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Abstract It was shown recently that associated with a pair of real sequences {{cn}∞n=1,{dn}∞n=1}, with {dn}∞n=1 a positive chain sequence, there exists a unique nontrivial probabil-
ity measure μ on the unit circle. The Verblunsky coefficients {αn}∞n=0 associated with the
orthogonal polynomials with respect to μ are given by the relation

αn−1 = τ n−1

[
1 − 2mn − icn

1 − icn

]
, n ≥ 1,

where τ0 = 1, τn = ∏n
k=1(1− ick)/(1+ ick), n ≥ 1 and {mn}∞n=0 is the minimal parameter

sequence of {dn}∞n=1. In this manuscript, we consider this relation and its consequences by
imposing some restrictions of sign and periodicity on the sequences {cn}∞n=1 and {mn}∞n=1.
When the sequence {cn}∞n=1 is of alternating sign, we use information about the zeros of
associated para-orthogonal polynomials to show that there is a gap in the support of the
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Orthogonal polynomials on the unit circle 1143

measure in the neighbourhood of z = −1. Furthermore, we show that it is possible to generate
periodic Verblunsky coefficients by choosing periodic sequences {cn}∞n=1 and {mn}∞n=1 with
the additional restriction c2n = −c2n−1, n ≥ 1. We also give some results on periodic
Verblunsky coefficients from the point of view of positive chain sequences. An example is
provided to illustrate the results obtained.

Keywords Para-orthogonal polynomials · Probability measures · Periodic Verblunsky
coefficients · Chain sequences · Alternating sign sequences

Mathematics Subject Classification 42C05 · 33C47

1 Introduction

Orthogonal polynomials on the unit circle (OPUC, in short) have been commonly known
as Szegő polynomials in honor of Gábor Szegő who introduced them in the first half of
the twentieth century. Because of their applications in quadrature rules, signal processing,
operator and spectral theory and many other topics, these polynomials have received a lot
of attention in recent years (see, for example, Breuer et al. 2010; Castillo et al. 2011; Costa
et al. 2011; Kheifets et al. 2011; Peherstorfer 2011; Peherstorfer et al. 2009; Simanek 2012;
Tsujimoto and Zhedanov 2009). For many years, a firsthand text for an introduction to these
polynomials has been the classical book (Szegő 1975) of Szegő. However, for recent and
more up-to-date texts on this subject, we refer to the two volumes of Simon (2005a, b). For
further interesting reading on this subject, we refer to Chapter 8 of Ismail’s recent book
(Ismail 2005).

Given a nontrivial probability measure μ(z) = μ(eiθ ) on the unit circle T = {z = eiθ :
0 ≤ θ ≤ 2π}, the associated sequences of OPUC {φn} are those with the property

∫
T

z̄ jφn(z)dμ(z) =
∫ 2π

0
e−i jθφn(e

iθ )dμ(eiθ ) = 0, 0 ≤ j ≤ n − 1, n ≥ 1.

Letting κ−2
n = ‖φn‖2 = ∫

T
|φn(z)|2dμ(z), the orthonormal polynomials on the unit circle

are ϕn(z) = κnφn(z), n ≥ 0.
The polynomials φn(z), n ≥ 0, considered as monic polynomials, satisfy the so-called

forward and backward recurrence relations, respectively,

φn(z) = zφn−1(z) − αn−1 φ∗
n−1(z),

φn(z) = (1 − |αn−1|2)zφn−1(z) − αn−1φ
∗
n (z),

n ≥ 1,

where αn−1 = −φn(0) and φ∗
n (z) = znφn(1/z̄) denotes the reversed (reciprocal) polynomial

of φn(z). The numbers αn , in recent years, have been referred to as Verblunsky coefficients.
It is known that these coefficients are such that |αn | < 1, n ≥ 0. Moreover, the OPUC and
the associated measure are completely determined from these coefficients (see for example
Simon 2005a, Theorem 1.7.11). A very nice and short constructive proof of this last statement
can be found in Erdélyi et al. (1991).

Another entity that has recently played an important role in the theory of OPUC are the
positive chain sequences. According to Chihara (1978), a sequence {an}∞n=1 is a positive
chain sequence if there exists a second sequence {gn}∞n=0 such that

0 ≤ g0 < 1, 0 < gn < 1, for n ≥ 1, and an = (1 − gn−1)gn, for n ≥ 1.
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1144 C. F. Bracciali et al.

The sequence {gn}∞n=0 (which can be non-unique) is called a parameter sequence of the
positive chain sequence {an}∞n=1. It is known (see, for example, Chihara 1978) that every
positive chain sequence has a minimal parameter sequence denoted by {mn}∞n=0, obtained
when m0 = 0. Moreover, every positive chain sequence has a maximal parameter sequence
denoted by {Mn}∞n=0, which is characterized by the condition that if g0 > M0, then {gn}∞n=1
generated by gn = an/(1 − gn−1), n ≥ 1 does not satisfy 0 < gn < 1, n ≥ 1.

It was shown in Costa et al. (2013) that given any nontrivial probability measure on the
unit circle, then corresponding to this measure there exists a pair of real sequences {cn}∞n=1
and {dn}∞n=1, where {dn}∞n=1 is also a positive chain sequence. In Theorem 1, we have given
complete information regarding this statement and its reciprocal. To be precise, the sequences
{cn}∞n=1 and {dn}∞n=1 are the coefficients of the three term recurrence relation

Rn+1(z) = [(1 + icn+1)z + (1 − icn+1)]Rn(z) − 4dn+1zRn−1(z), n ≥ 1, (1)

with R0(z) = 1 and R1(z) = (1 + ic1)z + (1 − ic1), where

Rn(z) =
∏n

j=1

[
1 − τ j−1α j−1

]
∏n

j=1

[
1 − Re(τ j−1α j−1)

] zφn(z) − τnφ
∗
n (z)

z − 1
,

with τn = φn(1)/φ∗
n (1), n ≥ 0.

From the sequences {cn}∞n=1 and {dn}∞n=1, it is possible to recover the associated probabil-
ity measure using certain rational functions that follow from the recurrence formula (1). In
Castillo et al. (2014), using standard arguments involving continued fractions, series expan-
sions at infinity and at the origin, and Helly’s Selection Theorem, the associated measure μ

is given as a limit of a subsequence of discrete measures ψn(eiθ ) whose pure points (those
different from z = 1) are exactly the zeros of Rn(z). The results given in Castillo et al.
(2014) enable us to give information about the support of the measure μ by analysing the
zeros zn, j = eiθn, j , j = 1, 2 . . . , n, of Rn(z), or, equivalently, by analysing the zeros of the
functions Wn(x), given by

Wn(x) = 2−ne−inθ/2Rn(e
iθ ), n ≥ 0, (2)

where x = cos(θ/2). The sequence of functions {Wn}∞n=0 satisfies the three term recurrence
relation (see Bracciali et al. 2016; Dimitrov and Sri Ranga 2013)

Wn+1(x) =
(
x − cn+1

√
1 − x2

)
Wn(x) − dn+1 Wn−1(x), n ≥ 1, (3)

with W0(x) = 1 and W1(x) = x − c1
√
1 − x2.

