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Abstract It was shown recently that associated with a pair of real sequences {{c,};2,
{dn};2 1}, with {d,,}7° | a positive chain sequence, there exists a unique nontrivial probabil-

ity measure u on the unit circle. The Verblunsky coefficients {a,};2 , associated with the
orthogonal polynomials with respect to u are given by the relation

1—-2m, — icni|

- n>l1,
1—ic,

Ap—1 = Tp—1 [

where g = 1,1, = szl(l —ic)/(I4ic), n > 1and {m,}>, is the minimal parameter
sequence of {d,}72 ;. In this manuscript, we consider this relation and its consequences by
imposing some restrictions of sign and periodicity on the sequences {c,};° ; and {m,}> .
When the sequence {c,}>, is of alternating sign, we use information about the zeros of
associated para-orthogonal polynomials to show that there is a gap in the support of the
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measure in the neighbourhood of z = — 1. Furthermore, we show that it is possible to generate
periodic Verblunsky coefficients by choosing periodic sequences {c,},2 ; and {m,} > | with

the additional restriction ¢z, = —c2,—1, n > 1. We also give some results on periodic
Verblunsky coefficients from the point of view of positive chain sequences. An example is
provided to illustrate the results obtained.

Keywords Para-orthogonal polynomials - Probability measures - Periodic Verblunsky
coefficients - Chain sequences - Alternating sign sequences

Mathematics Subject Classification 42C05 - 33C47

1 Introduction

Orthogonal polynomials on the unit circle (OPUC, in short) have been commonly known
as Szegd polynomials in honor of Gabor Szegd who introduced them in the first half of
the twentieth century. Because of their applications in quadrature rules, signal processing,
operator and spectral theory and many other topics, these polynomials have received a lot
of attention in recent years (see, for example, Breuer et al. 2010; Castillo et al. 2011; Costa
et al. 2011; Kheifets et al. 2011; Peherstorfer 2011; Peherstorfer et al. 2009; Simanek 2012;
Tsujimoto and Zhedanov 2009). For many years, a firsthand text for an introduction to these
polynomials has been the classical book (Szeg6 1975) of Szegd. However, for recent and
more up-to-date texts on this subject, we refer to the two volumes of Simon (2005a,b). For
further interesting reading on this subject, we refer to Chapter 8 of Ismail’s recent book
(Ismail 2005).

Given a nontrivial probability measure ©(z) = w(e?) on the unit circle T = {z = ¢
0 < 6 < 2m}, the associated sequences of OPUC {¢, } are those with the property

0 .

2
/Z/¢n(z)dﬂ(z)=/ e 0%, due®) =0, 0<j<n—1, n>1.
T 0

Letting «,, 2= |gal? = fT | (2)|2d (), the orthonormal polynomials on the unit circle
are ¢p(2) = knn(2), n = 0.

The polynomials ¢, (z), n > 0, considered as monic polynomials, satisfy the so-called
forward and backward recurrence relations, respectively,

¢n(2) = 2¢p-1(z) — otp—1 ¢Z_1(Z)’ n>1
$n(@) = (1 = lan11D2¢n 1) =@ 145 (2), — —

where «,—1 = —¢,,(0) and ¢} (z) = 2" ¢, (1/z) denotes the reversed (reciprocal) polynomial
of ¢,,(z). The numbers «,,, in recent years, have been referred to as Verblunsky coefficients.
It is known that these coefficients are such that |, | < 1, n > 0. Moreover, the OPUC and
the associated measure are completely determined from these coefficients (see for example
Simon 2005a, Theorem 1.7.11). A very nice and short constructive proof of this last statement
can be found in Erdélyi et al. (1991).

Another entity that has recently played an important role in the theory of OPUC are the
positive chain sequences. According to Chihara (1978), a sequence {a,};° | is a positive
chain sequence if there exists a second sequence {g,},~, such that

0<go<l1, O0<gy,<l1,forn>1, and a, = (1 —gy_1)gn, forn > 1.
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1144 C. F. Bracciali et al.

