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ABSTRACT
We compile 41 H(z) data from literature and use them to constrain O�CDM and flat �CDM
parameters. We show that the available H(z) suffers from uncertainties overestimation and
propose a Bayesian method to reduce them. As a result of this method, using H(z) only, we find,
in the context of O�CDM, H0 = 69.5 ± 2.5 km s−1 Mpc−1, �m = 0.242 ± 0.036, and �� =
0.68 ± 0.14. In the context of flat �CDM model, we have found H0 = 70.4 ± 1.2 km s−1 Mpc−1

and �m = 0.256 ± 0.014. This corresponds to an uncertainty reduction of up to ≈30 per cent
when compared to the uncorrected analysis in both cases.

Key words: cosmological parameters – dark energy – dark matter – cosmology: observations.

1 IN T RO D U C T I O N

Measurements of the expansion of the Universe are a central sub-
ject in the modern cosmology. In 1998, observations of type Ia
supernovae (Riess et al. 1997; Perlmutter et al. 1999) gave strong
evidences of a transition epoch between decelerated and acceler-
ated expansion. Those evidences are also consistent with data from
Baryon Acoustic Oscillations (BAO) measurements and the Cosmic
Microwave Background Anisotropies (CMB).

Among the many viable candidates to explain the cosmic accel-
eration, the cosmological constant � explains very well great part
of the current observations and it is also the simplest candidate. It
gave to the model formed by cosmological constant plus cold dark
matter, the �CDM model, the status of standard model in cosmol-
ogy. On the other hand, the � term presents important conceptual
problems in its core, e.g. the huge inconsistency of the quantum de-
rived and the cosmological observed values of energy density, the
so-called cosmological constant problem (Weinberg 1989). Hence,
despite of its observational success, the composition and the history
of the Universe are still a question that needs further investigation.

Precise measurements of the cosmic expansion may be ob-
tained through the SNe observations. Although they furnish strin-
gent cosmological constraints, they are not directly measuring the

� E-mail: jfjesus@itapeva.unesp.br

expansion rate H(z) but its integral in the line of sight. Today,
three distinct methods are producing direct measurements of H(z)
namely, through differential dating of the cosmic chronometers
(Simon et al. 2005; Stern et al. 2010; Moresco et al. 2012; Zhang
et al. 2012; Moresco 2015; Moresco et al. 2016), BAO techniques
(Gaztañaga et al. 2009; Blake et al. 2012; Busca et al. 2012; An-
derson et al. 2013; Font-Ribeira et al. 2013; Delubac et al. 2014),
and correlation function of luminous red galaxies (LRGs) (Chuang
& Wang 2013; Oka et al. 2014), which does not rely on the na-
ture of space–time geometry between the observed object and
us.

In this work, we treat the �CDM model expansion history as
a generative model for the H(z) data (Hogg, Bovy & Lang 2008).
However, considering a goodness-of-fit criterion, we discuss a pos-
sible overestimation in the uncertainty in the current H(z) data and
we propose a new generative model to H(z) data, in order to take
into account this overestimation.

This article is structured as follows. In Section 2, we discuss the
basic features of the �CDM model. In Section 3, we review the
H(z) data available on the literature and compile a sample with 41
data.

In Section 4, we discuss the goodness of fit of �CDM with H(z)
data and in Section 5 we discuss a method to treat H(z) uncertainties
and apply it to the �CDM with spatial curvature. In Subsection 5.1,
we apply the same method to the flat �CDM. In Section 6, we
compare corrected and uncorrected models by using a Bayesian
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criterion and in Section 7 we compare our results with other H(z)
analyses. Finally, in Section 8, we summarize the results.

2 C O S M I C DY NA M I C S O F �C D M M O D E L

We start by considering the homogeneous and isotropic FRW line
element (with c = 1):

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2sin2θdφ2

)
, (1)

where a is the scale factor, (r, θ , φ) are comoving coordinates, and
the spatial curvature parameter k can assume values −1, +1 or 0.