For any n ≥ 1,Wn(x) has exactly n distinct zeros xn, j = cos(θn, j/2), j = 1, 2 . . . , n, in
(−1, 1). Wemention that the proof given in Dimitrov and Sri Ranga (2013) for the interlacing
property of the zeros of Rn(z) and Rn+1(z) is by proving the interlacing property

− 1 < xn+1,n+1 < xn,n < xn+1,n < · · · < xn,1 < xn+1,1 < 1, n ≥ 1, (4)

for the zeros of Wn(x) and Wn+1(x) using the three term recurrence relation (3).
The aim of this manuscript is to study the sequences of Verblunsky coefficients where the

related sequences {cn}∞n=1 and {mn}∞n=1 have restrictions of sign and periodicity. We show
that, under certain conditions, it is possible to estimate the support of the associated measure
and to get periodic Verblunsky coefficients. Furthermore, we discuss some geometric aspects
related to these restrictions.

This manuscript is organized as follows. In Sect. 2, we give a summary of all the required
theoretical results. Section 3 deals with the results concerning the measures for which the
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Orthogonal polynomials on the unit circle 1145

associated sequence {cn}∞n=1 has the alternating sign property, namely, cn = (−1)nc̃n , for
n ≥ 1, where c̃n is a positive (or negative) sequence of real numbers. In Sect. 4, some results
regarding the measures associated with the sequence of periodic Verblunsky coefficients are
established. Finally, in Sect. 5, we give an example to illustrate the results obtained.

2 Some preliminary results

In this section, we present some results concerning nontrivial probability measures and pos-
itive chain sequences [for more details on chain sequences, we refer to Chihara (1978) and
Wall (1948)]. Furthermore, some known results about measures with associated periodic
Verblunsky coefficients are presented.

We begin with two theorems established in Costa et al. (2013). The first theorem provides
a characterization for nontrivial probability measures in terms of two sequences, {cn}∞n=1 and{dn}∞n=1.

Theorem 1 (Costa et al. 2013)

(a) Given a nontrivial probability measure μ on the unit circle, then associated with it
there exists a unique pair of real sequences

{{cn}∞n=1, {dn}∞n=1

}
, where {dn}∞n=1 is also a

positive chain sequence. Specifically, if {αn}∞n=0 is the associated sequence of Verblunsky
coefficients and if the sequence τn is such that

τ0 = 1 and τn = τn−1
1 − τ n−1αn−1

1 − τn−1αn−1
, n ≥ 1,

then m0 = 0,

cn = −Im(τn−1αn−1)

1 − Re(τn−1αn−1)
and mn = 1

2

|1 − τn−1αn−1|2
[1 − Re(τn−1αn−1)] , n ≥ 1,

where {mn}∞n=0 is the minimal parameter sequence of {dn}∞n=1. Moreover, the maximal
parameter sequence {Mn}∞n=0 of {dn}∞n=1 is such that M0 is the value of the jump in the
measure at z = 1.

(b) Conversely, given a pair of real sequences
{{cn}∞n=1, {dn}∞n=1

}
, where {dn}∞n=1 is also a

positive chain sequence, then associated with this pair there exists a unique nontrivial
probabilitymeasureμ supported on the unit circle. Specifically, if {mn}∞n=0 is theminimal
parameter sequence of {dn}∞n=1, then τ0 = 1,

τn−1αn−1 = 1 − 2mn − icn
1 − icn

and τn = 1 − icn
1 + icn

τn−1, n ≥ 1. (5)

Moreover, themeasure has a jump M0 at z = 1,where {Mn}∞n=0 is themaximal parameter
sequence of {dn}∞n=1.

Thenext theoremgives information regarding the pure points. This theorem is obtained as a
consequence ofWall’s criterion formaximal parameter sequence of positive chain sequences.

Theorem 2 (Costa et al. 2013) The probability measure μ has a pure point at w (|w| = 1)
if, and only if,

∞∑
n=1

⎡
⎣ n∏

j=1

|1 − wτ j−1(w)α j−1|2
1 − |α j−1|2

⎤
⎦ = λ(w) < ∞.
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1146 C. F. Bracciali et al.

Moreover, the size of the mass at the point z = w is equal to t = [1 + λ(w)]−1. Here,
τ0(w) = 1 and

τ j+1(w) = φ j+1(w)

φ∗
j+1(w)

= wτ j (w) − α j

1 − wτ j (w)α j
, j ≥ 0. (6)

Now, we discuss a result obtained in Castillo et al. (2014), which leads to a relation
between the zeros of the polynomials Rn(z) and the measure associated with the pair of real
sequences

{{cn}∞n=1, {dn}∞n=1

}
.

Consider the new sequence of polynomials {Qn} satisfying
Qn+1(z) = [(1 + icn+1)z + (1 − icn+1)]Qn(z) − 4dn+1zQn−1(z), n ≥ 1,

with Q0(z) = 0 and Q1(z) = 2d1.
Let zn, j = eiθn, j be the zeros of Rn(z), λn,0 = 1 − Qn(1)

Rn(1)
and λn, j = Qn(zn, j )

(1−zn, j )R′
n(zn, j )

,

with j ∈ {1, 2, . . . , n}. Thus, as shown in Castillo et al. (2014),
∑n

j=0 λn, j = 1 and also
λn, j > 0 , j = 0, 1, 2, . . . , n.

In addition, if we define the sequence of step-functions ψn(eiθ ), n ≥ 1, on [0, 2π] by

ψn(e
iθ ) =

⎧⎪⎪⎨
⎪⎪⎩

0, θ = 0,
λn,0, 0 < θ ≤ θn,1,∑k

j=0 λn, j , θn,k < θ ≤ θn,k+1, k = 1, 2, . . . , n − 1,
1, θn,n < θ ≤ 2π

then byHelly’s Selection Theorem a subsequence ofψn(eiθ ) converges to themeasureμ(eiθ )
associated with the pair

{{cn}∞n=1, {dn}∞n=1

}
as established in Theorem 1.

As an immediate consequence of this result, we can state the following.

Theorem 3 Let
{{cn}∞n=1, {dn}∞n=1

}
be a pair of real sequences with {dn}∞n=1 a positive chain

sequence. Moreover, let Rn(z) be the sequence of polynomials given by (1) and let μ be the
measure associated with this pair of sequences. In addition, suppose that the zeros of Rn(z)
lie on a closed arc B of the unit circle, for n ≥ 1. Then, the support of the measure μ lies
within B ∪ {1}.

Wenow present a review of basic results onmeasures with associated sequence of periodic
Verblunsky coefficients. For more details regarding these results, we refer to Geronimus
(1944), Peherstorfer and Steinbauer (1996a, b) and Simon (2005b).