The sequence {g,}32, (which can be non-unique) is called a parameter sequence of the
positive chain sequence {a,};2 ;. It is known (see, for example, Chihara 1978) that every
positive chain sequence has a minimal parameter sequence denoted by {m,}> ,, obtained
when my = 0. Moreover, every positive chain sequence has a maximal parameter sequence
denoted by {M,};2 ,, which is characterized by the condition that if go > Mo, then {g,,}°
generated by g, = a,, /(1 — gy—1), n > 1 does not satisfy 0 < g, < I,n > 1.

It was shown in Costa et al. (2013) that given any nontrivial probability measure on the
unit circle, then corresponding to this measure there exists a pair of real sequences {c,};° ;
and {d,,}3° |, where {d,,}}2 | is also a positive chain sequence. In Theorem 1, we have given
complete information regarding this statement and its reciprocal. To be precise, the sequences
{cn};2 and {d,};2 | are the coefficients of the three term recurrence relation

Rut1(2) = [(I +icpr D)z 4+ (1 —icp DR (2) — 4dpy12Rp—1(2), n =1, ey

with Ryp(z) = 1and Ri(z) = (1 +ic1)z+ (1 —icy), where

k(= == meia] 200 —wgie)
" 1= [1 — Re(rj1ej1)] z—1 ’
with 7, = ¢, (1)/¢(1), n = 0.

From the sequences {c,};° | and {d,}7° , it is possible to recover the associated probabil-
ity measure using certain rational functions that follow from the recurrence formula (1). In
Castillo et al. (2014), using standard arguments involving continued fractions, series expan-
sions at infinity and at the origin, and Helly’s Selection Theorem, the associated measure [
is given as a limit of a subsequence of discrete measures 1/, (¢'?) whose pure points (those
different from z = 1) are exactly the zeros of R, (z). The results given in Castillo et al.
(2014) enable us to give information about the support of the measure p by analysing the
ZEeros 7, j = el j=12...,n,0f R,(z), or, equivalently, by analysing the zeros of the
functions W, (x), given by

Wa(x) = 27" 2R, (%), n >0, 2)

where x = cos(6/2). The sequence of functions {W,}7 , satisfies the three term recurrence
relation (see Bracciali et al. 2016; Dimitrov and Sri Ranga 2013)

Wi () = (x = Gutv/T = 22) Wy (6) = dot Wat (0), n = 1, 3)

with Wy(x) =1 and Wi (x) = x — c1v/1 — x2.

For any n > 1, W, (x) has exactly n distinct zeros x, j = cos(6,,;/2), j =1,2...,n,in
(—1, 1). We mention that the proof given in Dimitrov and Sri Ranga (2013) for the interlacing
property of the zeros of R,(z) and R, (z) is by proving the interlacing property

— 1 < Xpgln+l <Xpp <Xppln < - <Xp1 <Xpy11 <1, n>1, 4)

for the zeros of W, (x) and W, 41 (x) using the three term recurrence relation (3).

The aim of this manuscript is to study the sequences of Verblunsky coefficients where the
related sequences {c,}>2, and {m,} >, have restrictions of sign and periodicity. We show
that, under certain conditions, it is possible to estimate the support of the associated measure
and to get periodic Verblunsky coefficients. Furthermore, we discuss some geometric aspects
related to these restrictions.

This manuscript is organized as follows. In Sect. 2, we give a summary of all the required
theoretical results. Section 3 deals with the results concerning the measures for which the
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associated sequence {c,};° ; has the alternating sign property, namely, ¢, = (—1)"¢,, for
n > 1, where ¢, is a positive (or negative) sequence of real numbers. In Sect. 4, some results
regarding the measures associated with the sequence of periodic Verblunsky coefficients are
established. Finally, in Sect. 5, we give an example to illustrate the results obtained.

2 Some preliminary results

In this section, we present some results concerning nontrivial probability measures and pos-
itive chain sequences [for more details on chain sequences, we refer to Chihara (1978) and
Wall (1948)]. Furthermore, some known results about measures with associated periodic
Verblunsky coefficients are presented.

