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Abstract In this paper we propose a game of a single qubit whose strategies can be
implemented adiabatically. In addition, we show how to implement the strategies of a
quantum game through controlled adiabatic evolutions, where we analyze the payment
of a quantum player for various situations of interest: (1) when the players receive
distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when
the device that implements the strategy is inefficient. Through a graphical analysis, it
is possible to notice that the curves that represent the gains of the players present a
behavior similar to the curves that give rise to a phase transition in thermodynamics.
These transitions are associated with optimal strategy changes and occur in the absence
of entanglement and interaction between the players.

Keywords Quantum games · Adiabatic evolution · Phase-transition-like behavior

1 Introduction

The games theory studies mathematical models in which two or more players aim to
maximize their gains by implementing different strategies. This theory can be applied
in several areas of knowledge, including studies of animal behavior [1], evolution
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of species by natural selection [2,3], social sciences [4–6], political sciences [7–10],
military sciences [11], ethics [12,13], economy [14–17], philosophy [18,19], and,
more recently, has awakening the attention of computer science that has been using
it in advances in artificial intelligence and cybernetics [20–23]. The quantum version
of games theory has recently become an active branch of research which gain new
adepts every year. In addition, the quantum game theory can be useful for finding
more efficient algorithms for quantum computers [24] and quantum communication
protocols [25]. As occurred in the classical theory, the quantum version has been
extended to other areas, as for example, in biology where the researches on protein
molecules are turning to a completely quantum description [26].

On the other hand, the use of adiabatic evolutions has recently awaked interest as
a promising model in quantum computation that implements quantum algorithms and
performs quantum simulations in several systems: qubit superconductors [27–30],
trapped ions [31,32], nuclear spin on nuclear magnetic resonance [33–35], among
others [36,37]. Such implementations are based on the adiabatic theorem of quantum
mechanics [38–40], and the regimes of validity [41–45] were experimentally discussed
in reference [46].

In this work, we joint these two themes (games theory and adiabatic evolutions) in
a game of a single qubit (“even or odd”, “heads or tails”, “spin flip”, etc.). To accom-
plish this task, we show how to implement the strategies through to the formalism of
adiabatic evolutions and, as a consequence, we introduce a parameter that allows us to
simulate the efficiency of a machine when implementing each of the game strategies.
Next, we provide a general analysis to get the optimal strategies for various regimes
of system parameter, including the parameters that define the initial state of the game
and the payments of each player. Finally, we show the existence of regions where the
transition from one optimal strategy to another is similar to the phase transitions in
thermodynamics, showing that these transitions are due to the state superposition of a
single qubit and not necessarily due to entanglement between the qubits of the output
game state, as studied in the reference [47].

2 Adiabatic strategies

The purpose of this section is to introduce the reader to the basic concepts that we
should use in this work such that reading and understanding become as smooth as pos-
sible. We will start this section by introducing the concepts of strategies (classical and
quantum) and adiabatic evolutions. In the end, we show how to implement strategies
through controlled adiabatic evolutions, introduced by Hen [48].

2.1 Classical and quantum strategies

In games theory, each strategy is associated with an action that a group or even a single
player can employ. In the quantum version of this theory, a strategy can represent the
interaction between the quantum and auxiliary systems, which can be discarded at
the end of the game. During the creation of a game, we construct rules in which
we define the allowed operations (state evolutions of the game according to a set of
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Hamiltonians, measurements on an auxiliary system, etc.), the order of each participant
in the game, and the payments (or gains) of each player related to one or more states
of an orthonormal basis, which we should call the basis of game states {|ψi 〉}, such
that 〈ψ j |ψi 〉 = δi j . In a genuinely classical game, the state associated with the game
must at any time be a statistical mixture of base states, and therefore, the density
operator of the system must be diagonal, i.e., ρ = ∑

i pi |ψi 〉 〈ψi |, where pi is the
probability of measuring the state |ψi 〉, such that Trρ = ∑

i pi = 1. Note that a
classical strategy cannot give rise to non-diagonal elements of this density operator,
whereas a quantum strategy does. For this reason, we must conclude that a classical
strategy should allow only that the game’s input state, let’s say a element |ψ j 〉〈ψ j |,
“jump” or “rotate” to an output state |ψk〉 〈ψk |, where k �= j . To make clear what
we have just said, consider the basis of the game as the computational basis of a
single qubit {|0〉 , |1〉} in which one of the players gains x0$, if the final state is |0〉,
and the other x1$, if the final state is |1〉. A strategy will be considered classical if
the state of the game remains unchanged or rotate, |0〉 to |1〉 or |1〉 to |0〉, without
introduction of relative phases. These relative phases can not exist because a classical
player cannot access the non-diagonal elements of the density operator, restricted
only to quantum players. On the other hand, a quantum strategy must take any state
of the base {|0〉 , |1〉} into a superposition or introduce phases in the base states, i.e.,
|0〉 → eiδ0 |0〉 or |1〉 → eiδ1 |1〉. If in the latter case δ0 − δ1 �= 0, 2π, . . . and the input
state of the game is a superposition, then the relative phase between them is modified
and consequently will be exist a change in the non-diagonal elements of the density
operator.

2.2 Adiabatic evolutions

Since each player does not know the game state before implementing his strategy, any
protocol that implements it should be independent of that state. Therefore, to imple-
ment a quantum game in the adiabatic form, we should be able to perform an operation
in any state of a qubit. This adiabatic process requires degenerate Hamiltonians, as we
shall see below.

The adiabatic evolution is generally defined by means of a HamiltonianH (s) which
varies slowly over time and interpolates two time-independent Hamiltonians, Hin and
Hout, such that [Hin,Hout] �= 0, being mathematically written in the form

H (s) = f (s)Hin + g(s)Hout, (1)

where s = t/τ is a dimensionless time variable and τ represents the complete time
evolution. The real functions f and g in (2) must satisfy the boundary conditions
f (0) = g(1) = 1 and f (1) = g(0) = 0. According to the controlled adiabatic
dynamics, the Hamiltonian H (s), at s = 0, must acts on an eigenstate of Hin ≡
1tar ⊗ Haux and drive it, at s = 1, for an eigenstate of Hout. If the auxiliary system
is initially in the eigenstate |0aux〉, note that the initial state of the composite system
|Ψin〉 = |ψtar (0)〉 ⊗ |0aux〉 is a eigenstate of Hin for whichever the state |ψtar (0)〉 is.
On the other hand, if Hout represents the interaction between the auxiliary and target
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systems, the output state of the composite system should be, in general, entangled.
However, if Hout = Htar ⊗H′

aux, the output state after the adiabatic evolution will be
disentangled and of the form |Ψout〉 = |ψtar (1)〉⊗ |0′

aux〉, where |0′
aux〉 is an eigenstate

of H′
aux, which is not necessarily equal to Haux, and |ψtar (1)〉 is an eigenstate of Htar,

which is defined according to the operation to be performed on |ψtar (0)〉.
In the specific case of a game, we define an adiabatic strategy as being an operation

on the game state performed through the adiabatic evolution that follows from the
Hamiltonian defined in (1).

2.3 Using controlled adiabatic evolutions in the implementation of strategies

Based on the fact that quantum games, which are being developed and studied in the
literature, can be implemented efficiently through circuit models, we will redirect the
study of adiabatic strategies to the situation in which adiabatic evolution is performed
in a controlled way, as proposed by Hen [48]. In this work, Hen demonstrates that a
single qubit logic gate (which is nothing more than a unitary operation that can be
seen as a rotation by an angle φ in the vicinity of an arbitrary direction n̂ in the Bloch
sphere) can be adiabatically implemented using controlled evolutions by means of the
two-qubit temporal Hamiltonian, defined by

H (s) = P+ ⊗ H0 (s) + P− ⊗ Hφ (s) . (2)

In Eq. (2), the operatorsP± represent a complete set of projectors mutually orthogo-
nal that act on the Hilbert space of the target qubit (system of interest) and can be written
in terms of an arbitrary direction n̂ asP± = (1± n̂ · 	σ)/2, where 	σ = σx x̂+σy ŷ+σz ẑ
and whose matrices σx , σy, σz are the Pauli matrices. The Hamiltonian Hφ (s), which
appears in (2), is defined by

Hφ (s) = −h̄ω
{
cos (θ0s) σz + sin (θ0s)

[
σx cos φ + σy sin φ

]}
, (3)

such that H0 (s) = Hφ=0 (s).
In this way, if the initial state of the composite system, represented by |Ψ (0)〉 =

|ψtar〉 ⊗ |0aux〉 ≡ |ψ; 0〉, evolves adiabatically through (2), the final state |Ψ (s)〉,
according to [48], becomes

|Ψ (s)〉 = cos (θ0s/2) |ψ; 0〉 + sin (θ0s/2) |ψrot; 1〉 , (4)

where |ψrot〉 = U
(
φ; n̂) |ψ〉 represents a rotation about the initial state. As observed

by Hen [48], U
(
φ; n̂)

can implement any unitary rotation under the initial state of the
target qubit |ψ〉 and therefore can implement any strategy, whether classical or not.
In this way, there always will be an adiabatic Hamiltonian who is able to implement
such strategies.