In this background, the Einstein Field Equations (EFEs) with a
cosmological constant are given by

8πGρ = 3
ȧ2

a2
+ 3

k

a2
− � (2)

− 8πGp = 2
ä

a
+ ȧ2

a2
+ k

a2
− �, (3)

where ρ and p are total density and pressure of the cosmological
fluid and � is cosmological constant. We may write the Friedmann
equation (2) in terms of the observable redshift z, which relates to
scale factor as a = a0

1+z
:

H 2 = 8πG(ρ + ρ�)

3
− k(1 + z)2, (4)

where ρ� = �
8πG

and H ≡ ȧ
a

is the expansion rate. The EFEs in-
clude energy conservation, so we may deduce the continuity equa-
tion from equations (2) and (3):

ρ̇i + 3H (ρi + pi) = 0, (5)

where (ρ i, pi) stand for each fluid, be it dark matter, baryons, radia-
tion, neutrinos, cosmological constant or anything else that does not
exchange energy. For dark matter and baryons, we have pi ∼ 0, so
they evolve with ρ i ∝ a−3, the cosmological constant has a constant
ρ� and radiation and neutrinos follow ρ i ∝ a−4, so they may be
neglected in our work, as we are interested in low redshifts (up to
z ∼ 2). So, we may write for our components of interest:

ρm = ρm0(1 + z)3 (6)

ρ� = ρ�0, (7)

where ρm stands for dark matter+baryons. So, the Friedmann equa-
tion can be written as(

H

H0

)2

= 8πGρm0(1 + z)3

3H 2
0

+ 8πGρ�0

3H 2
0

− k(1 + z)2

H 2
0

(8)

and by defining the density parameters �i ≡ ρi0
ρc0

, where ρc0 ≡ 3H 2
0

8πG

and �k ≡ − k

a2
0H 2

0
, we may write(

H

H0

)2

= �m(1 + z)3 + �k(1 + z)2 + ��, (9)

from which we deduce the normalization condition �m + �� +
�k = 1, or �k = 1 − �m − ��, so we actually have three free
parameters on this equation (�m, ��, H0). Finally, we may write
for H(z)

H (z) = H0

[
�m(1 + z)3 + (1 − �m − ��)(1 + z)2 + ��

] 1
2 .

(10)

As usual, we will call this model, where we allow for spatial
curvature, O�CDM. The standard, concordance flat �CDM model
has �k = 0, thus:

H (z) = H0

[
�m(1 + z)3 + 1 − �m

] 1
2 . (11)

3 H( z) DATA

Hubble parameter data as a function of redshift yields one of the
most straightforward cosmological tests because it is inferred from
astrophysical observations alone, not depending on any background
cosmological models.

At the present time, the most important methods for obtaining
H(z) data are1 (i) through ‘cosmic chronometers’, for example, the
differential age of galaxies (Simon et al. 2005; Stern et al. 2010;
Moresco et al. 2012; Zhang et al. 2012; Moresco 2015; Moresco
et al. 2016), (ii) measurements of peaks of acoustic oscillations of
baryons (BAO) (Gaztañaga et al. 2009; Blake et al. 2012; Busca et al.
2012; Anderson et al. 2013; Font-Ribeira et al. 2013; Delubac et al.
2014), and (iii) through a correlation function of LRGs (Chuang &
Wang 2013; Oka et al. 2014).

The data we work here are a combination of the compilations from
Sharov & Vorontsova (2014) and Moresco et al. (2016). Sharov &
Vorontsova (2014) add six H(z) data in comparison to Farooq &
Ratra (2013) compilation, which had 28 measurements. Moresco
et al. (2016), on their turn, have added seven new H(z) measurements
in comparison to Sharov & Vorontsova (2014). By combining both
data sets, we arrive at 41 H(z) data, as can be seen in Table 1 and
Fig. 1.