We begin with two theorems established in Costa et al. (2013). The first theorem provides
a characterization for nontrivial probability measures in terms of two sequences, {c,},2 ; and

{dnlney-
Theorem 1 (Costa et al. 2013)

(a) Given a nontrivial probability measure [ on the unit circle, then associated with it

there exists a unique pair of real sequences {{cn}f;l Adn}o2  }, where {dy )72 | isalsoa

positive chain sequence. Specifically, if {o, }72  is the associated sequence of Verblunsky
coefficients and if the sequence T, is such that

1 -7, 10,1
- n=7n=t n>l7

=1 and 7 =711 -7 2 s
— h—1Gp-1

then mg = 0,

—Im(ty—10p-1) 1 1 _Tnflan—l|2
= and my,
1- Re(rn—l(xn—l)

> 1,

Cn == , h =
2 [1 - Re(rn—lan—l)]

where {m,}7°  is the minimal parameter sequence of {d,};> . Moreover, the maximal
parameter sequence {M,}>> o of {d,}72 | is such that My is the value of the jump in the
measure at 7 = 1.

(b) Conversely, given a pair of real sequences {{c,, | Bap {dn};'lil} , where {dy,};2  is also a
positive chain sequence, then associated with this pair there exists a unique nontrivial
probability measure |1 supported on the unit circle. Specifically, if {m,}2 , is the minimal
parameter sequence of {d,}>2 |, then 1o = 1,

1—2m, —icy, 1—ic,
Ty = —————— and T, = ———T—-1, n>1 ©)
1—ic, 1+ic,

Moreover, the measure has a jump Mo atz = 1, where {M,}2 , is the maximal parameter

sequence of {dy};2 ;.
The next theorem gives information regarding the pure points. This theorem is obtained as a
consequence of Wall’s criterion for maximal parameter sequence of positive chain sequences.

Theorem 2 (Costa et al. 2013) The probability measure i has a pure point at w (Jw| = 1)
if, and only if,

n

00 — : j :
Z H [T —wtj_1(w)oj_1] = AMw) < oo.

1 —foj_1]?

n=1| j=1
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1146 C. F. Bracciali et al.

Moreover; the size of the mass at the point 7 = w is equal tot = [1 + A(w)]~L. Here,
To(w) = 1 and

Pj+1(w)  wrj(w) —a;
¢i w1 —wtj(we;’

Tjp1(w) = j=o. ©)
Now, we discuss a result obtained in Castillo et al. (2014), which leads to a relation
between the zeros of the polynomials R, (z) and the measure associated with the pair of real
sequences {{c,}2° |, {dn}52, }.
Consider the new sequence of polynomials {Q,} satisfying

Qn+l(Z) = [(1 + ianrl)Z + (1 - icn+1)]Qn(Z) - 4dn+1Zanl(Z), n>1,

with Qo(z) = 0 and Q;(z) = 2d;.

. — ol — On (D) A On(zn,j)
Let z,,,; = e'™/ be the zeros of R, (z), Ay 0 = 1 — R and A, ; = m

with j € {1,2,...,n}. Thus, as shown in Castillo et al. (2014), Z?ZO An,j = 1 and also
M,j>0,j=0,12,...,n A
In addition, if we define the sequence of step-functions v, (€?),n > 1, on [0, 2] by

0, 6 =0,
. Aon.0s 0<0=<0h1,
0y _ n, "
V@) =N Sk s Ok <0 = 0uap1, k=121,
1, Opn <6 <2m

then by Helly’s Selection Theorem a subsequence of ¥, (€% converges to the measure i (€'?)
associated with the pair {{cn [Balp {d,,}flozl} as established in Theorem 1.
As an immediate consequence of this result, we can state the following.

Theorem 3 Let {{cn};'lil , {dn}zozl} be a pair of real sequences with {d,}>° | a positive chain
sequence. Moreover, let R, (z) be the sequence of polynomials given by (1) and let |1 be the
measure associated with this pair of sequences. In addition, suppose that the zeros of R, (z)
lie on a closed arc B of the unit circle, for n > 1. Then, the support of the measure u lies
within B U {1}.

‘We now present a review of basic results on measures with associated sequence of periodic
Verblunsky coefficients. For more details regarding these results, we refer to Geronimus
(1944), Peherstorfer and Steinbauer (1996a,b) and Simon (2005b).