Note that in general the final state |Ψ (s)〉 in (4) is an entangled state of the composite
system and therefore the target qubit state will depend on the result of the measure
under the state of auxiliary qubit. If the result of this measure is |0aux〉, then the target
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qubit state will be the same as the initial state |ψ〉 (in this case, the implementation
of the operation U(φ, n̂) on the target qubit state was not successful). However, if the
result of the measurement is |1aux〉, then the operation U(φ, n̂) was implemented on
the target qubit state successfully. Therefore, it is easy to conclude that the meaning
of θ0 is related to the probability of obtaining the state |ψrot〉. In fact, we can see from
(4) that |ψ〉 and |ψrot〉 are obtained with a probability of cos2 (θ0/2) and sin2 (θ0/2),
respectively.

Since in general the adiabatic strategy is implemented probabilistically (being deter-
ministic only when θ0 = π ), we can simulate some imperfection in the machine, which
performs the game strategic operations, through the parameter θ0. In fact, when we
measure the state of the auxiliary system, the game state becomes a statistical mixture
of the form

ρ = cos2 (θ0/2) |ψ; 0〉 〈ψ; 0| + sin2 (θ0/2) |ψrot; 1〉 〈ψrot; 1| , (5)

which is the same as in a classical situation where the machine or device that imple-
ments the strategy works in about sin2 (θ0/2) of the times. As a consequence of this
interpretation of θ0, it is natural to conclude that the analysis of the best adiabatic
strategies will differ from those in which the game is performed deterministically, as
we will see in the next section.

3 Quantum games with controlled adiabatic evolutions

Before we start to analyze the optimal strategies in an adiabatic quantum game, we
let’s review some important points of a “heads or tails” quantum game.

3.1 Two-person quantum game: “heads or tails”

In a two-person quantum game with zero sum (that is, what one player gains is what
the other loses), the goal is to guess the final state of the coin (“heads”, which we
represent by state |0〉, or “tails”, represented by the state |1〉). During the course of
the game, both players (the quantum player Alice and the classic player Bob) can use
strategies to change the coin state.

The advantage that a quantum player has over a classic, mentioned in Meyer’s
original work [49], can be easily understood in the situation where the coin initial
state is a superposition of the form |ψc〉 = (|0〉 + |1〉) /

√
2. If the game starts with

Bob and he is restricted to the use of classical strategies {1, σx }, we see that the initial
game state does not change, since σx has the effect of rotating the state from |0〉 to
|1〉 and vice versa. Therefore, if Alice uses the strategy H = (σx + σz) /

√
2 = H,

known as the Hadamard operator, the final state becomes |0〉. On the other hand, if
H = Hσz the final state will be |1〉. Since Alice is able to control the final game state,
we conclude that the use of quantum strategies allows her to always win Bob and
receive the maximum prize of the game. In situations where both players are classic,
any player will have a 50% chance of winning and therefore the net amount at the end
of numerous disputes will be null, in which case we say that the game is fair.
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In the other situation, when the initial game state is |0〉 or |1〉, we note that after
Bob’s movement, the state will be |0〉 or |1〉 and therefore it is impossible for there
to be a unitary operator that takes both states to the same final state, which prevents
Alice’s victory at all times. This impossibility can disappear if we allow the use of
strategies associated with non-unitary and/or non-Hermitian operations. This study is
far from the scope of this paper and could be approached in future research with the
use of adiabatic evolutions for non-Hermitian Hamiltonians [50,51] and/or adiabatic
evolutions in open systems [41].

3.1.1 Analyzing the advantage of the quantum player in the adiabatic case

In the adiabatic version of the “heads or tails” game, which we will see in detail in the
next section, we will consider the same rules we previously assumed. In addition, the
scheme for the adiabatic game will consist of the target qubit, which will represent the
coin state (or game state), and two auxiliary qubits: one in exclusive possession of Bob
and the other in exclusive possession of Alice. When necessary, we will assign the
indices “c”, “B” and “A” to denote the qubits of the coin, Bob and Alice respectively.
Since the final state of the adiabatic evolution, in general, is an entangled state of the
target qubit + auxiliary qubit, when we measured the auxiliary qubit, the game state
becomes a statistical mixture, except for a few particular cases which we describe
below.

If the initial game state is |ψc〉 = (|0c〉 + |1c〉) /
√

2 and Bob, who is the first to
play, performs a classic adiabatic move 1B or σx;B , then by setting θ0 = θB in (4), we
see that the state of Bob’s auxiliary qubit + coin state becomes

|ΨcB〉 = |ψc〉 ⊗ [cos (θB/2) |0B〉 + sin (θB/2) |1B〉] , (6)

where we use the fact that |ψrot〉 = |ψc〉 for Bob’s classical moves.
Note from (6) that the auxiliary state is disentangled from the coin state, and there-

fore any result of the measurement on the auxiliary qubit leaves the state of the coin
in |ψc〉, and, consequently, we can exclude the state of Bob’s auxiliary qubit. If now
Alice, which is the second and the last to play, implements a Hadamard H operation,
we will see that the state of Alice’s auxiliary qubit + coin state, redefining θ0 = θA in
(4), will be given by

|ΨcA〉 = cos (θA/2) |ψc〉 ⊗ |0A〉 + sin (θA/2) |0c〉 ⊗ |1A〉, (7)

where we use the fact that |ψrot〉 = H |ψc〉 = |0c〉. Observe that when we measure the
state of Alice’s auxiliary qubit we have a probability of cos2 (θA/2) to measure |0A〉
and a probability of sin2 (θA/2) to measure |1A〉.

When the game is played multiple times, we can write the coin state as a statistical
mixture ρc of the results obtained above, so that

ρc = TrA|ΨcA〉 〈ΨcA|
= cos2 (θA/2) |ψc〉 〈ψc| + sin2 (θA/2) |0c〉 〈0c| . (8)
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From (8), we see that the probability of finding the target qubit in the state |0c〉
becomes p0 = 1 − cos2 (θA/2) /2, whereas the probability of finding the state |1c〉
will be p1 = cos2 (θA/2) /2. Thus, if Alice gains (loses) an amount $ if the final coin
state is |0c〉 (|1c〉), her net gain or payment πA will be, after countless moves, around
of

πA = p0$ − p1$ = sin2 (θA/2) $, (9)

which is always greater than zero, since in adiabatic evolutions θA �= 0 (otherwise,
no evolution will ever be implemented). The symbol $ represents the payment value
for Alice in cases where the coin state is |0c〉 (we assume that Alice loses the same
amount when the final state is |1c〉). Note, therefore, that the payment of Alice becomes
maximum and equal to the previous game only when θA = π , in which case the
controlled adiabatic evolution ceases to be probabilistic and the implementation of
unitary operation is achieved with 100% of success.

3.2 Adiabatic version of the two-person quantum game: “heads or tails”

In the previous section we investigate how the advantage of a player, using quantum
strategies, changes in the adiabatic version of Meyer’s original game. In this simplified
analysis, we focused only on quantum strategy, ignoring Alice’s classical strategies
in our study. In this section, therefore, in addition to taking into account the classic
and quantum strategies for both players, we are interested in analyzing the game for
general situations in which the players’ gains are different and when the initial game
state is a superposition rather than a single state of the game base.

To carry out these analyzes, let us consider the general situation in which the initial
coin state is a superposition of the form

|ϕc〉 = α0 |0c〉 + α1 |1c〉 , (10)

with the normalization condition |α0|2 + |α1|2 = 1.
Both players can use strategies {1, σx ,U}, where the first two are classic strategies

and the latter is an arbitrary strategy that performs unitary rotations such that:

U� |0c〉 = cos (φ�/2) |0c〉 + eiδ� sin (φ�/2) |1c〉 (11a)

U� |1c〉 = sin (φ�/2) |0c〉 − eiδ� cos (φ�/2) |1c〉 , (11b)

where the index � = A, B labels the strategies of Alice and Bob. Note that for cases
where φ� = 0, with δ� = π , and φ� = π , with δ� = 0, we retrieve, respectively, the
classical strategies1 and σx fromU. For any other situation,Uwill represent a quantum
strategy. Since U, defined in (11), is very general, we will now analyze the adiabatic
evolution of the initial state (10) through U only, and later we will particularize for
some situations of interest.