From these data, we perform a χ2-statistics, generating the χ2

function of free parameters:

χ2 =
41∑
i=1

[
H0E(zi, �m, ��) − Hi

σHi

]2

, (12)

where E(z) ≡ H (z)
H0

and H(z) is given by equation (10).

4 DATA A NA LY S I S A N D G O O D N E S S O F F I T

In order to minimize the χ2 function (12) and find the constraints
over the free parameters (H0, �m, ��), we have sampled the like-
lihood L ∝ e−χ2/2 through Monte Carlo Markov Chain (MCMC)
analysis. A simple and powerful MCMC method is the so-called
Affine Invariant MCMC Ensemble Sampler by Goodman & Weare
(2010), which was implemented in Python language with the em-
cee software by Foreman et al. (2013). This MCMC method has
the advantage over simple Metropolis-Hasting (MH) methods of
depending on only one scale parameter of the proposal distribution
and on the number of walkers, while MH methods in general depend
on the parameter covariance matrix, that is, it depends on n(n + 1)/2
tuning parameters, where n is dimension of parameter space. The
main idea of the Goodman–Weare affine-invariant sampler is the
so-called ‘stretch move’, where the position (parameter vector in
parameter space) of a walker (chain) is determined by the position
of the other walkers. Foreman-Mackey et al. (2013) modified this
method, in order to make it suitable for parallelization, by splitting
the walkers in two groups, then the position of a walker in one group
is determined by only the position of walkers of the other group.2

1 See Lima et al. (2012) for a review.
2 See Allison & Dunkley (2014) for a comparison among various MCMC
sampling techniques.
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Table 1. 41 Hubble parameter versus redshift data.

z H(z) σH Reference

0.070 69 19.6 Zhang et al. (2012)
0.090 69 12 Simon et al. (2005)
0.120 68.6 26.2 Zhang et al. (2012)
0.170 83 8 Simon et al. (2005)
0.179 75 4 Moresco et al. (2012)
0.199 75 5 Moresco et al. (2012)
0.200 72.9 29.6 Zhang et al. (2012)
0.240 79.69 6.65 Gaztañaga et al. (2009)
0.270 77 14 Simon et al. (2005)
0.280 88.8 36.6 Zhang et al. (2012)
0.300 81.7 6.22 Oka et al. (2014)
0.350 82.7 8.4 Chuang & Wang (2013)
0.352 83 14 Moresco et al. (2012)
0.3802 83 13.5 Moresco et al. (2016)
0.400 95 17 Simon et al. (2005)
0.4004 77 10.02 Moresco et al. (2016)
0.4247 87.1 11.2 Moresco et al. (2016)
0.430 86.45 3.68 Gaztañaga et al. (2009)
0.440 82.6 7.8 Blake et al. (2012)
0.4497 92.8 12.9 Moresco et al. (2016)
0.4783 80.9 9 Moresco et al. (2016)
0.480 97 62 Stern et al. (2010)
0.570 92.900 7.855 Anderson et al. (2013)
0.593 104 13 Moresco et al. (2012)
0.6 87.9 6.1 Blake et al. (2012)
0.68 92 8 Moresco et al. (2012)
0.73 97.3 7.0 Blake et al. (2012)
0.781 105 12 Moresco et al. (2012)
0.875 125 17 Moresco et al. (2012)
0.88 90 40 Stern et al. (2010)
0.9 117 23 Simon et al. (2005)
1.037 154 20 Moresco et al. (2012)
1.300 168 17 Simon et al. (2005)
1.363 160 22.6 Moresco (2015)
1.43 177 18 Simon et al. (2005)
1.53 140 14 Simon et al. (2005)
1.75 202 40 Simon et al. (2005)
1.965 186.5 50.4 Moresco (2015)
2.300 224 8 Busca et al. (2012)
2.34 222 7 Delubac et al. (2014)
2.36 226 8 Font-Ribeira et al. (2013)

Figure 1. 41 H(z) data and corresponding best-fitting �CDM model.