Let {a,}52, be a p-periodic sequence (a1, = a,, n > 0) of Verblunsky coefficients
associated with the measure denoted by w'P) (here, p is a fixed natural number). Consider
the discriminant function A(z) = z~ 7/ 2Tr(Tp (z)) where

Ty(z) = Alap—1,2) - .. Ao, 2), (7
Aj. ) = (1= |y~ (_jjz ‘f"), j=0. . p—1, ®

and Tr(T),(z)) denotes the trace of 7, (z).
It is well known that all the p distinct solutions of the equation A(z) = 2, which we

denote by zf”, R z;;, lie on the unit circle T. In the same way, the p distinct solutions of the
equation A(z) = —2,denotedby z|, ... Zps also lie on T. Using these solutions, it is possible
to show that the unit circle can be decomposed into 2 p alternating sets G, By, G2, ..., By

with each gap, G, open and each band, B;, closed. Moreover, each band B; is given by
Bj={z e T|arg(z]) < arg(z) < arg(z; )} with o = (~=1)i*!, j = 1.2..... p.
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Orthogonal polynomials on the unit circle 1147

Now, we mention four fundamental results (see Simon 2005b, Chapter 11) which give
a completely characterization of probability measures on the unit circle associated with
periodic Verblunsky coefficients. The first result provides information about the absolutely
continuous part and the singular part of the measure.
Theorem 4 (Simon 2005b) Let {o }?’;0 be a sequence of Verblunsky coefficients of period p

andlet du'P) = w(G)%(i +d,LL§p) be the associated probability measure. Then, if By, ..., B,
are the corresponding bands we have that UB; is the essential support of the absolutely

continuous spectrum and duﬁp) [UB;] = @. Moreover, in each disjoint open arc on T\ Uf:]
Bj, w'P) has either no support or a single pure point.

The next theorem provides information about the associated weight function w(6).
Theorem 5 (Simon 2005b) Let {« j}?io be a sequence of Verblunsky coefficients of period
pandletdp'P) = w(G)% + du&p) be the associated measure. Then, for ¢! € UB;,

4 — A2(el?)
2|Im(e=P0/2) g, (ei?)]

w(d) =

In particular,
(i) On UB;Z"’, w(®) > 0.
(ii) At an edge of a band that is by a closed gap (a gap which is empty), w(0) > 0.
(iii) At an edge, 0y, of a band that is by an open gap, w(0) ~ c(@ — 90)% if(p; (eif) —
@p(e®) #0.
(iv) At an edge, 6y, of a band that is by an open gap, w(0) ~ c(6 — 9())7% if(pl*) (eif) —
¢p(ei®) = 0.

Finally, the following two theorems lead to a complete characterization for the pure points
of the measure.

Theorem 6 (Simon 2005b) Let {« j}?io be a sequence of Verblunsky coefficients of period
p. Then,

() = ¢5(2) — ¢p(2)
has all its zeros in the set of gap closures, one in each gap closure.

Theorem 7 (Simon 2005b) Let {« j};io be a sequence of Verblunsky coefficients of Reriod
p and u'P) be the associated measure. Let 6y be a point in a gap closure where <,02“7 (e'®) —

©p (€'%) = 0. Then, either u'P) has no pure point in the gap or else it has a pure point at
z=1¢,

The results on measures with associated sequence of periodic Verblunsky coefficients
presented above will be used in Sects. 4 and 5.

3 On measures associated with alternating sign sequences {c,}

First, we provide three lemmas that will be useful to derive the subsequent results.

Lemma 1 Let W, (x) satisfying (3) and R, (z) satisfying (1). Then, for ¢ € R, the following
statements are equivalent:

@ Springer f DMAC



1148 C. F. Bracciali et al.

1) cp=CD"e,n>1;
(ii) forn > 0, Ran(2) has real coefficients and Ron41(z) = [(1 —ic)z + (1 +ic)] Rgn (2),
where R() (x) =1 and Rzn (z) is also a polynomial with real coefficients;
(iii) forn > 0, Wh, (x) is an even polynomial of degree 2n and

W2n+1(-x) = (-x +cvl _x2) WZ}l(vx)v

with Wo(x) =1land Wz,, (x) an even polynomial of degree 2n.

Proof (1)=(ii) Since Ry(z) = land R1(z) = [(1 —ic)z + (1 +ic)] ﬁo(z), with ﬁo(z) =1,
it follows that the result holds for n = 0. Furthermore, if (ii) holds for n = k£ € N then, from
the three term recurrence relation (1), we obtain

Ryk+1)(@) = [(M +ic)z+ (1 —io)][(1 —ic)z+ (1 +io)] Rox(2) — ddog422Rok(2)
= [+ D +2(1 = Az + 1+ A Rk (2) — ddorr22Rox ().