Recalling that the system is composed of a coin qubit and the qubits of the auxiliary
systems let’s we will consider that the initial state of this system be |ΨcAB (0)〉 =
|ϕc〉 ⊗ |0B, 0A〉. Assuming that Bob, being the first to play, uses the strategy UB , we
see from (4), that the state of the system, after Bob’s move, will be
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|ΨcAB〉 = cos (θB/2) |ϕc〉 ⊗ |0B, 0A〉 + sin (θB/2)UB |ϕc〉 ⊗ |1B, 0A〉 .

Then Alice implements the strategy UA and, consequently, the final state of the com-
posite system becomes:

|ΨcAB〉 = cos (θA/2) [cos (θB/2) |ϕc〉 ⊗ |0B, 0A〉
+ sin (θB/2)UB |ϕc〉 ⊗ |1B, 0A〉]
+ sin (θA/2) [cos (θB/2)UA |ϕc〉 ⊗ |0B, 1A〉
+ sin (θB/2)UAUB |ϕc〉 ⊗ |1B, 1A〉] . (12)

Finally, by performing the measurements of the auxiliary qubits of both players, we
find that the coin state is taken to a statistical mixture of the form

ρc (UA,UB) ≡ ρc (U,U) = TrA,B |ΨcAB〉 〈ΨcAB |
= cos2 (θA/2)

[
cos2 (θB/2) |ϕc〉 〈ϕc|

+ sin2 (θB/2)UB |ϕc〉 〈ϕc|U†
B

]

+ sin2 (θA/2)
[
cos2 (θB/2)UA |ϕc〉 〈ϕc|U†

A

+ sin2 (θB/2)UAUB |ϕc〉 〈ϕc|U†
BU

†
A

]
. (13)

From the final coin state (13) and assuming that Alice receives from Bob a payment
of x0$, when the coin state is measured in |0c〉, and pays to Bob the amount x1$, when
the coin state is |1c〉, we can conclude that the average gain of Alice (in units of $)
will become

πA (U,U) =
1∑

k=0

(−1)k xk

{

cos2
(

θA

2

) [

cos2
(

θB

2

)

|αk |2

+ sin2
(

θB

2

)

|〈k|UB |ϕc〉|2
]

+ sin2
(

θA

2

) [

cos2
(

θB

2

)

|〈k|UA |ϕc〉|2

+ sin2
(

θB

2

)

|〈k|UAUB |ϕc〉|2
]}

. (14)

By calculating the expected values that appear in (14) with the help of (11), we can
rewrite πA (U,U) as

πA (U,U) = x0 − x1

2
+ (x0 + x1)

{
|α0|2 − |α1|2

2
ΦAΦB

+ Re
(
α0α

∗
1

)
[

sin φA sin2
(

θA

2

)
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+ΦA sin φB sin2
(

θB

2

)]

+ sin φA sin2
(

θA

2

)

× sin2
(

θB

2

) [
|α0|2 − |α1|2

2
sin φB cos δB

− Re
(
α0α

∗
1

)
(1 + cos φB cos δB)

− Im
(
α0α

∗
1

)
sin δB

]}

, (15)

where we define the parameters

Φ� = 1 − 2 sin2 (θ�/2) sin2 (φ�/2) . (16)

3.2.1 The role of the parameters θA and θB in a adiabatic classic game

In the situations where it is desired that the quantum game is an extension of the classic
game, it is necessary to fit or delimit some initially free parameters in a quantum game.
Therefore, the purpose of this section is to only impose constraints on the parameters
θA and θB through the analysis of a purely classical game.

Since in a purely classical game the initial state cannot be a superposition of base
states, then we see that α0 or α1 must be null. In addition, both players should use
only classical strategies (i.e., φ� = 0, with δ� = π , and φ� = π , with δ� = 0). Under
these considerations, defining the parameters

π+ (1,1) = x0$ (17a)

π− (1,1) = −x1$ (17b)

π± (1, x) =
(
x0 − x1

2
± x0 + x1

2
cos θB

)

$ (17c)

π± (x,1) =
(
x0 − x1

2
± x0 + x1

2
cos θA

)

$ (17d)

π± (x, x) =
(
x0 − x1

2
± x0 + x1

2
cos θA cos θB

)

$, (17e)

one can create a pay table with (15) for all possible combinations of players’ strategies
and that we show below for the initial states |0〉, Table 1, and |1〉, Table 2:

Observe that Table 2 can be obtained from Table 1 by making the mutual exchange
x0 → −x1 and x1 → −x0, so that the game analysis for Table 1 is valid for Table 2.

Table 1 Payments for Alice,
according to the combination of
players’ strategies, in the
situation where the initial game
state is |0〉

|ψ(0)〉 = |0〉 Bob

Alice Strategies 1 σx

1 π+ (1,1) π+ (1, x)

σx π+ (x,1) π+ (x, x)
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Table 2 Payments for Alice,
according to the combination of
players’ strategies, in the
situation where the initial game
state is |1〉

|ψ(0)〉 = |1〉 Bob

Alice Strategies 1 σx

1 π− (1,1) π− (1, x)

σx π− (x,1) π− (x, x)

In possession of a pay table, now we can do the analysis of the game, but before, we
will define the concept of dominant strategies.

We say that A j weakly dominates the strategy Ak (A j and Ak are two arbitrary
strategies of a player A) whenever the payment π

(
A j , B�

) ≥ π (Ak, B�), for any
strategy B� that his opponent uses. If π

(
A j , B�

)
> π (Ak, B�), for any B�, we say

that A j is strictly dominant over Ak .
Based on the definition of dominant strategy above, we see from (17) that one

of Alice’s strategies strictly dominates the other whenever cos θB > cos θA cos θB ,
regardless of initial state. From Bob’s point of view, the dominance of strategies arises
whenever cos θA > cos θA cos θB . Since the classical games of “even or odd” and/or
“heads or tails” do not have dominant strategies, we conclude that the game of a
single qubit, which we are considering in this work, will only reproduce this classical
situation when we set π/2 < θ� ≤ π . Therefore, to extend the classical game to the
quantum domain, we must assume that the value of θ� is restricted to the half open
interval (π/2, π ].

A prevision of a player’s average payment can be obtained whenever we consider
that the game is played over and over again. In this situation, players must use each
of the strategies in a random way and with a certain probability (solution by mixed
strategies). To determine the best choice for each of the players, we must keep in mind
that the optimal choice arises when a player’s average gains, for each of the strategies
his opponent uses, becomes the same [52,53]. When this is achieved, we say that
the game has been solved or that the game has reached its equilibrium. This balance
ensures that there is nothing your opponent can do to make your winnings less, as we
will see later. Now we will determine the optimal strategies for our game in question,
where these concepts can be better understood.

Consider that Alice plays randomly the strategies 1 and σx with probabilities λ and
1 − λ, respectively. With these considerations, we see that Alice’s average payment
will be ΠA (1) when Bob uses the strategy 1 and ΠA (x) when Bob uses the strategy
σx , where we define

ΠA (1) = λπ+ (1,1) + (1 − λ) π+ (x,1) (18a)

ΠA (x) = λπ+ (1, x) + (1 − λ) π+ (x, x) . (18b)

The optimal value of λ arises when we impose ΠA (1) = ΠA (x), obtaining

λ = |cos θA|
1 + |cos θA| ≡ λo. (19)
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Note that in practice this adjusting is only possible for Alice if she has information
about the parameter θA of her controlled adiabatic evolution.

From Bob’s point of view, his optimal mixed strategy can be determined by con-
sidering that strategies 1 and σx are randomly used with probability μ and 1 − μ,
respectively. Defining the payments

ΠB (1) = −μπ+ (1,1) − (1 − μ) π+ (1, x) (20a)

ΠB (x) = −μπ+ (x,1) − (1 − μ) π+ (x, x) , (20b)

the average gains of Bob will then be ΠB (1), when Alice chooses to play 1, and
ΠB (x), when she plays σx . Now we can impose ΠB (1) = ΠB (x) to get the optimal
value

μ = |cos θB |
1 + |cos θB | ≡ μo. (21)

Again we see that Bob’s best fit implies that he has knowledge of the parameter θB of
his controlled adiabatic evolution. With these adjustments, the average gains of each
player (replacing the optimal values of λ and μ in (18) and (20), respectively) become

Alice:
x0 − x1

2
$; Bob : x1 − x0

2
$. (22)

Observe from (22) that Alice will have advantage if x0 > x1 and disadvantage when
x1 > x0. When x0 = x1, the average gains of each player become equal to zero and,
therefore, the game becomes fair. The same conclusion is obtained if the initial game
state is |1〉. Another important observation is that the average gains of each player are
independent of the parameters θA and θB , which means that the controlled adiabatic
evolution does not interfere in the gains of each ones of players.