We used the freely available software emcee to sample from
our likelihood in our three-dimensional parameter space. We have
used flat priors over the parameters. In order to plot all the con-
straints in the same figure, we have used the freely available soft-
ware getdist,3 in its Python version. The results of our sta-
tistical analyses from equation (12) correspond to the red lines
in Fig. 3 and Table 2. From this analysis, we have obtained

χ2
ν = χ2

min
ν

= 18.551/38 = 0.488 19, where ν = n − p is the number
of degrees of freedom.

As it is well known (Vuolo 1996; Bevington & Robinson 2003),
when one analyses the probability distribution of χ2

ν it has an ex-
pected value χ2

ν = 1. χ2
ν values very far from this are unlikely. High

χ2
ν values may indicate underestimation of uncertainties or poor

fitting of the model, while low values of χ2
ν indicate, in general,

overestimation of uncertainties. The χ2
ν distribution is given by

hν(χ2
ν ) = ν

ν
2 (χ2

ν )
1
2 (ν−2)e− ν

2 χ2
ν

2ν/2�(ν/2)
, (13)

where � is complete gamma function. It can be shown that the mean

χ2
ν is given by χ2

ν = 1, while the mode is given by χ̂2
ν = 1 − 2

ν
. In

the limit of a large sample and few parameters, both converge to the
same value χ2

ν ≈ 1. From (13), we may also define the cumulative
distribution function (cdf) or probability of obtaining a value of χ2

ν

as low as Q as

P (χ2
ν < Q) ≡

∫ Q

0
hν(Q′)dQ′. (14)

In order to illustrate the untypical small value of the χ2
ν value we

have obtained, namely, χ2
ν = 0.488 19, we have plotted the pdf

hν(χ2
ν ) (13) and the cdf (14) for ν = 38 in Fig. 2.

As one may see in the Fig. 2, the probability of obtaining χ2
ν as low

as χ2
ν = 0.488 for ν = 38 is quite small. In fact, by calculating the in-

tegral (14), we have obtained P (χ2
ν < 0.488 19) = 0.3342 per cent.

Hence, it is a very small and unlikely χ2 value, which, in turn, from
equation (12) indicates overestimated H(z) uncertainties.

5 H( z) U N C E RTA I N T I E S C O R R E C T I O N

How one may try to correct uncertainties? Ideally, at the moment
of data acquisition, a better control of systematic uncertainties is
desirable and new methods less prone to errors are to be used. In
fact, in general, data coming from BAO and Lyman α have smaller
errors than data coming from differential ages. However, not being
able to reobtain the measurements or reanalyze them through new
methods, we are left with the available data. Then, can nothing be
done? From the Bayesian viewpoint, not necessarily. In fact, we
may view the data as a collection of (zi, Hi, σ Hi). Very often, we are
interested in a likelihood given by L = Ne−χ2/2, where N is only
a normalization constant and one is interested in maximizing the
likelihood, which is equivalent to maximizing the χ2. Let us recall
from where this expression comes from.

As discussed in Hogg et al. (2008), the likelihood may be seen
as an objective function, that is, a function that represents mono-
tonically the quality of the fit. Given a scientific problem at hand
as fitting a model to the data, one must define some objective func-
tion that represents this ‘goodness of fit’, then try to optimize it in
order to determine the best set of free parameters of the model that
describe the data.

3 getdist is part of the great MCMC sampler and CMB power spectrum
solver COSMOMC, by Lewis & Bridle (2002).
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Table 2. Mean values of parameters of O�CDM model from H(z) data, without uncertainties
correction and with uncertainties correction factor f. Uncertainties correspond to 68 per cent c.l.

