
cyanobacteria blooms in the Funil reservoir (Rangel
et al., 2012; Soares et al., 2012; Ogashawara et al., 2013).
2.2. Field sampling

Two field campaigns were conducted on May 20–22,
2012 (austral autumn and period of high water level) and
September 2–4, 2012 (austral spring and period of low
water level). In May 19 samples were collected, while 10
samples were acquired in September. Location of the sam-
pling points at each field campaign is shown in Fig. 1c.
Water samples were collected to estimate the chl a concen-
tration (Nusch, 1980) and suspended material (total, inor-
ganic and organic) (APHA, 1998) in the laboratory.

Field spectroscopy data were measured using two
RAMSES spectroradiometers (TriOS, Rastede, Germany),
acquiring measurements of radiance (ARC-VIS sensor,
with 7� field of view) and irradiance (ACC-VIS sensor, with
cosine collector). The radiometers work between 320 and
950 nm, with a spectral sampling of 3.3 nm and spectral
accuracy of 0.3 nm. These data were used to calculate the
remote sensing reflectance (Rrs, in sr�1) according to
Mobley (1999). OLCI Sentinel-3A bands were simulated
from in situ Rrs and spectral response function of the sensor
as:

ROLCI
rs ðkkÞ ¼

R kj
ki
SðkÞRrsðkÞR kj
ki
SðkÞ

ð1Þ

where ROLCI
Rs stands for the remote sensing reflectance con-

voluted from OLCI spectral bands; ki and kj are the lower
and upper limit of the band kk, respectively; and S(k) is the
spectral response function of the ith spectral band of
OLCI.
2.3. Chlorophyll-a model calibration and validation

Semi-empirical NIR-red based algorithms and semi-
analytical using data in the red spectral region were tested
adopting the datasets collected in May and September
2012. The NIR-red algorithms were adopted to estimate
chl a concentration: two-band simple ratio (2B; Dekker
1993), three-band (3B; Dall’Olmo et al., 2003), and Nor-
malized Difference Chlorophyll Index (NDCI; Mishra
and Mishra, 2012). Table 1 shows the structure for each
band algorithm. Bands 4, 5 and 6 (central wavelength at
k1 = 665 nm, k2 = 708.75 nm and k3 = 753.75 nm, respec-
tively) from OLCI Sentinel 3A were adopted in the models.



Fig. 1. Location of the study area, showing (a) its position in Brazil and (b) Rio de Janeiro state and the distribution of sampling stations in the (c) Funil
hydroelectric reservoir, located in Paraı́ba do Sul River.
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These algorithms were chosen because they were parame-
terized for productive waters.

Two semi-analytical (SA) algorithms based on 665 nm
(Gons et al., 2008; Gilerson et al., 2010) were tested to esti-
mate chl a concentration. Such algorithms request values
of the phytoplankton pigment absorption coefficient (au)
and/or non-water constituent absorption coefficient (at�w),
but which neither were collected during the fieldworks nor
estimated in laboratory. Therefore, the Inherent optical
properties Inversion Model of Inland Waters (IIMIW) pro-
posed by Li et al. (2013) was used to retrieve the absorption
coefficients required in semi-analytical modeling. IIMIW
(Li et al. 2013) was selected because it was parameterized
based on a wide dataset from four different freshwaters.
In addition, chl a range used by them cover concentration
of chl a found in our study area.
Table 1
NIR-red algorithms and calibrations applied to estimate chl a concentration.

Model Formula

2B R�1
rs ð665Þ � Rrsð708:75Þ

3B ½R�1
rs ð665Þ � R�1

rs ð708:75Þ� � Rrsð753:75Þ

NDCI Rrsð708:75Þ�Rrsð665Þ
Rrsð708:75ÞþRrsð665Þ

SA at�wð665Þ
auð665Þ

SA
auð665Þ
0:022

h i1:124
Table 1 shows the calibrations tested in this study and
the selection were based on researches conducted in turbid
productive waters. Existing calibrations were tested both
band algorithms (Moses et al., 2009; Gilerson et al.,
2010; Mishra and Mishra, 2012; Gurlin et al., 2011) and
semi-analytical models (Ritchie, 2008; Gons et al., 2008).
Besides calibrations proposed for other aquatic systems
we recalibrated the algorithms considering dataset col-
lected in May 2012. The adjustment was conducted using
the least square method, attempting linear and polynomial
fits.