The role of optimal strategies can be understood in a simple way, as we see next. If
Alice chooses the strategy1, her average gain will be obtained by the weighted average
of the gains according to each Bob strategy, that is, −ΠB (1). If Alice chooses the
strategy σx , her average gain becomes −ΠB (x). Therefore, the net average gain of
Alice, in the non-optimal situation where λ �= λo, will be

ΠA = −λΠB (1) − (1 − λ)ΠB (x) . (23)

If Bob uses his optimal strategy, then ΠA = −ΠB (1) = −ΠB (x) = [(x0 − x1) /2] $,
a result identical to Alice’s payments in the optimal situation, when λ = λo. However,
this scenario changes if Bob finds out that Alice is not making use of her optimal
strategy by analyzing the statistical information of the strategies used by her, in the
case of this information is available to players. To understand this point it, is appropriate
to explicitly rewrite the average gains of Alice ΠA in the form

ΠA =
[
x0 − x1

2
+ x0 + x1

2
(1 + |cos θB |) (1 + |cos θA|)

× (μ − μo) (λ − λo)

]

$. (24)
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Note that if Alice inadvertently uses λ, such that

0 ≤ λ < λo or λo < λ ≤ 1, (25)

that Bob can adjust μ conveniently in the form

μo < μ ≤ 1 or 0 ≤ μ < μo (26)

so that Alice’s gain is lower and therefore his payments are higher. In other words, it
is more safe for Alice to use the optimal strategy, because in this situation there is no
way for Bob to modify his strategy to obtain a bigger gain and thus the equilibrium of
the game arises.

3.2.2 Inserting quantum strategies in adiabatic classic game

In this section, we will analyze the game of the previous section with the inclusion of
the quantum strategy U. Using (15), we can define the payments (in units of $)

π0 (1,U) = x0 − x1

2
+ x0 + x1

2
ΦB (27a)

π0 (x,U) = x0 − x1

2
− x0 + x1

2
ΦB |cos θA| (27b)

π0 (U,1) = x0 − x1

2
+ x0 + x1

2
ΦA (27c)

π0 (U, x) = x0 − x1

2
− x0 + x1

2
ΦA |cos θB | (27d)

π0 (U,U) = x0 − x1

2
+ x0 + x1

2

[

ΦAΦB

+ sin φA sin φB sin2
(

θA

2

)

sin2
(

θB

2

)

cos δB

]

, (27e)

and thus extend Tables 1, 2 and 3, which takes into account the quantum strategies,
which is presented in Table 3.

To find the extension of Table 2 for the situation involving quantum strategies,
simply make the mutual exchange x0 → −x1 and x1 → −x0 in Table 3.

Table 3 Extending Alice’s payments in Table 1 for the situation involving quantum strategies when the
initial game state is |0〉
|ψ(0)〉 = |0〉 Bob

Alice Strategies 1 σx U

1 π+ (1,1) π+ (1, x) π0 (1,U)

σx π+ (x,1) π+ (x, x) π0 (x,U)

U π0 (U,1) π0 (U, x) π0 (U,U) .
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Let us now turn to the analysis of the game. Since − |cos θA| ≤ ΦA ≤ 1, it is easy
to verify that

π0 (U,1) ≤ π+ (1,1) and π+ (1, x) ≤ π0 (U, x) (28)

π+ (x,1) ≤ π0 (U,1) and π0 (U, x) ≤ π+ (x, x) , (29)

and therefore there is no (weak) dominance of U over the classical strategies 1 and
σx , respectively. It is important to note that the strategy U can represent one or a
continuum of strategies depending on whether the parameter φA and φB are fixed or
vary. As they are parameters of possession of each player, it is reasonable to conclude
that U represents a set of strategies, remembering that θA and θB are fixed parameters
during all games. Despite this, in our analysis to obtain the optimal strategy, we will
assume that U represents a single strategy, without loss of generality, as will become
clear below.

Defining the payments

ΠA (1) = λ1π+ (1,1) + λ2π+ (x,1) + λ3π (U,1) (30a)

ΠA (x) = λ1π+ (1, x) + λ2π+ (x, x) + λ3π (U, x) (30b)

ΠA (U) = λ1π (1,U) + λ2π (x,U) + λ3π (U,U) , (30c)

and assuming that Alice uses the classical strategy 1 (σx ) with probability λ1 (λ2) and
the quantum strategy U with probability λ3 = 1 − λ1 − λ2, it can be verified that the
average gains of Alice become ΠA (1), ΠA (x) and ΠA (U) if Bob uses the strategy 1,
σx andU, respectively. The optimal strategy arises when ΠA (1) = ΠA (x) = ΠA (U),
in which case we obtain the relations

λ1 − |cos θA|
1 + |cos θA| − (λ1 + λ2 − 1) cos2 (φA/2) = 0 (31a)

(λ1 + λ2 − 1) sin φA sin2 (θB/2) sin φB cos δB = 0. (31b)

Note from (31) that Alice’s optimal strategy setting involves Bob’s parameters (φB , θB
and δB) that we assume that be unknown to Alice. Therefore, it is reasonable to assume
that the best fit for Alice is obtained so that it is independent of these parameters. Thus,
the relation (31) leads us to three options:

(i) In the first option, we can set φA = 0 and thus we must set λ2, such that

λ2 = 1

1 + |cos θA| , (32)

leaving free λ1;
(ii) In the second option, we can adjust φA = π and, consequently, we obtain an

adjustment for λ1 given by
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λ1 = |cos θA|
1 + |cos θA| , (33)

while we can choose any value for λ2;
(iii) Finally, the third option is to set λ1 + λ2 = 1 (discarding the quantum strategies

in the game), in which case we retrieve the results at (32) and (33). It is important
to mention that this case can be seen as a particular case of (i) and also of (ii),
since in both cases one of the λ’s have a free value.

For any of the three situations defined above Alice’s earnings are independent of
Bob’s action and become the same as in the classical case (22). This result leads us to
the conclusion that quantum strategies can be neglected.

It is important to note that in the situation where Bob is only a classical player,
the condition (31b) is not required. However, Alice’s average payment will still be
given by Eq. (22), as can be concluded by using (31a) in (30a), regardless of φA

and θA. Therefore, we see that quantum strategies can still be ignored in the process
of obtaining the optimal strategy, even in the case where Alice confronts a classical
player, when the initial state is |0〉 or |1〉.

3.2.3 Adiabatic game with a initial superposition state

We will now analyze the situation where the initial game state becomes a superposition
and thus determine the regimes in which a quantum player obtains advantages over a
classical player.

Using Eq. (15), we can verify that payments, in units of $, for each combination of
strategies become

π (1,1) = x0 − x1

2
+ x0 + x1

2

(
|α0|2 − |α1|2

)
(34a)

π (1, x) = x0 − x1

2
− x0 + x1

2

(
|α0|2 − |α1|2

)
|cos θB | (34b)

π (1,U) = x0 − x1

2
+ x0 + x1

2

[(
|α0|2 − |α1|2

)
ΦB

+ 2Re
(
α0α

∗
1

)
sin2 (θB/2) sin φB

]
(34c)

π (x,1) = x0 − x1

2
− x0 + x1

2

(
|α0|2 − |α1|2

)
|cos θA| (34d)

π (x, x) = x0 − x1

2
+ x0 + x1

2

(
|α0|2 − |α1|2

)
|cos θA cos θB | (34e)

π (x,U) = x0 − x1

2
− x0 + x1

2

[(
|α0|2 − |α1|2

)
|cos θA| ΦB

+ 2Re
(
α0α

∗
1

)
sin2 (θB/2) sin φB |cos θA|

]
(34f)

π (U,1) = x0 − x1

2
+ x0 + x1

2

[(
|α0|2 − |α1|2

)
ΦA

+ 2Re
(
α0α

∗
1

)
sin2 (θA/2) sin φA

]
(34g)
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π (U, x) = x0 − x1

2
− x0 + x1

2

[(
|α0|2 − |α1|2

)
|cos θB | ΦA

− 2Re
(
α0α

∗
1

)
sin2 (θA/2) sin φA

]
(34h)

π (U,U) = x0 − x1

2
+ x0 + x1

2

{(
|α0|2 − |α1|2

) [
ΦAΦB

+ sin2 (θA/2) sin2 (θB/2) sin φA sin φB cos δB

]

− 2Im
(
α0α

∗
1

)
sin2 (θA/2) sin2 (θB/2) sin φA sin δB

+ 2Re
(
α0α

∗
1

) [
ΦA sin2 (θB/2) sin φB

+
(

1 − sin2 (θB/2) [1 + cos φB cos δB]
)

× sin2 (θA/2) sin φA

]}
(34i)

From the payments defined above, it is crucial to note the lack of symmetry with
respect to payments π (x,U) and π (U, x). So far, in this work, all the non-diagonal
elements were symmetrical with respect to the permutation of the A ↔ B indices
was performed. This breaking of symmetry, which arises when α0 and α1 are nonzero,
allows a differentiation between the players with respect to the order in which each
one applies their strategy, as we will see below. This fact leads us to think that, in
the presence of symmetry, all players are equivalent and therefore no one should get
benefits. On the other hand, the absence of symmetry suggests that quantum strategies
may play a relevant role, as we will see below.