H(z) only H(z) + H0

Parameter Uncorrected Corrected Uncorrected Corrected

H0 69.1 ± 3.5 69.5 ± 2.5 72.4 ± 1.5 72.5 ± 1.1
�m 0.237 ± 0.051 0.242 ± 0.036 0.267 ± 0.038 0.268 ± 0.028
�� 0.66 ± 0.20 0.68 ± 0.14 0.825+0.11

−0.095 0.831 ± 0.073
f – 0.723+0.084

−0.085 – 0.728+0.067
−0.098

Figure 2. hν (χ2
ν ) and corresponding cdf for ν = 38.

Hogg et al. (2008) argue that the only choice of the objective
function that is truly justified, in the sense that it leads to probabilis-
tic inference, is to make a generative model for the data. We may
think of the generative model as a parametrized statistical procedure
to reasonably generate the given data.

For instance, assuming Gaussian uncertainties in one dimension,
we can create the following generative model: Imagine that the data
really come from a function y = f(x, θ ) given by the model and that
the only reason for any data point deviates from this model is that to
each of the true y values a small y-direction offset has been added,
where that offset was drawn from a Gaussian distribution of zero
mean and known variance σ 2

y . In this model, given an independent
position xi, an uncertainty σ yi, and free parameters θ , the frequency
distribution p(yi|xi, σ yi, θ ) for yi is

p(yi |xi, σyi , θ ) = 1

(2π )1/2σyi

exp

[
− (yi − f (xi, θ ))2

2 σ 2
yi

]
, (15)

Thus, if the data points are independently drawn, the likelihood
L is the product of conditional probabilities

L =
n∏

i=1

p(yi |xi, σyi , θ ). (16)

Taking the logarithm,

lnL = −1

2

n∑
i=1

[
(yi − f (xi, θ ))2

σ 2
yi

+ ln(2πσ 2
yi)

]
. (17)

In equation above, the second term − 1
2

∑
i ln(2πσ 2

yi) is in gen-
eral absorbed in the likelihood normalization constant, because the
variances σ 2

yi are considered fixed by the data. Here, we consider
σ i as parameters to be obtained by optimization of the objective
function L. As discussed in Hogg et al. (2008), it can be considered
a correct procedure from the Bayesian point of view, although an
involved one, and the obtained σ i can be quite prior dependent.

In order to avoid having more free parameters than data, here
we consider the σ i to be all overestimated by a constant factor f,
thus, σ i, true = fσ i. This can be seen just as a simplifying hypoth-
esis. More elaborated methods could be gather the data in some
groups, then correct the σ i for each group. However, as discussed in
Hogg et al. (2008), it is not an easy task to separate good data from
bad data, and not necessarily the bad data are the ones with big-
ger uncertainties. So, we limit ourselves here with just one overall
correction factor and then we investigate if this is a good approx-
imation. Taking f as a free parameter, we constrain it in a joint
analysis with the cosmological parameters, similar to what is made
in SNe Ia analyses (Amanullah et al. 2010; Suzuki et al. 2012;
Betoule et al. 2014). For �CDM model, our set of free parameters
now is θ = (H0, �m, ��, f ). A simpler but less justified hypothe-
sis would be to simply find the value for f which provides χ2

ν ≡ 1.
However, as we expect χ2

ν to have some variance, such a procedure
is not much trustworthy. With f as a free parameter, it may include
some uncertainty into the analysis, when compared to the standard,
uncorrected analysis, but at the same time, it may also reduce the
cosmological parameter uncertainties.

Instead of equation (17), we must work here with the following
objective function:

lnL = −1

2

n∑
i=1

{
[Hi − H (zi, H0, �m, ��)]2

f 2σ 2
Hi

+ ln(2πf 2σ 2
Hi)

}
.

(18)

By maximizing the above likelihood, we find not only the best-
fitting cosmological parameters, but also the best correction factor f
which will furnish the best model to describe the data. By doing the
same procedure of last section, now with the additional parameter
f, we find the constraints shown by the black lines in Fig. 3.

From Fig. 3, we may already see the difference in the parameter
space if we introduce the f parameter. The corrected contours (black
lines) are narrower than the uncorrected contours (red lines). This
can be quantified by the parameter constraints shown in Table 2.