Let {αn}∞n=0 be a p-periodic sequence (αn+p = αn, n ≥ 0) of Verblunsky coefficients
associated with the measure denoted by μ(p) (here, p is a fixed natural number). Consider
the discriminant function �(z) = z−p/2Tr(Tp(z)) where

Tp(z) = A(αp−1, z) . . . A(α0, z), (7)

A(α j , z) = (1 − |α j |2)−1/2
(

z −α j

−α j z 1

)
, j = 0, . . . , p − 1, (8)

and Tr(Tp(z)) denotes the trace of Tp(z).
It is well known that all the p distinct solutions of the equation �(z) = 2, which we

denote by z+1 , . . . , z+p , lie on the unit circle T. In the same way, the p distinct solutions of the

equation�(z) = −2, denoted by z−1 , . . . z−p , also lie onT.Using these solutions, it is possible
to show that the unit circle can be decomposed into 2p alternating sets G1, B1,G2, . . . , Bp

with each gap, G j , open and each band, Bj , closed. Moreover, each band Bj is given by

Bj = {z ∈ T | arg(zσ j
j ) ≤ arg(z) ≤ arg(z

−σ j
j )} with σ j = (−1) j+1, j = 1, 2, . . . , p.
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Orthogonal polynomials on the unit circle 1147

Now, we mention four fundamental results (see Simon 2005b, Chapter 11) which give
a completely characterization of probability measures on the unit circle associated with
periodic Verblunsky coefficients. The first result provides information about the absolutely
continuous part and the singular part of the measure.

Theorem 4 (Simon 2005b) Let {α j }∞j=0 be a sequence of Verblunsky coefficients of period p

and let dμ(p) = w(θ) dθ
2π +dμ

(p)
s be the associated probability measure. Then, if B1, . . . , Bp

are the corresponding bands we have that ∪Bj is the essential support of the absolutely

continuous spectrum and dμ
(p)
s [∪Bj ] = ∅. Moreover, in each disjoint open arc on T\ ∪p

j=1

Bj , μ(p) has either no support or a single pure point.

The next theorem provides information about the associated weight function w(θ).

Theorem 5 (Simon 2005b) Let {α j }∞j=0 be a sequence of Verblunsky coefficients of period

p and let dμ(p) = w(θ) dθ
2π + dμ

(p)
s be the associated measure. Then, for eiθ ∈ ∪Bj ,

w(θ) =
√
4 − �2(eiθ )

2|Im(e−i pθ/2)ϕp(eiθ )| .

In particular,

(i) On ∪Bint
j , w(θ) > 0.

(ii) At an edge of a band that is by a closed gap (a gap which is empty), w(θ) > 0.

(iii) At an edge, θ0, of a band that is by an open gap, w(θ) ∼ c(θ − θ0)
1
2 if ϕ∗

p(e
iθ0) −

ϕp(eiθ0) �= 0.

(iv) At an edge, θ0, of a band that is by an open gap, w(θ) ∼ c(θ − θ0)
− 1

2 if ϕ∗
p(e

iθ0) −
ϕp(eiθ0) = 0.

Finally, the following two theorems lead to a complete characterization for the pure points
of the measure.

Theorem 6 (Simon 2005b) Let {α j }∞j=0 be a sequence of Verblunsky coefficients of period
p. Then,

π(z) = ϕ∗
p(z) − ϕp(z)

has all its zeros in the set of gap closures, one in each gap closure.

Theorem 7 (Simon 2005b) Let {α j }∞j=0 be a sequence of Verblunsky coefficients of period

p and μ(p) be the associated measure. Let θ0 be a point in a gap closure where ϕ∗
p(e

iθ0) −
ϕp(eiθ0) = 0. Then, either μ(p) has no pure point in the gap or else it has a pure point at
z = eiθ0 .

The results on measures with associated sequence of periodic Verblunsky coefficients
presented above will be used in Sects. 4 and 5.

3 On measures associated with alternating sign sequences {cn}
First, we provide three lemmas that will be useful to derive the subsequent results.

Lemma 1 LetWn(x) satisfying (3) and Rn(z) satisfying (1). Then, for c ∈ R, the following
statements are equivalent:
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1148 C. F. Bracciali et al.

(i) cn = (−1)nc, n ≥ 1;
(ii) for n ≥ 0, R2n(z) has real coefficients and R2n+1(z) = [(1 − ic)z + (1 + ic)] R̃2n(z),

where R̃0(x) = 1 and R̃2n(z) is also a polynomial with real coefficients;
(iii) for n ≥ 0, W2n(x) is an even polynomial of degree 2n and

W2n+1(x) =
(
x + c

√
1 − x2

)
W̃2n(x),

with W̃0(x) = 1 and W̃2n(x) an even polynomial of degree 2n.

Proof (i)⇒(ii) Since R0(z) = 1 and R1(z) = [(1 − ic)z + (1 + ic)] R̃0(z),with R̃0(z) = 1,
it follows that the result holds for n = 0. Furthermore, if (ii) holds for n = k ∈ N then, from
the three term recurrence relation (1), we obtain

R2(k+1)(z) = [(1 + ic)z + (1 − ic)] [(1 − ic)z + (1 + ic)] R̃2k(z) − 4d2k+2zR2k(z)

= [
(1 + c2)z2 + 2(1 − c2)z + (1 + c2)

]
R̃2k(z) − 4d2k+2zR2k(z).

Consequently, since we are assuming that R̃2k(z) and R2k(z) are polynomials with real
coefficients, we conclude that R2(k+1)(z) also has real coefficients. Moreover, using again
(1), we can see that

R2(k+1)+1(z) = [(1 − ic)z + (1 + ic)] R2(k+1)(z) − 4d2k+3z [(1 − ic)z + (1 + ic)] R̃2k(z)

= [(1 − ic)z + (1 + ic)] R̃2(k+1)(z),

where R̃2(k+1)(z) = R2(k+1)(z)− 4d2k+3z R̃2k(z) is also a polynomial with real coefficients,
once R2(k+1)(z) and R̃2k(z) have real coefficients. Therefore, using mathematical induction,
we conclude that the statement (ii) holds for all n ≥ 0.

(ii)⇒(iii) By (ii), R2n(z) has real coefficients for n ≥ 0. Moreover, from the three
term recurrence relation (1) we have that R2n(z) is a self-inversive polynomial, i.e.,
R∗
2n(z) = z2n R2n(1/z̄) = R2n(z). Therefore, it follows (see Bracciali et al. 2016, Lemma

2.1) that W2n(x) is an even polynomial of degree 2n in the variable x = cos(θ/2).
Similarly, since R̃2n(z) is also a self-inversive polynomial with real coefficients, we
have that W̃2n(x) = (4eiθ )−n R̃2n(eiθ ) is an even polynomial of degree 2n. Then, since
R2n+1(z) = [(1 − ic)z + (1 + ic)] R̃2n(z), from the relation (2) it follows thatW2n+1(x) =
(x + c

√
1 − x2)W̃2n(x).

(iii)⇒(i) Using the assumption (iii) and the three term recurrence relation (3), we have,
for s ≥ 1,

W2s(x) = (x − c2s
√
1 − x2)(x + c

√
1 − x2)W̃2s−2(x) − d2s W2s−2(x) (9)

and

(x + c
√
1 − x2)W̃2s(x) = (x − c2s+1

√
1 − x2)W2s(x) − d2s+1(x + c

√
1 − x2)W̃2s−2(x).