3.3 Regimes of dominance

Let us now analyze in what regimes of parameters that the quantum player Alice
possesses dominant strategies with respect to a classic player Bob. It is easy to show
that there is no dominance between the classical strategies of Alice, since in the
situation where π (1,1) is smaller (greater) than π (x,1) it is verified that π (1, x)
is larger (smaller) than π (x, x) and hence independently of any relation between
π (1,U) and π (x,U), we conclude that 1 does not dominate σx and vice versa. In
addition, since the phases δA play no role in (34), we can discard the Alice quantum
strategies involved in cases where φA = 0, π .

Domain of U over 1. For Alice’s quantum strategy U to dominate (weakly) the
strategy 1 it is necessary that

π (U,1) ≥ π (1,1) and π (U, x) ≥ π (1, x) . (35)

These inequalities imply, respectively, in the relations

2Re
(
α0α

∗
1

) ≥
(
|α0|2 − |α1|2

)
tan (φA/2) (36a)

2Re
(
α0α

∗
1

) ≥ −
(
|α0|2 − |α1|2

)
tan (φA/2) |cos θB | . (36b)
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However, as 0 < φA < π , we note that tan (φA/2) > 0 and therefore there is no
dominance for the case where Re

(
α0α

∗
1

)
< 0, regardless of the signal of |α0|2 −|α1|2,

since one of the two inequalities in (36) must be violated. If Re
(
α0α

∗
1

) = 0, we note
that Eq. (36) can be satisfied only for the particular situation where |α0| = |α1|. In the
most comprehensive case, where the initial state is such that Re

(
α0α

∗
1

)
> 0, we have

three possibilities:

(i) When |α0| > |α1|, the Alice’s quantum strategy U dominates 1 whenever

0 < φA ≤ 2 arctan Λα , (37)

where we define

Λα =
∣
∣
∣
∣
∣

2Re
(
α0α

∗
1

)

|α0|2 − |α1|2
∣
∣
∣
∣
∣
. (38)

(ii) If |α0| < |α1|, the dominance over classical strategy 1 arises when

0 < φA ≤ 2 arctan (Λα/ |cos θB |) . (39)

(iii) For |α0| = |α1|, the quantum strategy U always dominates 1 for any allowed
value of φA, that is, 0 < φA < π .

Domain of U over σx . The Alice’s quantum strategy U will dominate the classical
strategy σx whenever

π (U,1) ≥ π (x,1) and π (U, x) ≥ π (x, x) , (40)

which imply, respectively, in the inequalities

2Re
(
α0α

∗
1

)
tan (φA/2) ≥ −

(
|α0|2 − |α1|2

)
(41a)

2Re
(
α0α

∗
1

)
tan (φA/2) ≥

(
|α0|2 − |α1|2

)
|cos θB | . (41b)

Again we observe from (41) that there are no solutions for the case where Re
(
α0α

∗
1

)
<

0 and for the case where Re
(
α0α

∗
1

) = 0 the only solution is obtained for the particular
situation where |α0| = |α1|. In the case of interest, where Re

(
α0α

∗
1

)
> 0, we have

the following solutions:

(i) If |α0| > |α1|, the Alice’s quantum strategy U dominates σx whenever

2 arctan (|cos θB | /Λα) ≤ φA < π . (42)

(ii) When |α0| < |α1|, the inequality obtained when we impose the domain of U
over σx becomes

2 arctan (1/Λα) ≤ φA < π . (43)

(iii) For |α0| = |α1|, the quantum strategy U always dominates σx for any allowed
value of φA, that is, 0 < φA < π .
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Mutual dominance of U over 1 and σx . According to each regime seen above, the
intersection interval represents the mutual domain of Alice’s quantum strategy U over
the classical strategies 1 and σx . Note, therefore, that this interval is defined by:

2 arctan

( |cos θB |
Λα

)

≤ φA ≤ 2 arctan Λα, if |α0| > |α1| (44a)

2 arctan
(
Λ−1

α

)
≤ φA ≤ 2 arctan

(
Λα

|cos θB |
)

, if |α0| < |α1| , (44b)

provided that the inequality |cos θB | ≤ Λ2
α be verified. It is interesting to remember

that when |α0| → |α1|, that Λα → ∞ and therefore, both inequalities in Eq. (44)
become the interval 0 < φA < π .

Absence of dominance. Excluding the situation where Re
(
α0α

∗
1

)
< 0, for the case

where Re
(
α0α

∗
1

)
> 0 there will be non-dominance regimes defined by the intervals:

2 arctan Λα < φA < 2 arctan

( |cos θB |
Λα

)

, if |α0| > |α1| (45a)

2 arctan

(
Λα

|cos θB |
)

< φA < 2 arctan
(
Λ−1

α

)
, if |α0| < |α1| , (45b)

where it is assumed that the inequality |cos θB | > Λ2
α be satisfied. Note that |α0| → 0

or |α1| → 0 implies in Λα → 0 and therefore Eq. (45) become the interval 0 < φA <

π .

3.4 Quantum player payments

The optimal payout of each player is associated with the use of optimal strategies
for both players. To obtain these values, we still have to determine the dominating
strategies from Bob’s point of view. Before proceeding with this task, it is important
to note that whenever one strategy is dominated by another, it can be discarded without
modified the game result (called equilibrium). When we discard a strategy in the game
analysis by a player, we must remake the analysis for the previous player and see if
some dominant strategy emerges in this reduced strategy space.

Let us now determine Alice’s payment in units of $, separating our analysis into
two regimes that depend on the relationships between the initial state parameters |α0|
and |α1|.

Regime in which |α0| ≥ |α1|. In this regime we will analyze the game solutions
for certain ranges of φA.

(i) For the situation where initially the Alice’s quantum strategy U dominates only
1, defined by the interval 0 < φA ≤ 2 arctan (min {Λα, |cos θB | /Λα}), the game
solution depends on the analysis of Bob’s strategies:
(a) The Bob’s classical strategy 1 dominates σx , that is,

π (x, x) ≥ π (x,1) and π (U, x) ≥ π (U,1) , (46)
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which occurs whenever φc ≤ φA ≤ 2 arctan (min {Λα, |cos θB | /Λα}),
where we define the critical parameter

φc = 2 arcsin
{

1/
[√

2 sin (θA/2)
]}

. (47)

In this situation, discarding Bob’s strategy σx , it is verified that the Alice’s
quantum strategy U starts to dominate σx , because in this reduced space of
strategies, we have that π (U,1) ≥ π (x,1), according to (41a). Therefore,
the game solution is obtained with Alice by applying U and Bob 1, leading
to a payment to Alice given by

ΠA = π (U,1) = x0 − x1

2
+ x0 + x1

2

∣
∣
∣|α0|2 − |α1|2

∣
∣
∣

×
{

sin φA sin2 (θA/2) [Λα − tan (φA/2)] + 1
}

. (48)

(b) When there is no dominance of any Bob’s classical strategy, situation in which
φA ≤ 2 arctan (min {Λα, |cos θB | /Λα}) < φc, the game solution is obtained
by the application of mixed strategies. To obtain this solution, consider that
λ1 and 1 − λ1 are the probabilities of Alice plays the strategy σx and U,
respectively. Imposing the equality

λ1π (x,1) + (1 − λ1) π (U,1) = λ1π (x, x) + (1 − λ1) π (U, x) , (49)

we obtain

λ1 = π (U, x) − π (U,1)

π (x,1) − π (x, x) + π (U, x) − π (U,1)

= 1 − 2 sin2 (θA/2) sin2 (φA/2)

2 sin2 (θA/2) cos2 (φA/2)
> 0, (50)

and Alice’s payment becomes

ΠA = π (mix1) = x0 − x1

2
+ (x0 + x1)

× ∣
∣Re

(
α0α

∗
1

)∣
∣ tan (φA/2) |cos (θA)| . (51)

(ii) Consider that Alice’s quantum strategy U dominates both the classical strategies
1 and σx , defined by the interval 2 arctan (|cos θB | /Λα) ≤ φA ≤ 2 arctan Λα ,
presented in (44a). Analyzing Bob’s strategies, we find that two situations can
occur:
(a) When Bob’s classical strategy σx dominates 1, in which case 2 arctan

(|cos θB | /Λα) ≤ φA ≤ φc, the game solution is obtained with Alice by
applying the strategy U and Bob σx , resulting in a payment to Alice of

ΠA = π (U, x) = x0 − x1

2
+ x0 + x1

2

∣
∣
∣|α0|2 − |α1|2

∣
∣
∣

123



Adiabatic quantum games and phase-transition-like behavior… Page 19 of 30 149

×
{

sin φA sin2 (θA/2) [Λα + tan (φA/2) |cos θB |] − |cos θB |
}

. (52)

(b) In the opposite situation to (i), if Bob’s classical strategy 1 dominates σx , in
which case φc ≤ φA ≤ 2 arctan Λα , the game solution is obtained by Alice
choosing U and Bob 1, resulting in the payment to Alice given by (48).