As can be seen in Table 2, σ H0 has been reduced from 3.5 to 2.5,
σ�m has been reduced from 0.051 to 0.036, and σ��

has been re-
duced from 0.20 to 0.14. The mean value for f was f = 0.723+0.084

−0.085.
An interesting feature we may see from Fig. 3 is that the f parameter
is much uncorrelated to cosmological parameters (confidence con-
tours quite aligned with parameter axes). As we show in the next
section, the best fit for the cosmological parameters (H0, �m, ��) is
independent from the best fit for f. On the other hand, this is not true
for the likelihoods, that is, L �= L1(H0,�m, ��)L2(f ), as one may
see from equation (18). This small unequality explains the small
shift on mean values of cosmological parameters from Table 2.
Saying in another way, the central values of cosmological parame-
ters are weakly dependent on overall shifts on Hi uncertainties, but
their variances are directly affected by f.

MNRAS 477, 2867–2873 (2018)
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Figure 3. The results of statistical analysis for O�CDM model. H0 is in
km s−1 Mpc−1. Diagonal: Marginalized constraints from H(z) data for each
parameter. Below diagonal: Marginalized contour constraints for each in-
dicated combination of parameters, with contours for 68.3 and 95.4 per cent
confidence levels.

5.1 Flat �CDM

For completeness, as flat �CDM model is favoured from many
observations, in this section we analyse this model similarly to
O�CDM. Equation (10) now reads

H (z) = H0

[
�m(1 + z)3 + 1 − �m

] 1
2 . (19)

The results of this analysis may be seen in Fig. 4 and Table 3.
As one may see from Fig. 4, f is again uncorrelated to cosmolog-

ical parameters, so it does not change their central values.
As one may see in Table 3, the H0 uncertainty, for instance, is

reduced from 1.7 to 1.2, which now corresponds to 1.7 per cent rel-
ative uncertainty. �m uncertainty has reduced from 0.020 to 0.014.

5.2 Alternative analysis

In order to test the consistency of the above results, we have made
an alternative analysis, considering only the data with lower red-
shifts and larger errors on H(z). Namely, we have ignored the data
with z ≥ 2.3, which, although being distant, are reported with small
uncertainties (3.15−3.57 per cent), when compared with lower red-
shift data with bigger uncertainties. Thus, here we use a new sample
with 38 H(z) data and z < 2.3. In the present analysis, we do not
consider H0 constraints, for simplicity.

As can be seen in Fig. 5 and Table 4, the result is that, without
this ‘anchor’ at high redshift, the O�CDM model is quite poorly
constrained, mainly if we do not correct uncertainties. The result
for �m, for example, is compatible with the absence of dark matter
at a 2.6σ c.l. (�m ∼ 0.04 ∼ �b in its 2.6σ c.l. inferior limit). The
constraints are slightly improved when we introduce the f correction
(�m ≥ 0.04 at a 3.7σ c.l.). Concerning the flat �CDM model
(Fig. 6 and Table 4), the result already is good with no correction
(σ H0 = 2.3) but is improved with the f correction (σ H0 = 1.7).

Figure 4. The results of statistical analysis for flat �CDM model. H0 is in
km s−1 Mpc−1. Diagonal: Marginalized constraints from H(z) data for each
parameter. Below diagonal: Marginalized contour constraints for each in-
dicated combination of parameters, with contours for 68.3 and 95.4 per cent
confidence levels.

Table 3. Mean values of parameters of flat �CDM model from H(z) data,
without uncertainties correction and with uncertainties correction factor f.
Uncertainties correspond to 68 per cent c.l.