In cyanobacteria-dominated waters it is expected that
phycocyanin and chl a are highly correlated and conse-
quently with the phytoplankton biomass (Shi et al.,
2015). Therefore, although the absorption feature around
620 nm is associated with phycocyanin pigment and not
Calibration Reference

MO09 Moses et al. (2009)
GI10 Gilerson et al. (2010)
GU11 Gurlin et al. (2011)
MO09 Moses et al. (2009)
GU11 Gurlin et al. (2011)
MI12 Mishra and Mishra (2012)

GO08 Gons et al. (2008)

GI10 Gilerson et al. (2010)
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chl a, new algorithms were also parameterized replacing k1

= 665 nm for 620 nm in 2B and NDCI algorithms, and cal-
ibrated using the dataset collected in both field surveys in
the FHR. The new algorithms were labeled as M2B and
MNDCI, where M means modified. The adjustment of
the algorithms was based on the least square method (lin-
ear and polynomial fits).

The assessment of all the algorithms was conducted
using the following statistical metrics: Root Mean Square
Error (RMSE) Normalized Root Mean Square Error
(NRMSE) and determination coefficient (R2). The Septem-
ber dataset was used in assessment of all algorithms tested.
Additionally, the validation of the algorithms calibrated
Fig. 2. Box-plot of chl a concentration for data collected in May and
September 2012.

Fig. 3. Rrs spectra collected in situ in (a) May and (b) September 2012
using the FHR dataset was based on Leave-One-Out Cross
Validation (LOOCV). Such validation statistical technique
is rather useful and widely used in cases where the sampling
size is limited.

3. Results and discussion

3.1. Application of existing bio-optical models

The Funil reservoir exhibited a large variability of chl a
concentrations ranging from 2.33 to 208.68 mg m�3 in May
and 4.37 to 306.03 mg m�3 in September. Meanwhile, vari-
ation of the total suspended material (TSM) was from 3.38
to 64 mg L�1, with predominance of organic fraction (aver-
age of 83%), and, therefore, TSM was mainly composed of
phytoplankton biomass. Fig. 2 shows the chl a content
variation observed from May to September 2012.

In situ Rrs spectra and simulated bands are shown in
Fig. 3. Analyzing the in situ Rrs spectra the phycocyanin
features associated with absorption at 620 nm and fluores-
cence at 650 nm were quite remarkable (Fig. 3a and b),
whilst the first feature is realized at OLCI Sentinel-3A sim-
ulated spectra and the second one is lost (Fig. 3c and d). In
addition, features of chl a absorption and particles reflec-
tance around 680 nm and 715 nm, respectively, are more
highlighted in September dataset.

Fig. 4 shows the validation results obtained by NIR-red
algorithms and IIWIM-based semi-analytical models.

Among the existing 2B algorithms, MO09 calibration
showed the best performance (NRMSE of 13.65% and
R2 = 0.92), followed by GI10 (NRMSE = 19.77% and
and their respective simulated OLCI Sentinel-3A bands (c and d).



Fig. 4. Validation of existing algorithms using calibration parameters on the basis of RMSE (mg m�3), NRMSE (%), bias (mg m�3) and (R2) for (a) 2B-
MO09, (b) 2B-GI10, (c) 2B-GU11, (d) 3B-MO09, (e) 3B-GU11, (f) NDCI-MI12, (g) SA-GO08 and (h) SA-GI10.
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R2 = 0.89). Chl-a range reported at 18 sampling stations
and used by Moses et al. (2009) was from 0.63 to 65.61
mg m�3, while Gilerson et al. (2010) adopted two thousand
Rrs spectra simulated using Hydrolight, varying the chl a
concentration between 1 and 100 mg m�3. Although
Gurlin et al. (2011) have used a chl a range (2.3–200.8
mg m�3) very similar to that reported in FHR, GU11
showed the poorest performance (NRMSE of 118.81%
and a R2 = 0.74).