(iii) Let us consider now Alice’s quantum strategy U initially dominates only σx ,
defined by the interval 2 arctan (max {Λα, |cos θB | /Λα}) ≤ φA < π . For this
case there is a solution for each domain regime of Bob’s strategies:

(a) When Bob’s classical strategy σx dominates 1, that is,

π (1, x) ≤ π (1,1) and π (U, x) ≤ π (U,1) , (53)

which is satisfied for the range defined by 2 arctan (max {Λα, |cos θB | /Λα}) ≤
φA ≤ φc. Disregarding Bob’s strategy 1, it turns out that Alice’s quan-
tum strategy U dominates 1, because in this reduced strategy space we have
π (U, x) ≥ π (1, x), according to (36b). As a consequence, the game solu-
tion is obtained with Alice by applying U and Bob σx , leading to an Alice’s
payment given by (52).

(b) In case there is no dominance between Bob’s classical strategies, which occurs
in the range φc < 2 arctan (max {Λα, |cos θB | /Λα}) ≤ φA, the solution is
again obtained by the application of mixed strategies. If λx and 1 −λx are the
probabilities of Alice play 1 and U, respectively, by imposing the equality

λxπ (1,1) + (1 − λx ) π (U,1) = λxπ (1, x) + (1 − λx ) π (U, x) , (54)

we obtain

λx = π (U, x) − π (U,1)

π (1,1) − π (1, x) + π (U, x) − π (U,1)

= 2 sin2 (θA/2) sin2 (φA/2) − 1

2 sin2 (θA/2) sin2 (φA/2)
> 0, (55)

and Alice’s payment becomes

ΠA = π (mix2) = x0 − x1

2
+ (x0 + x1)

∣
∣Re

(
α0α

∗
1

)∣
∣ cot (φA/2) . (56)

(iv) When there is no dominance between any of Alice’s strategies, defined by the
interval 2 arctan Λα < φA < 2 arctan (|cos θB | /Λα), and the same occurs for
Bob, the game solution is obtained by the use of mixed strategies. Consider,
therefore, that Alice chooses to play λ′

1 (λ′
2) times the classical strategy 1 (σx )

and 1 − λ′
1 − λ′

2 times the quantum strategy U. Imposing the equality

λ′
1π (1,1) + λ′

2π (x,1) + (
1 − λ′

1 − λ′
2

)
π (U,1)

= λ′
1π (1, x) + λ′

2π (x, x) + (
1 − λ′

1 − λ′
2

)
π (U, x) , (57)
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we obtain the condition

λ′
1 − λ′

2 |cos (θA)| + (
1 − λ′

1 − λ′
2

)
ΦA = 0. (58)

The condition (58) requires that the game solution be different for different
intervals of φA:

(a) For the interval defined by 2 arctan Λα < φA ≤ φc we must choose

λ′
1 = 0 and λ′

2 = 1 − 2 sin2 (θA/2) sin2 (φA/2)

2 sin2 (θA/2) cos2 (φA/2)
, (59)

so that Alice’s payment becomes (51).
(b) In the interval φc ≤ φA < 2 arctan (|cos θB | /Λα) we must choose

λ′
2 = 0 and λ′

1 = 2 sin2 (θA/2) sin2 (φA/2) − 1

2 sin2 (θA/2) sin2 (φA/2)
, (60)

which leads Alice to receive the payment set by (56).

Regime in which |α0| ≤ |α1|. In the situation where |α0| ≤ |α1| we again have
different game solutions, depending on the intervals at which φA varies.

(i) The first case to be analyzed will be the one in which Alice’s quantum
strategy U initially dominates only 1, defined by the interval 0 < φA ≤
2 arctan (min {1/Λα,Λα/ |cos θB |}). In this range of φA we can have two dif-
ferent solutions, depending on the dominance analysis of Bob’s strategies:

(a) If the Bob’s classical strategy σx dominates 1, that is,

π (x, x) ≤ π (x,1) and π (U, x) ≤ π (U,1) , (61)

which occurs whenever φc ≤ φA ≤ 2 arctan (min {1/Λα,Λα/ |cos θB |}), we
can discard strategy1 in our analysis. In this situation, it is verified that Alice’s
quantum strategyU dominates σx , since in this reduced strategy space, we have
π (U, x) ≥ π (x, x), as obtained from (41b). Therefore, the game solution is
obtained with Alice by applying U and Bob σx , leading to an Alice’s payment
given by

ΠA = π (U, x) = x0 − x1

2
+ x0 + x1

2

∣
∣
∣|α0|2 − |α1|2

∣
∣
∣

×
{

sin φA sin2 (θA/2) [Λα − tan (φA/2) |cos θB |] + |cos θB |
}

. (62)

(b) When there is no dominance between Bob’s classical strategies, which occurs
in the interval where φc > 2 arctan (min {1/Λα,Λα/ |cos θB |}) ≥ φA, the
game solution is obtained by the application of mixed strategies, which is
identical to the situation occurred in item (b) of (i) for the regime |α0| ≥
|α1|, analyzed above. Therefore, for this case we must adjust the probabilities
according to (50), which leads Alice to receive a payment given by (51).

123



Adiabatic quantum games and phase-transition-like behavior… Page 21 of 30 149

(ii) For the situation where Alice’s quantum strategy U dominates both classi-
cal strategies 1 and σx , defined by the interval 2 arctan (1/Λα) ≤ φA ≤
2 arctan (Λα/ |cos θB |), as we have seen in Eq. (44b), we can have two different
solutions:

(a) If Bob’s classical strategy 1 dominates σx , in which case 2 arctan (1/Λα) ≤
φA ≤ φc, the game solution occurs for the situation where Alice plays U and
Bob plays 1, leading to a payment to Alice equal to

ΠA = π (U,1) = x0 − x1

2
+ x0 + x1

2

∣
∣
∣|α0|2 − |α1|2

∣
∣
∣

×
{

sin φA sin2 (θA/2) [Λα + tan (φA/2)] − 1
}

. (63)

(b) If Bob’s classical strategy σx dominates 1, in which case φc ≤ φA ≤
2 arctan (Λα/ |cos θB |), the solution is obtained for the situation in which
Alice plays U and Bob plays σx , which leads Alice to receive a payment equal
to that shown in Eq. (62).

(iii) In the case where Alice’s quantum strategy U dominates only σx , defined by
the interval 2 arctan (max {1/Λα,Λα/ |cos θB |}) ≤ φA < π , the game solution
depends on the dominance regime between Bob’s strategies:

(a) When Bob’s classical strategy 1 dominates σx , that is,

π (1, x) ≥ π (1,1) and π (U, x) ≥ π (U,1) , (64)

which occurs whenever 2 arctan (max {1/Λα,Λα/ |cos θB |}) ≤ φA ≤ φc, one
should discard σx in our analysis. Thus, it is verified that the Alice’s quantum
strategy U starts to dominate 1, because in this reduced space of strategies,
we have that π (U,1) ≥ π (1,1), according to (36a). Therefore, the game
solution is obtained with Alice by playing U and Bob 1, providing a payment
to Alice according to Eq. (63).

(b) When there is no dominance between Bob’s classical strategies, which occurs
in the interval φc < 2 arctan (max {1/Λα,Λα/ |cos θB |}) ≤ φA, the game
solution becomes identical to that of item (b) of (iii) for the regime in which
|α0| ≥ |α1|, discussed above. Therefore, we must adjust the probabilities
according to (55), which leads Alice to receive a payment given by (56).

(iv) When there is no dominance between any of Bob’s and Alice’s strategies, defined
by the interval 2 arctan (Λα/ |cos θB |) < φA < 2 arctan (1/Λα), we recover the
same situation occurred in (iv) in the regime where |α0| ≥ |α1|, analyzed above.
Therefore, the solution is separated into two cases:

(a) If 2 arctan (Λα/ |cos θB |) < φA ≤ φc we must make the adjustment in (59),
which leads Alice to receive a payment defined by Eq. (51).

(b) If φc ≤ φA < 2 arctan (1/Λα) we must make the adjustment defined in
Eq. (60), which leads Alice to receive a payment given by Eq. (56).