H(z) only H(z) + H0

Parameter Uncorrected Corrected Uncorrected Corrected

H0 70.3 ± 1.7 70.4 ± 1.2 71.8 ± 1.2 71.80 ± 0.89
�m 0.257 ± 0.020 0.256 ± 0.014 0.243+0.014

−0.015 0.242 ± 0.011
f – 0.714 ± 0.082 – 0.728+0.066

−0.096

Furthermore, the results for f are consistent with the ones we
have obtained in the full 41 H(z) sample data, which indicates some
robustness of the method.

6 BAY E S I A N C R I T E R I O N C O M PA R I S O N

Here, we use the Bayesian Information Criterion (BIC) (Schwarz
1978; Jesus, Valentim & Andrade-Oliveira 2017) in order to com-
pare the models with uncertainties correction and without uncer-
tainties correction. As an approximation for the Bayesian Evidence
(BE) (Trotta 2008), BIC is useful because it is, in general, easier
to calculate. As explained in, e.g. Kass & Raftery (1995), Trotta
(2008), and Jesus et al. (2017), BE and BIC are great model com-
parison tools, because they incorporate the Ockham’s razor princi-
ple, which penalizes models with excess of parameters due to their
unnecessary complexity. They are different from other model se-
lection tools, like Akaike Information Criterion (Akaike 1974), for
instance, which does not take into account the excess of parameters.
Let us discuss now for our case, if the introduction of the f parameter
is necessary to better describe the H(z) data. BIC is given by

BIC = −2 lnLmax + p ln n, (20)

where Lmax is the likelihood maximum and p is the number of free
parameters. The two models we want to compare are: M1: f = 1,
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Figure 5. The results of statistical analysis for O�CDM model with 38
H(z) data with z < 2.3. H0 is in km s−1 Mpc−1. Diagonal: Marginalized
constraints from H(z) data for each parameter. Below diagonal: Marginal-
ized contour constraints for each indicated combination of parameters, with
contours for 68.3 and 95.4 per cent confidence levels.

Table 4. Mean values of parameters of O�CDM and flat �CDM mod-
els from H(z) data, without uncertainties correction and with uncertainties
correction factor f. Uncertainties correspond to 68 per cent c.l.

O�CDM Flat �CDM
Parameter Uncorrected Corrected Uncorrected Corrected

H0 71.7 ± 4.2 72.2 ± 3.0 69.2 ± 2.3 69.3 ± 1.7
�m 0.40+0.18

−0.14 0.41+0.12
−0.10 0.290+0.041

−0.053 0.286+0.030
−0.037

�� 0.92+0.34
−0.23 0.96+0.23

−0.17 – –

f – 0.72+0.069
−0.10 – 0.730+0.069

−0.10

that is, �CDM model without uncertainties correction is enough
to describe the data; and M2: f �= 1 such that some correction f to
uncertainties is necessary in order for the �CDM model to explain
the H(z) data. We may write the log-likelihood as

lnL = −1

2

[
χ2

f 2
+

n∑
i=1

ln(2πf 2σ 2
i )

]
, (21)

where χ2 is the uncorrected χ2 ≡ ∑n
i=1

[Hi−H (zi ,H0,�m,��)]2

σ 2
Hi

. In or-

der to calculate BIC, we must find the maximum of lnL. By deriving
(21) with respect to f:

∂ lnL
∂f

= − 1

f

[
n − χ2

f 2

]
. (22)

When it vanishes, we find the best fit:

f̂ =
√

χ2
min

n
. (23)

From (20) and (23), we find:

BIC1 = χ2
min +

n∑
i=1

ln(2πσ 2
i ) + p1 ln n (24)

Figure 6. The results of statistical analysis for flat �CDM model with 38
H(z) data with z < 2.3. H0 is in km s−1 Mpc−1. Diagonal: Marginalized
constraints from H(z) data for each parameter. Below diagonal: Marginal-
ized contour constraints for each indicated combination of parameters, with
contours for 68.3 and 95.4 per cent confidence levels.