Consequently, since we are assuming that §2k(z) and Ry (z) are polynomials with real
coefficients, we conclude that Ro41)(z) also has real coefficients. Moreover, using again
(1), we can see that

Ryk+1y+1(@) = [(1 —ic)z + (1 +ic)] Ror+1)(2) — 4daky3z[(1 —ic)z + (1 +ic)] Rox(2)
=[(1—-ic)z+ A +ic)] Rogs1)(2),

where ﬁg(kH) (2) = Rogky1y(2) — 4d2k+3z§2k (z) is also a polynomial with real coefficients,
once Ry(x+1)(z) and §2k (z) have real coefficients. Therefore, using mathematical induction,
we conclude that the statement (ii) holds for all n > 0.

(il)=-(iii) By (ii), R2,(z) has real coefficients for n > 0. Moreover, from the three
term recurrence relation (1) we have that Ry,(z) is a self-inversive polynomial, i.e.,
R} (2) = 722" Ry, (1/Z) = Ra,(2). Therefore, it follows (see Bracciali et al. 2016, Lemma
2.1) that Wp,(x) is an even polynomial of degree 2n in the variable x = cos(6/2).
Similarly, since R (z) is also a self-inversive polynomial with real coefficients, we
have that Wgn(x) = (4e'?)~ ”ﬁgn(e"e) is an even polynomial of degree 2n. Then, since
Ron+1(2) = [(l —ic)z+ (1 +ic)] Rz,, (z), from the relation (2) it follows that W, 41 (x) =
(@ + V1T = X)Wy (x).

(iii))=-(1) Using the assumption (iii) and the three term recurrence relation (3), we have,
fors > 1,

Was(x) = (x — c2sV 1 — x2)(x + eV 1 — x)Way_2(x) — dog Was—2(x) )

and

(x4 V1 = x2)YWns(x) = (x — 2541V 1 — xH)Whs(x) — dag1(x + eV 1 — x2)Wns 5 (x).

(10)

Hence, since W, (x), Was_2(x), )/NVZS (x) and )/~V2572(x) are even polynomials, and we can
use the relations (9) and (10) to conclude that co; = ¢ and ¢354+1 = —c, fors > 1. Moreover,
using the assumption (iii) and the definition of W (x) it is easy to see that c; = —c. O

Consider now the polynomials I@,, (z) satisfying
Ru1(@) = [ + i)z + (1 = iay DR (2) — 4dpy12Ry1(2), n= 1, (1)

with Ro(z) = 1, Ri(z) = (1 +ié)z + (1 — i) and & = —cy. )
The following lemma gives the relation between the polynomials R, (z) and R, (z).
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Orthogonal polynomials on the unit circle 1149

Lemma 2 Let R, (z) satisfying (1) and 1%,, (z) satisfying (11). Then, the following holds:

Ri(z)=R,(2), n=0,1,2,... .

Proof Clearly, the result holds for n = 0 and n = 1. Suppose that the result holds for

n=20,1,...,k. Then, from the recurrence relation (11), we have
Riy1(2) = [A +ickr)z + (1 — ik )Rk (2) — 4dit12Re—1(2)
= [ +ickeD)z + (1 = ickeDRe(@) — ddi12Re-1 (D)
= Rit1(2).
Now, the result follows by mathematical induction. O

Observe that the Lemma 2 provides also a relation between the zeros of the polynomials
R, (z) and the zeros of Ii’n (z), namely, if z,, ; is a zero of R, (z), thenz, ; is a zero of ﬁn (2).

Denoting by sgn( f (a)) the sign of a certain function f at a point a of its domain, we can
establish the following result.

Lemma 3 Let W, (x) satisfying (3), where {d,}2 | is a positive chain sequence and c, =
(=D"¢y, with ¢y, > ¢ > 0, forn > 1. If € is a real number satisfying 0 < & < c, then

senW, (x§7) = (=DM, j e 0,1}, n=0, (12)
where x(()s) =—c://1+ Cg andxl(s) =c:/y/1+ Cg, withc, = c — e.