(10)

Hence, since W2s(x), W2s−2(x), W̃2s(x) and W̃2s−2(x) are even polynomials, and we can
use the relations (9) and (10) to conclude that c2s = c and c2s+1 = −c, for s ≥ 1. Moreover,
using the assumption (iii) and the definition of W1(x) it is easy to see that c1 = −c. ��

Consider now the polynomials R̂n(z) satisfying

R̂n+1(z) = [(1 + i ĉn+1)z + (1 − i ĉn+1)]R̂n(z) − 4dn+1z R̂n−1(z), n ≥ 1, (11)

with R̂0(z) = 1, R̂1(z) = (1 + i ĉ1)z + (1 − i ĉ1) and ĉn = −cn .
The following lemma gives the relation between the polynomials Rn(z) and R̂n(z).
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Orthogonal polynomials on the unit circle 1149

Lemma 2 Let Rn(z) satisfying (1) and R̂n(z) satisfying (11). Then, the following holds:

Rn(z) = R̂n(z̄), n = 0, 1, 2, . . . .

Proof Clearly, the result holds for n = 0 and n = 1. Suppose that the result holds for
n = 0, 1, . . . , k. Then, from the recurrence relation (11), we have

Rk+1(z) = [(1 + ick+1)z + (1 − ick+1)]Rk(z) − 4dk+1zRk−1(z)

= [(1 + ick+1)z + (1 − ick+1)]R̂k(z̄) − 4dk+1z R̂k−1(z̄)

= R̂k+1(z̄).

Now, the result follows by mathematical induction. ��
Observe that the Lemma 2 provides also a relation between the zeros of the polynomials

Rn(z) and the zeros of R̂n(z), namely, if zn, j is a zero of Rn(z), then zn, j is a zero of R̂n(z).
Denoting by sgn( f (a)) the sign of a certain function f at a point a of its domain, we can

establish the following result.

Lemma 3 Let Wn(x) satisfying (3), where {dn}∞n=1 is a positive chain sequence and cn =
(−1)nc̃n, with c̃n ≥ c > 0, for n ≥ 1. If ε is a real number satisfying 0 < ε < c, then

sgn(Wn(x
(ε)
j )) = (−1)�n/2�, j ∈ {0, 1}, n ≥ 0, (12)

where x (ε)
0 = −cε/

√
1 + c2ε and x (ε)

1 = cε/
√
1 + c2ε , with cε = c − ε.

Proof Since W0(x) = 1, the result clearly occurs for n = 0. If ε is a real number such that
0 < ε < c and cε = c − ε, then, for n ≥ 1 we have c̃n ≥ c > cε > 0. Moreover, by
considering x (ε)

0 = −cε/
√
1 + c2ε and x (ε)

1 = cε/
√
1 + c2ε , we can show that, for n ≥ 1,

sgn

(
x (ε)
0 − c̃n

√
1 − [x (ε)

0 ]2
)

= sgn

(
x (ε)
1 − c̃n

√
1 − [x (ε)

1 ]2
)

= −1 (13)

and

sgn

(
x (ε)
0 + c̃n

√
1 − [x (ε)

0 ]2
)

= sgn

(
x (ε)
1 + c̃n

√
1 − [x (ε)

1 ]2
)

= 1. (14)

Now, suppose that the relation (12) holds for n = 1, 2, . . . , k. Then, if k = 2s + 1, s ≥ 0,
we have

sgn(W2s+1(x
(ε)
j )) = (−1)s = sgn(W2s(x

(ε)
j )), j ∈ {0, 1}. (15)

Furthermore, using the three term recurrence relation (3), we obtain

Wk+1(x
(ε)
j ) =

(
x (ε)
j − c̃2s+2

√
1 − [x (ε)

j ]2
)
W2s+1(x

(ε)
j ) − d2s+2 W2s(x

(ε)
j ), j ∈ {0, 1}.

(16)

Since d2s+2 is an element of the positive chain sequence {dn}∞n=1, we obviously have d2s+2 >

0. Thus, we can use (13), (15) and (16), to conclude that

sgn(Wk+1(x
(ε)
j )) = −sgn(W2s+1(x

(ε)
j )) = (−1)s+1 = (−1)�(k+1)/2�, j ∈ {0, 1}.

Similarly, if k = 2s + 2, s ≥ 0, then

sgn(W2s+2(x
(ε)
j )) = (−1)s+1 = −sgn(W2s+1(x

(ε)
j )), j ∈ {0, 1}. (17)
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On the other hand, using again the three term recurrence relation (3), we find

Wk+1(x
(ε)
j ) =

(
x (ε)
j + c̃2s+3

√
1 − [x (ε)

j ]2
)
W2s+2(x

(ε)
j ) − d2s+3 W2s+1(x

(ε)
j ), j ∈ {0, 1}.

(18)

Moreover, since d2s+3 > 0, from the relations (14), (17) and (18), we can see that

sgn(Wk+1(x
(ε)
j )) = sgn(W2s+2(x

(ε)
j )) = (−1)s+1 = (−1)�(k+1)/2�, j ∈ {0, 1}.

Therefore, using mathematical induction, we conclude that the property (12) holds for all
n ≥ 0. ��

Now, we consider the problem of giving estimates for the support of measures whose
sequences {cn}∞n=1 are of alternating sign. We start with the case cn = (−1)nc, where c ∈ R.

Let C1 and C2 be closed arcs on the unit circle given by

C1 = {z ∈ T : 0 ≤ arg(z) ≤ θc} and C2 = {z ∈ T : 2π − θc ≤ arg(z) ≤ 2π} ,

where θc = arccos
(
c2−1
c2+1

)
∈ [0, π ]. Then, we can state the following.

Theorem 8 Let μ be the probability measure on the unit circle associated with the pair of
sequences

{{cn}∞n=1, {dn}∞n=1

}
where cn = (−1)nc, c ∈ R and {dn}∞n=1 is a positive chain

sequence. Then, the support of μ lies within C1 ∪ C2.

Proof Without loss of generality, we assume that c ≥ 0. Consider the polynomials Rn(z)
given by (1). If we show that all zeros of Rn(z) lie on C1 ∪ C2, then from Theorem 3 we
obtain the desired result. To show this, we use the functionsWn(x) defined in (3) which are
associated with the polynomials Rn(z).

By Lemma 1, we have that W2n+1(x) = (x + c
√
1 − x2)W̃2n(x) with W̃2n(x) an even

polynomial of degree 2n. Moreover, W2n(x) is also an even polynomial of degree 2n. This
means that −c√

1+c2
is always a zero of W2n+1(x) and the other 2n zeros of these functions

have a symmetry about the origin. Likewise, W2n(x) being an even polynomial, all of their
zeros are symmetric with respect to the origin.

Therefore, from the symmetry of the zeros observed above and taking into account the

interlacing property (4), it follows that all zeros ofWn(x) lie in
(
−1, −c√

1+c2

]
∪
[

c√
1+c2

, 1
)

.