Although the phase relation between the initial superposition states are very impor-
tant, in this work we will disregard these effects, making them zero. The effects of this
phase will be analyzed in a future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Regions of dominance for Alice’s quantum strategyU when we vary the initial game state parameter
|α0|2 and the parameter φA , associated with the Alice’s quantum strategy U. The yellow region hatched
with vertical lines represents the domain of U over the classical strategy 1; the cyan region hatched with
horizontal lines represents the domain of U over the classical strategy σx ; and the green region hatched with
horizontal and vertical lines represents the mutual domain of U over the classical strategies 1 and σx . The
thick vertical line represents the critical value φ = φc , while the thick horizontal line represents the critical
value for |α0|2 = 0.5. Alice’s payments are indicated in each of the sectors delimited by dominance regions
and critical lines. In this figure, we setting the parameters: a θA = θB = π ; b θA = π and θB = 2π/3; c
θA = π and θB = π/2; d θA = 2π/3 and θB = π ; e θA = θB = 2π/3; f θA = 2π/3 and θB = π/2; g
θA = π/2 and θB = π ; h θA = π/2 and θB = 2π/3; i θA = θB = π/2 (Color figure online)

For a better understanding of the emergence of transitions between optimal strate-
gies that we’ll see in the next section, it is imperative that we visualize where each
game solution is located in the space formed by the |α0|2 and φA parameters. For this
purpose, in Fig. 1 we show the dominance regions for Alice’s quantum strategy U in
a space defined by |α0|2 and φA. We also put the game solution for each of the sectors
delimited by dominance regions and critical lines, defined by φA = φc (vertical line)
and |α0|2 = 0.5 (horizontal line). Imagining these graphs as elements of a 3 × 3
matrix, from left to right, we set θB as θB = π (column 1), θB = 2π/3 (column 2) and
θB = π/2 (column 3), while from top to bottom, we set the value of θA as θA = π (line
1), θA = 2π/3 (line 2) and θA = π/2 (line 3). From Eq. (39), when |α0|2 < 0.5, we
note that theU dominance over classical strategy1 is widened (superior limit) when θB
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decreases, whereas from Eq. (42), when |α0|2 > 0.5, we observe that the dominance
of U over the classical strategy σx is widened (inferior limit) when θB decreases. As a
consequence, we observe that the region of mutual dominance increases along of line
that unify the points

(|α0|2 = 1, φA = 0
)

and
(|α0|2 = 0, φA = π

)
. It is also noted

that the decrease in θA does not change the dominance regions, although it alters the
critical points φc and consequently the solutions in each of the sectors. Note that as
φc moves to the right, the game solutions to the left of it also extend to the right.

Now we are ready to analyze the payment functions when we vary the parameters
of the adiabatic evolution θA and θB , the parameter of the Alice’s quantum strategy
φA, and the parameter of the initial state |α0|2.

4 Transitions between optimal strategies

Since the functional form of Alice’s payment function ΠA depends on the interval
at which φA is adjusted, we may be suspected that there are discontinuities in this
function or in its derivatives. In fact, as we shall see below, the payment function,
although continuous, presents discontinuous derivatives that characterize or signalize
a transition between optimal strategies in a very similar way with phase transitions in
thermodynamics.

In Fig. 2, we plot Alice’s payment ΠA as a function of |α0|2 and considering
different fixed values of φA and θB . In this figure, we consider that Alice receives
from Bob twice more than she pays to him, i.e., x0 = 2x1, and we choose: (a) θA = π ,
(b) θA = 2π/3 and (c) θA = π/2. In Fig. 2a we note five important points:

(i) For any of the curves, we note that the maximum value of ΠA occurs when
|α0|2 = 0.5 and the minimum value occurs both when |α0|2 = 0 and 1.

(ii) The curve associated with the best gains occur when we set Alice’s quantum
strategy parameter for φA = π/2 and the worst gain for φA = 0 or π .

(a) (b) (c)

Fig. 2 The Alice’s payment ΠA as a function of the initial state parameter |α0|2. Fixing x0 = 1 and
x1 = 0.5, the curves represent the parameter set defined by: φA = 0 or π (green dash-dot line); φA = π/3
with θB = π/2 (purple thick dashed line), θB = 2π/3 (purple dashed line) and θB = π (purple thin
dashed line); φA = π/2 (red solid line); and finally φA = 3π/4 with θB = π/2 (pink thick dotted line),
θB = 2π/3 (pink dotted line) and θB = π (pink thin dotted line). In a–c we choose, respectively, the
parameters θA = π , 2π/3 and π/2 (Color figure online)
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(iii) For φA = π/3, we observed that as θB decreases the Alice’s gains increase only
when |α0|2 > 0.5, while for φA = 3π/4, as θB decreases the Alice’s gains
increase only when |α0|2 < 0.5.

(iv) We observed that the curves associated with φA = π/3 (purple dashed line) and
φA = 3π/4 (pink dotted line) can cross each other for θB = π/2.

(v) Except for cases φA = 0, π/2, and π , we see the emergence of discontinuities
in the derivatives of ΠA in some points of the curves.

For the first point (i) we would like to remember that when |α0|2 = 0.5 we have
only the regime of mutual dominance and for |α0|2 = 0 or 1 we have only the regime
of absence of dominance according to Alice’s point of view (see Fig. 1). The same
occurs in Fig. 2b. In Fig. 2c, for any curve of the graph, we see the emergence of a range
of |α0|2 in which the ΠA value is also minimal. In these intervals, the game solution
comes from the solution π (mix1) (see Fig. 1g–i), which for θA = π/2 results in a
constant minimum payment (x0 − x1) /2 = 0.25. With respect to the second point
(ii), it is easy to understand that φA = 0 or π leads to the worst gain because in this
situation the quantum strategy becomes classical. Also when |α0|2 = 0.5 we expected
that φA = π/2 leads to the best strategy for Alice, because this was the (ideal) case
we discussed at the beginning of the previous section. For other values of |α0|2, this
conclusion is no longer true if θA �= π , as is evident by the pink curves intercepting the
red curves in Fig. 2b, c. In the third point (iii), we observed an apparent non-intuitive
behavior, since one could expect that the smaller the efficiency in the application of
Bob’s strategy, the greater the Alice’s payments along the whole spectrum of variation
of |α0|2. But this reasoning is erroneous, since while Bob’s strategy σx depends on
machine efficiency, the strategy 1 is immune. Therefore, the part of the curve that
undergoes changes with θB originates from the solution π (U, x) (see Eq. (52)), while
the other parts comes from other solutions that do not depend on θB (see Fig. 1g, h)
or (i) for the parameter sets of each curve in Fig. 2c). The fourth point (iv) is very
important in situations where there are imperfections in the implementation of each
strategies. The fact that the curves cross each other means that there are different
optimal φA settings for different |α0|2 values. Therefore, in the presence of these
machines imperfections we cannot think that the closer to the ideal strategy φA = π/2
the better (see pink curves in Fig. 2b, c). For the last point (v), excluding the situation
where the quantum strategy becomes classical (φA = 0 and π ), we note that these
discontinuities are associated with situations in which the transitions occur between
optimal strategies as we can see from Fig. 1 for each parameter set of each curves in
Fig. 2. The fact that there are no discontinuities for φA = π/2 is because both φA and
the critical parameter φc have the same value φA = φc = π/2 when θA = π (see
Fig. 1a, d, g). Therefore, when we varies |α0|2, we are remaining on the border that
separates different strategies and we do not crossing them. On the other hand, we see
from Fig. 2b, c that the strategy transitions arise as a consequence of φA = π/2 �= φc

for θA �= π , as we can see from Fig. 1d–i.
In Fig. 3, we plot Alice’s payment ΠA as a function of φA and considering different

fixed values of |α0|2 and θB . In this plot we consider again x0 = 2x1 and we choose:
(a) θA = π , (b) θA = 2π/3 and (c) θA = π/2. In Fig. 3a, we observe five similar
details to Fig. 2a:
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(a) (b) (c)

Fig. 3 The Alice’s payment ΠA as a function of the Alice’s quantum strategy parameter φA . Fixing θA = π ,
x0 = 1, and x1 = 0.5, the curves represent the parameter set defined by: |α0|2 = 0 or 1 (green dash-dot
line); |α0|2 = 0.1 with θB = π/2 (pink thick dotted line), θB = 2π/3 (pink dotted line) and θB = π

(pink thin dotted line); |α0|2 = 0.5 (red solid line); and finally |α0|2 = 0.65 with θB = π/2 (purple thick
dashed line), θB = 2π/3 (purple dashed line) and θB = π (purple thin dashed line). In a–c we choose,
respectively, the parameters θA = π, 2π/3 and π/2 (Color figure online)

(i) For any of the curves, we note that the maximum value of ΠA occurs when
φA = π/2 and the minimum value occurs both when φA = 0 and π .