Considering the existing algorithms, overall, the inser-
tion of a third band at 753.75 nm did not improve the chl
a estimation. Despite that, MO09 calibration for 3B algo-
rithm exhibited the best performance in estimating chl a,
with a NRMSE of 14.41% and a R2 of 0.81. Taking to
account just existing algorithms, NDCI-MI12 using
second-degree polynomial exhibited performance similar
to 3B (NRMSE of 18.04% and R2 of 0.98). Mishra and
Mishra (2012) have used a synthetic dataset considering a
chl a range of 1–60 mg m�3.

Semi-analytical models also exhibited good results in
predicting chl a concentration. Actually, comparing all
the tested algorithms, IIMIW (Li et al., 2013) based on
GO10 algorithm (Gons et al., 2008) exhibited the lower
error (NRMSE of 10.16% and R2 of 0.92). IIMIW was
developed based on different turbid and productive inland
waters. The researchers have used a dataset whose chl a
ranged from 1.85 to 285.80 mg m�3, i.e., very close to con-
ditions found in the FHR. Although we do not have
absorption data to compare with the absorption retrieved
by IIMIW, it is assumed that the performance of semi-
analytical algorithms is directly related to quality of inher-
ent optical properties used in parameterization. Therefore,



Fig. 5. Models fitted based on measurements collected in situ and spectral indexes: (a) 2B, (b) 3B, (c) NDCI, (d) M2B and MNDCI, using the OLCI band
centered at 708.75.

Table 2
Calibration coefficients (b0, b1 and b2) of the algorithms tuned for FHR using 665 nm (2B, 3B and NDCI) and 620 nm (M2B and MNDCI). Confidence
interval of every coefficient determined by LOOCV is presented between parentheses.

Model b 2 b1 b0 p-value

2B �3.9621 74.202 �39.476 0.000
(�4.6227; 7.6944) (28.846; 80.695) (�43.743; �13.524)

3B �114.23 363.44 41.601 0.000
(�126.59; 401.48) (253.48; 566.85) (28.148; 43.616)

NDCI 294.49 119.51 19.688 0.000
(196.79; 306.54) (111.52; 129.6) (17.579; 21.908)

M2B – 40.836 �6.7387 0.000
– (38.426; �60.686) (21.467; �5.9881)

MNDCI 234.59 152.53 32.019 0.000
(218.94; 244.55) (146.97; 160.54) (29.408; 35.061)
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the results obtained by semi-analytical algorithms indicate
IIMIW worked suitability in retrieving absorption coeffi-
cient in FHR. Gons et al. (2008) designed their algorithms
for oligotrophic and eutrophic inland waters, with chl a

ranging from 0.4 to 131 mg m�3 and even though the chl
a range is lower than our dataset, one of the lakes studied
by the researchers has presented abundance of cyanobacte-
ria as Funil reservoir.

3.2. Parameterized and calibrated algorithms

After testing some algorithms designed for produc-
tive inland waters, such algorithms were tuned using
dataset collected in the FHR. Additionally, the
wavelength at 620 nm was tested to retrieve chl a,
due to phycocyanin absorption features observed in
most Rrs spectra. The performance of these new algo-
rithms was compared with their 650 nm counterparts.
However, before a correlation analysis between OLCI
Sentinel-3A plus the wavelength at 620 nm and the
chl a was conducted in order to show statistical
relevance. The Rrs(708.75)/Rrs(6 2 0) and Rrs(708.75)/
Rrs(6 6 5) band ratios exhibited high correlation with
such pigment (r = 0.892 and r = 0.891, respectively).
Fig. 5 shows the relationship among the different
indexes and chl a concentration.