Finally, if we denote the zeros ofWn(x) by xn, j and the zeros of Rn(z) by zn, j , then they

are related by xn, j = cos
(

θn, j
2

)
where zn, j = eiθn, j , j = 1, 2, . . . , n. This shows that Rn(z)

has all of its zeros on C1 ∪ C2. ��
Notice that Theorem 8 leads to an estimative for the support of the measure in the case

where cn = (−1)nc̃n and c̃n is a constant sequence.Weuse this initial estimative asmotivation
to obtain a more general result.

Theorem 9 Let μ be the probability measure on the unit circle associated with the pair of
sequences

{{cn}∞n=1, {dn}∞n=1

}
, where cn = (−1)nc̃n, c̃n ≥ c > 0 and {dn}∞n=1 is a positive

chain sequence. Then, the support of μ lies within C1 ∪ C2.

Proof As in the proof of the previous theorem, it is enough to show that all the n zeros
of Rn(z), n ≥ 1, lie on C1 ∪ C2, or equivalently from the relation (2), just prove that all
n zeros, in (−1, 1), of the functions Wn(x), n ≥ 1, given by (3), belong to the set X =(
−1,−c/

√
1 + c2

]
∪
[
c/

√
1 + c2, 1

)
.
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Let ε be a real number such that 0 < ε < c, and consider the numbers x (ε)
0 = −cε/

√
1 + c2ε

and x (ε)
1 = cε/

√
1 + c2ε , where cε = c − ε.

Initially, we will show that all the n zeros of Wn(x), in (−1, 1), belong to the set X (ε) =
(−1, x (ε)

0 ] ∪ [x (ε)
1 , 1). To do this, we will use mathematical induction on n.

Notice that x1,1 = −c̃1/
√
1 + c̃21 is the only zero ofW1(x) = x + c̃1

√
1 − x2 in (−1, 1).

Therefore, since c̃1 ≥ c > cε , we have that x1,1 ∈ X (ε). Consequently, the result is valid for
n = 1.

Now, suppose that all the k zeros, k ∈ N, of Wk(x), in (−1, 1), belong to X (ε). We claim
thatWk+1(x) has no zeros in the interval Y (ε) = (−1, 1) \ X (ε) = (x (ε)

0 , x (ε)
1 ). Indeed, from

Lemma 3, we have sign(Wk+1(x
(ε)
0 )) = sign(Wk+1(x

(ε)
1 )). Hence, if we assume that there

exists at least one zero of Wk+1(x) inside the interval Y (ε) then, since sign(Wk+1(x
(ε)
0 )) =

sign(Wk+1(x
(ε)
1 )), we conclude that Wk+1(x) has at least two zeros in Y (ε). Consequently,

using the interlacing property for the zeros of Wk+1(x) and Wk(x), given in (4), we should
have, at least, one zero ofWk(x) inside the interval Y (ε). But this cannot happen because all
the zeros ofWk(x), in (−1, 1), belong to X (ε). Therefore, using mathematical induction, we
conclude that all the zeros of Wn(x) belong to X (ε) for all n ≥ 1.

Finally, by letting ε → 0, we see that Wn(x) has all its n zeros in X , which completes
the proof of the theorem. ��

Corollary 1 Let μ be the probability measure on the unit circle associated with the pair of
sequences

{{cn}∞n=1, {dn}∞n=1

}
, where cn = (−1)nc̃n, c̃n ≤ c < 0 and {dn}∞n=1 is a positive

chain sequence. Then, the support of μ lies on C1 ∪ C2.

Proof First, one can observe that −cn = (−1)n (−c̃n) , with −c̃n ≥ −c > 0. Hence, if μ̂

is the probability measure associated with the pair
{{−cn}∞n=1, {dn}∞n=1

}
, from Theorem 9 it

follows that R̂n(z) given by (11) has all zeros on C1 ∪ C2 and that μ̂ has its support within
C1 ∪ C2. Now, the result is an immediate consequence of Lemma 2. ��

Let μ be the measure associated with the pair
{{cn}∞n=1, {dn}∞n=1

}
, where {cn}∞n=1 satisfies

the condition c2n = −c2n−1, n ≥ 1.
Starting fromμwe desire to get a newmeasure μ̃ associatedwith the pair of real sequences{

{c̃n}∞n=1, {d̃n}∞n=1

}
, where {c̃n}∞n=1 must satisfy the condition c̃2n = c̃2n−1 = c2n, n ≥ 1.

Let us consider the sequence of complex numbers {βn}∞n=1 given by

βn = −
(
1 + ic2n
1 − ic2n

)
, n = 1, 2, . . . . (19)

The next theorem shows how to get the required measure μ̃ from the measure μ.

Theorem 10 Let μ be the probability measure on the unit circle associated with the pair of
sequences

{{cn}∞n=1, {dn}∞n=1

}
, where c2n = −c2n−1, n ≥ 1. Let {βn}∞n=1 be the sequence

of complex numbers defined by (19). In addition, let μ̃ be the measure associated with the
sequence of Verblunsky coefficients {α̃n}∞n=0 given by

α̃2n+1 =
⎛
⎝n+1∏

j=1

β j
2

⎞
⎠α2n+1 and α̃2n =

⎛
⎝ n∏

j=1

β j
2

⎞
⎠βn+1α2n, n = 0, 1, 2, . . . , (20)
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where {αn}∞n=0 is the sequence of Verblunsky coefficients related toμ. If
{
{c̃n}∞n=1, {d̃n}∞n=1

}
is

the pair of sequences associated with the measure μ̃ and if {m̃n}∞n=0 is the minimal parameter
sequence for {d̃n}∞n=1, then the following holds

c̃2n = c̃2n−1 = c2n, m̃2n−1 = 1 − m2n−1 and m̃2n = m2n, n = 1, 2, . . . .

Proof Using the assumption c2n = −c2n−1, we obtain

τ2n = 1 and τ2n+1 = 1 + ic2n+2

1 − ic2n+2
, n = 0, 1, . . . . (21)

Hence, from (5) and (21), we have

α2n = 1 − 2m2n+1 + ic2n+2

1 + ic2n+2
and α2n+1 = 1 − 2m2n+2 − ic2n+2

1 + ic2n+2
, n = 0, 1, . . . .(22)

Now, let {m̂n}∞n=0 be theminimal parameter sequence for a positive chain sequence {d̂n}∞n=1
and {α̂n}∞n=0 the sequence of Verblunsky coefficients of a probability measure on the unit

circle, μ̂, associated with the pair of real sequences
{
{ĉn}∞n=1, {d̂n}∞n=1

}
, where

ĉ2n = ĉ2n−1 = c2n, m̂2n−1 = 1 − m2n−1 and m̂2n = m2n, n = 1, 2, . . . . (23)

Using the relations (5), (19), (20), (22) and (23), one can see that for n ≥ 0,

α̂2n+1 =
(
1 + i ĉ2n+1

1 − i ĉ2n+1

)(
2n∏
k=1

1 + i ĉk
1 − i ĉk

)[
1 − 2m̂2n+2 − i ĉ2n+2

1 − i ĉ2n+2

]

=
(
1 + ic2n+2

1 − ic2n+2

)2
⎡
⎣ n∏

j=1

(
1 + ic2 j
1 − ic2 j

)2
⎤
⎦
[
1 − 2m2n+2 − ic2n+2

1 + ic2n+2

]

=
⎛
⎝n+1∏

j=1

β j
2

⎞
⎠α2n+1 = α̃2n+1.