(ii) The curve associated with the best gains occur when the initial game state param-
eter is |α0|2 = 0.5 and the worst gain when |α0|2 = 0 or 1.

(iii) For |α0|2 = 0.10, we observed that as θB decreases the Alice’s gains increase
only when φA > π/2, while for |α0|2 = 0.65, as θB decreases the Alice’s gains
increase only when φA < π/2.

(iv) We observed that the curves associated with |α0|2 = 0.65 (purple dashed line)
and |α0|2 = 0.10 (pink dotted line) can cross each other for θB = π/2.

(v) Except for cases |α0|2 = 0, 0.5 and 1, we see the emergence of discontinuities
in the derivatives of ΠA in some points of the curves.

The point (i) can be understood by the fact that both φA = 0 and π makeU becomes
a classical strategy. For θA = π , we have φA = φc = π/2, so that this is a maximum
point for any curve. For other θA values, this conclusion is no longer valid, as shown by
pink dotted lines in Fig. 3b, c, for |α0|2 �= 0.5. The second point (ii) is justified because
for |α0|2 = 0 and 1 there is a total absence of dominance and for |α0|2 = 0.5 there is
mutual dominance in all φA spectrum for any θA and θB , as we can see in Fig. 1. The
comments about points (iii) and (iv) are identical to that of Fig. 2 that we performed
above. For the last point (v), we must remember that for |α0|2 = 0 and 1 we have total
absence of mutual dominance, such that we can discard the quantum strategy, that is,
in these conditions the game resembles the classic game. In any other situation we
have a quantum game where there are transitions between optimal strategies. The fact
that transitions do not appear for |α0|2 = 0.5 is because this value is a critical point
(see Fig. 1), so that we fall into the same situation that occurred in point (v) of the
previous figure. In general, if we walk along a horizontal or vertical line, we can see
that there will be at most 3 singularities, whereas walking along the critical lines will
not exist at all.

The points (i) and (ii) can be better understood with Fig. 4, where we show the level
curves for ΠA function in the space defined by φA and |α0|2, using the same parameters
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 The level curves of Alice’s payment function ΠA in a region defined by the parameters associated
with the initial state, |α0|2, and the Alice’s quantum strategy, φA . We setting x0 = 1 and x1 = 0.5 and:
a θA = θB = π ; b θA = π and θB = 2π/3; c θA = π and θB = π/2; d θA = 2π/3 and θB = π ; e
θA = θB = 2π/3; f θA = 2π/3 and θB = π/2; g θA = π/2 and θB = π ; h θA = π/2 and θB = 2π/3; i
θA = θB = π/2

configuration for θA and θB in Fig. 1, besides the adjustment x0 = 2x1 = 1. Note that
the highest gain region is concentrated where there is mutual dominance of strategy U.
We also see that as θB decreases the region of higher gains increases as a consequence
of the amplification of the mutual dominance region. When θA decreases, we see that
Alice’s gains decrease as a consequence of decreased efficiency in implementing U
strategy. Note that the graphs of the first line (θA = π ) have reflection symmetry on the
axes φc = π/2 and |α0|2 = 0.5, which are the critical points. While the critical points
for |α0|2 = 0.5 do not change in any situation (hence the maximum payoff always
occurs at |α0|2 = 0.5), the critical points for φc move to the right as θA decreases. As
a consequence, the maximum value, for some |α0|2 values farther from |α0|2 = 0.5,
to move to the right.

Finally, we would like to point out that the transitions between the players’ optimal
strategies (TBOS) in ΠA, which resemble the phase transitions in thermodynamics,
differ from those mentioned in the literature involving games with 2 qubits in the
presence of entanglement [47,54] and without entanglement [55], but with interacting
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qubits. In this paper, the TBOS are not consequences of entanglement, but rather
essentially of the superposition of the states |0〉 and |1〉.

Using the phase transition formalism in thermodynamics, we can verify that the
order parameter in a TBOS is a function of ΠA, having as main critical points |α0|2 =
0.5 and φA = φc, besides the critical points associated with the lines that delimit the
domain regions between the strategies, as shown in Fig. 1. Note that in the transition
between the strategies π (U, x) → π (U,1), that in the vicinity of the critical point
φA = φc, taking θA = π , we have

π (U, x) − π (U,1)

= − (x0 + x1) (|cos θB | + 1)

(

|α0|2 − 1

2

)[

1 − 2 sin2
(

φA

2

)]

� (x0 + x1) (|cos θB | + 1)

(

|α0|2 − 1

2

)

(φA − φc) , (65)

which shows that the critical exponent becomes 1. The same critical exponent is
obtained for |α0|2 → 0.5. In addition, from Eq. (65), we see that the functions π (U, x)
and π (U,1) assume equal values at the critical points |α0|2 = 0.5 and φA = φc, while
their derivatives diverge at this point by a constant value.

5 Summary and conclusions

In this work, using controlled adiabatic evolutions, we show how to implement classical
and quantum strategies in a two-person, zero-sum “spin flip game”, “even or odd” and
“heads or tails” game. Through the formalism of controlled adiabatic evolutions, it is
possible to schematize the game in a circuit model that is independent of the physical
platform used and, therefore, our results are independent of this physical system.
Another interesting factor that arises when introducing this adiabatic model is the
appearance of a probabilistic parameter θ that we can associate with the efficiency of
the machine that implements the strategies in the game. When this parameter θ = π ,
in which case the machine implements the strategies with maximum efficiency, we
recover the usual situation that occurs in “heads or tails” games seen in the literature.
In spite of this new ingredient, this work goes further and analyzes game situations in
which the initial state is a superposition state of a single qubit, of the form α0 |0c〉 +
α1 |1c〉, where we leave the coefficients α0,1 varies from 0 to 1, such that |α0|2+|α1|2 =
1. In addition, we consider situations in which each player receives from each other,
different payments, say x0 for Alice and x1 for Bob. Below we summarize the main
points of this work.

(i) We initially consider the situation in which the game starts with the state |0c〉
or |1c〉 and players can only use classical strategies {1, σx }. We note that the
adjustment of the optimal strategies for both players requires the prior knowledge
of θ and, as a consequence, the payments become independent of this parameter,
being (x0 − x1) /2 for Alice and (x1 − x0) /2 for Bob. When x0 > x1 (x0 < x1)
Alice has (dis)advantages of classical origin, that is, (dis)advantages that would
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occur in a purely classical game. When x0 = x1, both players have null payment,
in which case we say that the game is fair.

(ii) If we allow in the previous situation (i) one or both players can add a quantum
strategy U, it turns out that the adjustment to obtain the optimal strategy can
be done in different ways, including neglecting the quantum strategy. For this
reason, the payment of both players does not change with respect to case (i) and
therefore there are no advantages for any player.

(iii) Differently from cases (i) and (ii), we now proceed to analyze the game from
an initial superposition state α0 |0c〉 + α1 |1c〉. For this situation, we consider
that Alice has the strategies {1, σx ,U} and Bob only the classical strategies
{1, σx }. In this new scenario, we analyze Alice’s gains for different games, each
of them varying the parameters |α0|2, associated with the initial game state, and
φ, associated with unitary rotation U. In the situation where θA = π (efficiency
of 100% of the Alice’s machine), we note that the Alice’s maximum gains occur
when |α0|2 = 1/2 and φ = π/2. However, when θA �= π , and |α0|2 �= 0.5, we
note that the best fit happens for φ �= π/2.

(iv) Finally, we note that by varying the parameters |α0|2 and φ, optimal strategies
can undergo transitions similarly to phase transitions in thermodynamics. As a
consequence of these transitions, the payments of the quantum player, although
they vary continuously, undergo an abrupt change in its derivative, which causes a
greater increase or decrease in the gains when we vary |α0|2 and φ. It is important
to note that these transitions occur for a game with a single qubit, contrary to what
is mentioned in the literature when two-qubit games are analyzed, and therefore
entanglement plays an important role.

To conclude this work, we would like to point out that (iii), highlighted above,
shows that the best strategies of a quantum game depends on the machine efficiency
that implements them. For this reason, we believe that adiabatic formalism may be an
additional tool for analyzing any real game in addition to providing new horizons (e.g.,
use of alternative adiabatic degenerate Hamiltonians in quantum annealers [30,56] or
digitalized quantum adiabatic computation [29]) for the implementation of strategies
in a game.

Finally, according to Fig. 1, we see that depending on the configuration of the game
parameters (φA, associated with the quantum strategy, and |α0|2, associated with the
initial game state) it is indispensable to consider the whole strategies set for both
players, since the optimal solution of the game is obtained by mixed strategies and no
longer by pure strategies, such as most of the games analysis done in the literature.
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