Fig. 6. Plots of measured versus modeled chl a for tuned algorithms (a) 2B, (b) 3B, (c) NDCI as well as (d) M2B and (e) MNDCI fitted using 620 nm.
Assessment of the algorithms was done based on RMSE (mg m�3), NMRSE (%), bias (mg m�3) and R2.

Fig. 7. Relationships between (a) 2B and M2B indexes and (b) NDCI and MNCI.
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Table 2 shows the calibration coefficients obtained from
the algorithms tuned for FHR using bands centered at 665,
708.75 and 753.75 nm (2B, 3B and NDCI) and 620 and
708.75 nm (M2B and MNDCI). In addition, it is presented
the confidence interval of each coefficient determined from
LOOCV. The validation has shown that all the algorithms
tuned for FHR were statistically valid, since b0, b1 and b2

were inserted within the 0.95 confidence interval.
Fig. 6 shows plots of measured versus modeled chl a for

new and tuned algorithms. All the algorithms fitted for
FHR have shown good performance, with low NRMSE
and bias values. Among the tuned algorithms, NDCI index
(polynomial fit) exhibited the best performance (NRMSE
= 3.06% and R2 = 0.983), followed by MNDCI calibrated
for FHR (NRMSE = 3.29% and R2 = 0.983). The paired t-
test showed that NDCI and MNDCI were statistically
equal. Therefore, there would be no impairment in replac-
ing k2 from 620 to 665 nm. The other algorithms exhibited
similar performance, all of them not exceeding a NRMSE
higher than 8%.
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4. Discussion

The results obtained in this work showed that shifting
the maximum phytoplankton absorption wavelength at
red spectral region to longer wavelengths do not affect the
chl a estimation using 665 nm. Comparing the algorithms
with best performance, MNDCI with NDCI both cali-
brated for FHR using polynomial fit, they were considered
statistically equal. Such results indicate that using either
665 nm or 620 nm present the same performance in estimat-
ing chl a in cyanobacteria-dominated waters. Fig. 7 shows
the strong relationship between 2B and M2B indexes as well
as NDCI and MNDCI indexes, with R2 close to 1. In other
words, analogous indexes were proportional, indicating
there is no statistical difference in adopting either 620 nm
or 665 nm. Furthermore, the results showed that OLCI
Sentinel-3A bands are capable of retrieving chl a concentra-
tion accurately in cyanobacteria-dominated inland waters.
5. Conclusion

Considering the results obtained in this present
research we concluded that NIR-red and SA algorithms
are not impaired by shifting the maximum chl a absorp-
tion peak in the red spectral region. Both NIR-red and
SA algorithms exhibited accurate performance in estimat-
ing chl a in FHR. Additionally, the OLCI Sentinel-3A
data were rather suitable to estimate chl a content,
encouraging its use in water quality monitoring. Bands
centered at 665 nm and 709 nm were suitable to retrieve
chl a in cyanobacteria-dominated waters, in spite of the
maximum absorption by chl a is shifted at longer wave-
lengths around 680 nm. We have also verified that the
use of 665 nm or 620 nm did not change remarkably the
performance of M2B and MNDCI algorithms. The strong
relationship between M2B and 2B ratios showed that
both ratios are directly proportional and, therefore, they
would produce similar results. Among the tested and
recalibrated algorithms, NDCI index exhibited the best
performance. Its structure was capable of highlighting
the difference between chl a absorption in the red region
and particles reflectance around 708.75 nm. Surprisingly,
the SA algorithm presented better performance than the
some existing band algorithms, even fitted to other aqua-
tic systems. Although it has not been possible to evaluate
the performance of IIMIW in estimating the inherent
optical properties, the results indicated that the prediction
of chl a was accurate, with the best performance among
the tested existing algorithms using GO10 (NRMSE of
10.16%). Such algorithm used the wavelength at 665 nm,
showing the efficiency of that spectral region in retrieving
chl a content. Taking into account the findings in this
research, more studies should be carried out in other
cyanobacteria-dominated aquatic systems, especially, in
relation to SA.
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