Similarly, using again (5), (19), (20), (22) and (23), we obtain for n ≥ 0,

α̂2n =
(

2n∏
k=1

1 + i ĉk
1 − i ĉk

)[
1 − 2m̂2n+1 − i ĉ2n+1

1 − i ĉ2n+1

]

=
⎡
⎣ n∏

j=1

(
1 + ic2 j
1 − ic2 j

)2
⎤
⎦
[
−
(
1 + ic2n+2

1 − ic2n+2

)][
1 − 2m2n+1 + ic2n+2

1 + ic2n+2

]

=
⎛
⎝ n∏

j=1

β j
2

⎞
⎠βn+1α2n = α̃2n .

Thus, α̃n = α̂n for n ≥ 0 and, consequently, μ̃ = μ̂. Hence, from the uniqueness of the

pair
{
{c̃n}∞n=1, {d̃n}∞n=1

}
given by Theorem 1, we have m̃0 = m̂0 = 0,

c̃n = ĉn and m̃n = m̂n, n = 1, 2, . . . ,

which completes the proof of the theorem. ��
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Corollary 2 Let μ be the probability measure on the unit circle associated with the pair
of sequences

{{cn}∞n=1, {dn}∞n=1

}
, where cn = (−1)nc, n ≥ 1 and c ∈ R. In addition, let

β = −
(
1+ic
1−ic

)
and μ̃(z) = μ(βz) the measure associated with the pair

{
{c̃n}∞n=1, {d̃n}∞n=1

}
.

Then, for n ≥ 1, c̃n = c.

Proof First, notice that if μ̃(z) = μ(βz), the corresponding Verblunsky coefficients are
related by α̃n = βn+1αn, n ≥ 0 (see, for example, Costa et al. 2013). Hence, the result
follows from Theorem 10 with c2n = c, n ≥ 1. ��

4 Measures associated with periodic Verblunsky coefficients

The first theorem in this section gives a characterization ofmeasureswith associated sequence
of periodic Verblunsky coefficients in terms of the pair of real sequences

{{cn}∞n=1, {dn}∞n=1

}
,

where {dn}∞n=1 is a positive chain sequence. Throughout this section bn = 1 − 2mn, n ≥ 1,
where {mn}∞n=0 is the minimal parameter sequence of {dn}∞n=1.

Theorem 11 Let μ be the probability measure on the unit circle associated with the pair
of sequences

{{cn}∞n=1, {dn}∞n=1

}
. Then, the measure μ has associated sequence of periodic

Verblunsky coefficients {αn}∞n=0 of period p if, and only if, for n ≥ 0,

n+p∑
j=n+1

arg

(
1 + ic j
1 − ic j

)
= arg

(
bn+1 − icn+1

1 − icn+1

)
− arg

(
bn+p+1 − icn+p+1

1 − icn+p+1

)

+ 2knπ, kn ∈ Z (24)

and

b2n+1 + c2n+1

1 + c2n+1

= b2n+p+1 + c2n+p+1

1 + c2n+p+1

. (25)

Proof First one can observe, from (5), that for n ≥ 0,

αn+p = αn ⇔ τ n+p

[
bn+p+1 − icn+p+1

1 − icn+p+1

]
= τ n

[
bn+1 − icn+1

1 − icn+1

]

⇔
⎛
⎝ n+p∏

j=n+1

1 + ic j
1 − ic j

⎞
⎠
[
bn+p+1 − icn+p+1

1 − icn+p+1

]
=
[
bn+1 − icn+1

1 − icn+1

]
.

Now the result follows by comparing, respectively, the modulus and the argument of the
numbers⎛

⎝ n+p∏
j=n+1

1 + ic j
1 − ic j

⎞
⎠
[
bn+p+1 − icn+p+1

1 − icn+p+1

]
and

[
bn+1 − icn+1

1 − icn+1

]
, n ≥ 0.

��
We say that μ is a symmetric measure if dμ(z) = −dμ(1/z), z ∈ T. From the results

established in Castillo et al. (2014), one can observe thatμ is symmetric if and only if cn = 0,
n ≥ 1, with {cn}∞n=1 given as in Theorem 1. Thus, as a consequence of Theorem 11, we have
the following result.
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Corollary 3 Let μ be the probability measure on the unit circle associated with the pair of
sequences

{{cn}∞n=1, {dn}∞n=1

}
,where {cn}∞n=1 and {mn}∞n=1 are periodic sequences of period

p. In addition, suppose that c2n = −c2n−1, n ≥ 1. Then,

(i) if p is even, the measure μ has associated p−periodic sequence of Verblunsky coeffi-
cients;

(ii) if p is odd, the measure μ is symmetric and has associated p−periodic sequence of
Verblunsky coefficients.

Proof (i) Clearly,wehave that (24) and (25) hold.Hence, the result followsbyTheorem11.
(ii) If p is odd, using the periodicity of {cn}∞n=1 and the assumption that c2n = −c2n−1,

we conclude that cn = 0, n ≥ 1. Hence, μ is symmetric. Moreover, since {mn}∞n=1
is a periodic sequence of period p and cn = 0, n ≥ 1, the conditions (24) and (25)
of Theorem 11 can be easily verified. Consequently, the measure μ has associated
p−periodic sequence of Verblunsky coefficients. ��

The Corollary 3 shows that if we choose the sequence {cn}∞n=1 p−periodic (p even) and
such that c2n = −c2n−1, then it is possible, by choosing {mn}∞n=1 also p−periodic, to get a
measure μ(p) whose Verblunsky coefficients are periodic with the same period. Notice that
in the case when c2n = −c2n−1 and c2n > 0 (or c2n < 0) for n ≥ 1, the sequence {cn}∞n=1
has the alternating sign property.

The next theorem provides a geometric characterization for the choice of {cn}∞n=1 and
{mn}∞n=1 considered above.

Theorem 12 Let p be an even natural number and μ(p) be the probability measure associ-
ated with the pair

{{cn}∞n=1, {dn}∞n=1

}
. Then, the following statements are equivalent:

(i) The sequences {cn}∞n=1 and {mn}∞n=1 are p−periodic with c2n = −c2n−1, n ≥ 1.
(ii) The sequence of Verblunsky coefficients {αn}∞n=0 associated with the measureμ(p) is p−

periodic. In addition, for k ∈ {0, 1, . . . , p−2
2 }, the straight lines connecting α2k to 1 and

α2k+1 to −1 are parallel.