BIC2 = n + n ln

(
2πχ2

min

n

)
+

n∑
i=1

ln(σ 2
i ) + p2 ln n, (25)

where pj is the number of free parameters in Mj. So,

�BIC = BIC1 − BIC2

= χ2
min − n ln

(
χ2

min

) + (n − p2 + p1) ln n − n. (26)

For p1 = 3 and p2 = 4, it simplifies to

�BIC = χ2
min − n ln

(
χ2

min

) + (n − 1) ln n − n. (27)

For n = 41 and χ2
min = 18.551, it yields: �BIC = 6.352. As dis-

cussed in Jesus et al. (2017), for example, values of �BIC > 5
correspond to a decisive or strong statistical difference. That is,
by this criterion, the model M1 (no correction) may be discarded
against model M2 (with correction).

So, according to the BIC, the inclusion of the f parameter is
necessary and, in the context of �CDM model, it leads to a more
appropriate analysis of H(z) data.

7 C O M PA R I S O N W I T H OT H E R H( z) DATA
A NA LY S E S

Farooq & Ratra (2013) have constrained O�CDM model with 28
H(z) data and two possible priors over H0. With the most stringent
prior, namely, the one from Riess et al. (2011), they have found,
at 2σ , 0.20 ≤ �m ≤ 0.44 and 0.62 ≤ �� ≤ 1.14. We have found
0.13 ≤ �m ≤ 0.34 and 0.23 ≤ �� ≤ 1.04 for 41 H(z) data without
correction and 0.162 ≤ �m ≤ 0.31 and 0.38 ≤ �� ≤ 0.96 with
the f correction. By considering the prior from Riess et al. (2011),
namely, H0 = 73.8 ± 2.4 km s−1 Mpc−1, we have found 0.18 ≤ �m

≤ 0.34 and 0.57 ≤ �� ≤ 1.04 without correction and 0.21 ≤ �m

≤ 0.32 and 0.65 ≤ �� ≤ 0.99 with the f correction.
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With 34 H(z) data, Sharov & Vorontsova (2014) find a more
stringent result, namely, H0 = 70.26 ± 0.32, �m = 0.276+0.009

−0.008, and
�� = 0.769 ± 0.029. However, they have combined H(z) data with
SNe Ia and BAO data, which is beyond the scope of our present
work. However, by comparing their result with our Table 2, we may
see that both constraints are compatible at a 1σ c.l.

Moresco et al. (2016) have used their compilation of 30 H(z)
data combined with H0 from Riess et al. (2011) to constrain the
transition redshift from deceleration to acceleration, in the context
of O�CDM (Lima et al. 2012):

zt =
[

2��

�m

]1/3

− 1. (28)

They have found zt = 0.64+0.11
−0.07. By using the present 41

H(z) data, we find zt = 0.77 ± 0.22 without correction and
zt = 0.78 ± 0.15 with the f correction. The results are in full
agreement without the correction and are compatible at a 2σ c.l.
with the f correction. We have mentioned the mean value for zt,
while Moresco et al. (2016) refer to the best-fitting value.

The constraints over H0 are quite stringent today from many
observations (Planck Collaboration XIII et al. 2016; Riess et al.
2016). However, there is some tension among H0 values estimated
from different observations (Bernal, Verde & Riess 2016), so we
choose not to use H0 in our main results here, Figs 3 and 4. We
combine H(z) + H0 only in Tables 2 and 3 and in the present
section, using Riess et al. (2011) result, in order to compare with
other earlier analyses.

8 C O N C L U S I O N

In this work, we have compiled 41 H(z) data and proposed a new
method to better constrain models using H(z) data alone, namely, by
reducing overestimated uncertainties through a Bayesian approach.
The BIC was used to show the need for correcting H(z) data un-
certainties. The uncertainties in the parameters were quite reduced
when compared with methods of parameter estimation without cor-
rection and we have obtained an estimate of an overall correction
factor in the context of O�CDM and flat �CDM models.

Further investigations may include constraining other cosmologi-
cal models or trying to optimally group H(z) data and then correcting
uncertainties.
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