Proof (i)⇒(ii) From Corollary 3, it is immediate that {αn}∞n=0 is a periodic sequence with
period p. On the other hand, by the assumption that c2n = −c2n−1 and by (5), for n ≥ 0, we
have

α2n = b2n+1 + ic2n+2

1 + ic2n+2
= 1 + λ2n(−1 − ic2n+1),

where λ2n = 1−b2n+1

1+c22n+1
. Similarly, for n ≥ 0,

α2n+1 = b2n+2 − ic2n+2

1 + ic2n+2
= −1 + λ2n+1(−1 + ic2n+2),

where λ2n+1 = − 1+b2n+2

1+c22n+2
.

Hence, for each k ∈ {0, 1, . . . , p−2
2 }, one can see that α2k ∈ r2k , where r2k is the straight

line with parametric equation given by r2k(t) = 1 + t (−1 − ic2k+1), t ∈ R.

Similarly, for each k ∈ {0, 1, . . . , p−2
2 }, one can see that α2k+1 ∈ r2k+1, where r2k+1 is

the straight line with parametric equation given by r2k+1(t) = −1+ t (−1+ ic2k+2), t ∈ R.

Finally, since −1 − ic2k+1 = −1 + ic2k+2 it follows that r2k ‖ r2k+1, for each k ∈
{0, 1, . . . , p−2

2 }.
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(ii)⇒(i) Let α j = x j + iy j , j = 0, 1, . . . , p− 1. If j = 2k, k ∈ {0, 1, . . . , p−2
2 }, we can

write

α2k = 1 + λ2k(−1 − i c̃2k+1), (26)

where

λ2k = 1 − b̃2k+1

1 + c̃22k+1

, c̃2k+1 = y2k
x2k − 1

and b̃2k+1 = 1 + (x2k − 1)2 + y22k
x2k − 1

. (27)

Likewise, if j = 2k + 1, k ∈ {0, 1, . . . , p−2
2 }, we can write

α2k+1 = −1 + λ2k+1(−1 + i c̃2k+2), (28)

where

λ2k+1 = −1 + b̃2k+2

1 + c̃22k+2

, c̃2k+2 = −y2k+1

1 + x2k+1
and b̃2k+2 = −1 + (1 + x2k+1)

2 + y22k+1

1 + x2k+1
.

(29)

Hence, if we set b̃n = 1 − 2m̃n, from αn+p = αn, (27) and (29), one can see that

c̃n+p = c̃n and m̃n+p = m̃n, n = 1, 2, . . . . (30)

For each k ∈ {0, 1, . . . , p−2
2 }, let r2k be the straight line connecting α2k to 1 and r2k+1 the

straight line connecting α2k+1 to −1. Then, from (26), (28), (30) and since r2k ‖ r2k+1, k ∈
{0, 1, . . . , p−2

2 }, it follows that
c̃2n+2 = −c̃2n+1, n = 0, 1, . . . . (31)

Hence, from (26) to (31), we have, for n ≥ 0,

α2n = b̃2n+1 + i c̃2n+2

1 + i c̃2n+2
and α2n+1 = b̃2n+2 − i c̃2n+2

1 + i c̃2n+2
. (32)

Finally, using the formula (5) for αn and the relation (32) one can see, by mathematical
induction, that for n ≥ 1,

c̃n = cn and m̃n = mn .

This completes the proof. ��
Observe that Theorem 12 shows that to choose a periodic sequence {αn} of period p (p

even) with α j on certain parallel straight lines is equivalent to choosing the sequences {cn}
and {mn} also p−periodic with the additional property c2n+2 = −c2n+1, n ≥ 0. In Figs. 1
and 2, we show some examples of possible choices for {cn} and {mn}.

The following results dealwith how to calculate (from thepoint of viewof chain sequences)
the pure points and the respective masses of a measure μ(p), whose associated sequence of
Verblunsky coefficients is periodic. In Simon (2005b), there is another approach to the same
problem.

We begin with a lemma that leads to a characterization of the possible pure points (that
we denote by w) of the measure μ(p) in terms of the sequence {τn(w)} defined in (6).

Lemma 4 Let μ(p) be a probability measure on the unit circle with associated p−periodic
sequence of Verblunsky coefficients. Then, w is a possible pure point of the measure μ(p) if,
and only if, the sequence {τn(w)}∞n=0 is periodic of period p.
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Fig. 1 Verblunsky coefficients
associated with the choice
{cn} = {−c, c, −c, c, . . .} and
{bn} = {b1, b2, b1, b2, . . .}, with
c > 0

Fig. 2 Verblunsky coefficients
associated with the choice {cn} =
{−c2, c2,−c4, c4,−c2, c2, . . .}
and {bn} =
{b1, b2, b3, b4, b1, b2, . . .}, with
c2 < 0 and c4 > 0

Proof By Theorems 6 and 7, we see that w is a possible pure point of μ(p) if, and only
if, ϕp(w) − ϕ∗

p(w) = 0. Notice that the condition ϕp(w) − ϕ∗
p(w) = 0 is equivalent to

τp(w) = 1.
Furthermore, using the periodicity of the sequence {αn}∞n=0 and the recurrence relation

(6), we also see that τp(w) = 1 is equivalent to the periodicity of the sequence {τn(w)}∞n=0.��
The next theorem provides a way to determine all the pure points of the measureμ(p) and,

also, to calculate the mass of each pure point.

Theorem 13 Letμ(p) beaprobabilitymeasure on the unit circlewith associated p−periodic
sequence of Verblunsky coefficients {αn}∞n=0. In addition, suppose that w is a point on the
unit circle such that ϕp(w) − ϕ∗

p(w) = 0. Then, w is a pure point of μ(p) if, and only if,

p∏
j=1

|1 − wτ j−1(w)α j−1|2 <

p∏
j=1

[
1 − |α j−1|2

]
.

Moreover, if w is a pure point of μ(p), then the mass at this point is given by

μ(p)({w}) = γ

γ + δ
,
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where δ =
p∑

n=1

n∏
j=1

|1 − wτ j−1(w)α j−1|2
1 − |α j−1|2 and γ = 1 −

p∏
j=1

|1 − wτ j−1(w)α j−1|2
1 − |α j−1|2 .

Proof For j ≥ 1, let q j = |1−wτ j−1(w)α j−1|2
1−|α j−1|2 .

By Theorem 2, we know that w is a pure point if, and only if, the infinite sum λ(w) =∑∞
n=1

∏n
j=1 q j is convergent.

By Lemma 4 and the periodicity of {αn}∞n=0, it follows that q j+p = q j , j ≥ 1. Thus, if
q = ∏p

j=1 q j , we can write λ(w) as

λ(w) = q1

( ∞∑
n=0

qn
)

+ q1q2

( ∞∑
n=0

qn
)

+ · · · + q1q2 · · · qp
( ∞∑
n=0

qn
)

. (33)

Observe that λ(w) is convergent if, and only if, |q| < 1.Thus, the first part of the statement
follows.

Furthermore, if |q| < 1 using (33), we have

λ(w) =
(

1

1 − q

)⎛
⎝ p∑

n=1

n∏
j=1

q j

⎞
⎠ = δ

γ
. (34)

Finally, by Theorem 2 and (34), we get

μ(p)({w}) = 1

1 + λ(w)
= γ

γ + δ
.

��

5 An example

In this section, we discuss, using the following example, the results obtained in the previous
sections.

Let the real sequences {cn}∞n=1 and {dn}∞n=1 be given by

cn = (−1)nc and dn = (1 − mn−1)mn, n ≥ 1,

where c ∈ R and the real sequence {mn}∞n=0 is such that m0 = 0,

m2n−1 = 1 − b1
2

and m2n = 1 − b2
2

, n ≥ 1,

with b1, b2 ∈ R, |b1| < 1 and |b2| < 1.
Notice that, if c �= 0, {cn}∞n=1 has the alternating sign property and that {dn}∞n=1 is a

positive chain sequence, with {mn}∞n=0 being its minimal parameter sequence. Moreover,
{cn}∞n=1 and {mn}∞n=1 are periodic sequences of period 2.

By Theorem 1, associated with the pair
{{cn}∞n=1, {dn}∞n=1

}
, there exists a unique proba-

bility measure, say μ(2), on the unit circle. Furthermore, from Corollary 3 it follows that the
sequence of Verblunsky coefficients associated with μ(2) is periodic with period 2 (in Fig. 1,
the position of these coefficients for the case c > 0 is illustrated).

From the definition of {cn}∞n=1, one can also see that

τ2n = 1 and τ2n+1 = 1 + ic

1 − ic
, n ≥ 0. (35)
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Thus, from (5) we have, for n ≥ 0,

α2n = b1 + ic

1 + ic
= (b1 + c2) + ic(1 − b1)

1 + c2
and

α2n+1 = b2 − ic

1 + ic
= (b2 − c2) − ic(1 + b2)

1 + c2
.

In this case, since p = 2, we have �(z) = z−1Tr(T2(z)). By (7) and (8),

T2(z) = (1 − |α0|2)−1/2(1 − |α1|2)−1/2
(

z −α1

−α1z 1

)(
z −α0

−α0z 1

)
.

Hence, computing �(eiθ ) one can see that, for θ ∈ [0, 2π),

�(eiθ ) = 2

{
1 + c2

[(1 − b21)(1 − b22)]1/2
cos θ + b1b2 − c2

[(1 − b21)(1 − b22)]1/2
}

and, consequently,

√
4 − �2(eiθ ) = 2

√√√√1 −
[

(1 + c2) cos θ + b1b2 − c2

(1 − b21)
1/2(1 − b22)

1/2

]2

.

Furthermore, by considering the normalized orthogonal polynomials ϕ2(z) = κ2φ2(z)
one can also verify that

ϕ2(z) = 1

(1 − b21)
1/2(1 − b22)

1/2

{
(1 + c2)z2 + (b1b2 − b1 − 2c2)z

}

+ 1

(1 − b21)
1/2(1 − b22)

1/2

{
ic(b2 + 1)z + [(c2 − b2) − ic(b2 + 1)]}

and, consequently, for θ ∈ [0, 2π),

Im(e−iθϕ2(e
iθ )) = (1 + b2)[sin θ + c(1 − cos θ)]

(1 − b21)
1/2(1 − b22)

1/2
.

Hence, from Theorem 5, the weight function w(θ) associated with μ(2) is such that

w(θ) =
√

(1 − b21)(1 − b22) − [(1 + c2) cos θ + b1b2 − c2]2
|(1 + b2)[sin θ + c(1 − cos θ)]| .

Now, we need to compute the bands B1 and B2 for the measure μ(2). By solving the
equation �(eiθ ) = 2, we find the solutions

θ+
1 = arccos

(
(1 − b21)

1/2(1 − b22)
1/2 + c2 − b1b2

1 + c2

)
and θ+

2 = 2π − θ+
1 .

Likewise, by solving �(eiθ ) = −2, we find

θ−
1 = arccos

(
c2 − (1 − b21)

1/2(1 − b22)
1/2 − b1b2

1 + c2

)
and θ−

2 = 2π − θ−
1 .

Thus, each band Bj is determined by the points z+j = eiθ
+
j and z−j = eiθ

−
j , j ∈ {1, 2}.
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To determine the possible pure points of μ(2), by Theorems 6 and 7, we need to solve the

equation ϕ2(z) − ϕ∗
2 (z) = 0, whose solutions are w1 = 1 and w2 = c2−1

1+c2
− i 2c

1+c2
.

Now, looking at the bands Bj and at the possible pure points w j , it is not hard to see that
the measure μ(2) is always supported on C1 ∪ C2, in accordance with Theorem 9.

Finally, we give a complete characterization about the singular part of the measure μ(2)

in terms of the parameters b1, b2 and c.
First, we analyze the point w1 = 1. Notice that τn(w1) = τn given by (35) is peri-

odic of period 2, according to Lemma 4. From Theorem 13, one can see that w1 is a pure

point of μ(2) if, and only if, b1 + b2 > 0. Moreover, if δ1 =
2∑

n=1

n∏
j=1

|1 − τ j−1α j−1|2
1 − |α j−1|2 and

γ1 = 1 −
2∏
j=1

|1 − τ j−1α j−1|2
1 − |α j−1|2 , again by Theorem 13 we obtain

μ(2)({w1}) = γ1

γ1 + δ1
= b1 + b2

1 + b2
.

Consider now the point w2 = c2−1
1+c2

− i 2c
1+c2

= − 1+ic
1−ic . From Corollary 2, if μ̃(z) =

μ(2)(w2z), we have c̃n = c, n ≥ 1. Moreover,

τ̃n =
n∏

k=1

1 − i c̃k
1 + i c̃k

=
(
1 − ic

1 + ic

)n

, n ≥ 1.

Fig. 3 Case 0 < c < 1 and
b2 > b1 > 0

Fig. 4 Case 0 < c < 1 and
0 < b2 ≤ −b1
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Fig. 5 Case 0 < c < 1 and
0 < b2 ≤ b1

Fig. 6 Case 0 < c < 1 and
b1 = b2 = 0

On the other hand, it is known (see, for example, Costa et al. (2013)) that τ̃n =
w−n
2 τn(w2), n ≥ 0. Hence, one can see that τn(w2) = (−1)n, n ≥ 0. Thus, it follows

that τn(w2) is periodic of period 2, according to Lemma 4.
From Theorem 13, w2 is a pure point of μ(2) if, and only if, b2 − b1 > 0. Moreover, if

δ2 =
2∑

n=1

n∏
j=1

|1 − w2τ j−1(w2)α j−1|2
1 − |α j−1|2 and γ2 = 1 −

2∏
j=1

|1 − w2τ j−1(w2)α j−1|2
1 − |α j−1|2 ,

we obtain

μ(2)({w2}) = γ2

γ2 + δ2
= b2 − b1

1 + b2
.

The Figs. 3, 4, 5 and 6 illustrate a comparison between the estimative for the support of
the measure μ(2) obtained in Theorem 2 (see also Theorem 3) and the true support of the
measure μ(2) in some particular cases. Notice that in the case b1 = b2 = 0, the estimative is
accurate, i.e., the support of the measure μ(2) is exactly C1 ∪ C2 (see Fig 6).
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