Proof Since Wy(x) = 1, the result clearly occurs for n = 0. If ¢ is a real number such that
0 <e <candc, = c—e¢,then, forn > 1 we have ¢, > ¢ > ¢, > 0. Moreover, by

considering xé‘s) = —cp/\/1+4 cZand x{g) = ¢¢/+/1 + cZ, we can show that, forn > 1,

sgn (ng> — /1 - [x(gw]z) = sgn (xf) — /1 - [x§5>]2) =1 (13)
sgn (x((f) + i1 — [x((f)]2) = sgn (xl(” i1 — [xl(”]Z) = 1. (14)

Now, suppose that the relation (12) holds forn = 1,2, ..., k. Then,ifk =2s+ 1,5 > 0,
we have

and

senWas 11 (x§7) = (1) = sgn W (x 7)), j € (0, 1). (15)

Furthermore, using the three term recurrence relation (3), we obtain

Wk+1(X;£)) = (xj-s) — Cost2y/ 1 — [x](_g)]z) W2s+1(xj-8)) — dag12 Wy (XJ(-S)), J €10, 1}.
(16)

o0

Since dpy12 is an element of the positive chain sequence {d,,};2 |,

0. Thus, we can use (13), (15) and (16), to conclude that
sEn(Wir1 (7)) = —sgnWaep1 (x7) = (= 1) = (=D je qo, 1),
Similarly, if k = 25 + 2, s > 0, then

we obviously have das47 >

sgn(Waesa (@) = (1) = —sgnWasir (7). j € (0. 1), (17)
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1150 C. F. Bracciali et al.

On the other hand, using again the three term recurrence relation (3), we find

Wi () = (x;” +n5p3y/ 1 — [x}“]Z) Was 2 () = dogss Wag 1 (2), € (0,1},
(18)
Moreover, since dasy3 > 0, from the relations (14), (17) and (18), we can see that
senWep1 (1)) = sgnWag o () = (=" = (=D e qo, 1.

Therefore, using mathematical induction, we conclude that the property (12) holds for all
n>0. ]

Now, we consider the problem of giving estimates for the support of measures whose
sequences {c, },~ | are of alternating sign. We start with the case ¢, = (—1)"c, where ¢ € R.
Let C; and C; be closed arcs on the unit circle given by

Cil={zeT:0<arg(z) <6} and Co={z€T:2nr —06, <arg(z) <2n},
where 6. = arccos (gz—;:) € [0, ]. Then, we can state the following.

Theorem 8 Let i be the probability measure on the unit circle associated with the pair of
sequences {{Cn}f,o:p {dn};’l"zl} where ¢, = (=1)"c, ¢ € R and {d,};2 | is a positive chain

sequence. Then, the support of | lies within C1 U Ca.

Proof Without loss of generality, we assume that ¢ > 0. Consider the polynomials R, (z)
given by (1). If we show that all zeros of R,(z) lie on C; U C,, then from Theorem 3 we
obtain the desired result. To show this, we use the functions W, (x) defined in (3) which are
associated with the polynomials R, (z).

By Lemma 1, we have that Wy, 11 (x) = (x + ¢cv/1 — xz)WZn (x) with VT@Z (x) an even
polynomial of degree 2n. Moreover, W,, (x) is also an even polynomial of degree 2n. This
means that 7"02 is always a zero of W, +1(x) and the other 2n zeros of these functions

Vit+c2
have a symmetry about the origin. Likewise, W, (x) being an even polynomial, all of their
zeros are symmetric with respect to the origin.

Therefore, from the symmetry of the zeros observed above and taking into account the
. . . e e c
interlacing property (4), it follows that all zeros of W), (x) lie in ( 1, 7@] U [7\/14_7, 1) .

Finally, if we denote the zeros of W), (x) by x,, ; and the zeros of R, (z) by z,, , then they

are related by x, j = cos (9,31») where z,, j = eonj, j =1,2,...,n. This shows that R, (z)
has all of its zeros on C; U C. m]

Notice that Theorem 8 leads to an estimative for the support of the measure in the case
where ¢, = (—1)"¢, and ¢, is a constant sequence. We use this initial estimative as motivation
to obtain a more general result.

Theorem 9 Let i be the probability measure on the unit circle associated with the pair of
sequences {{cn}f,ozl, {dn};’lil} , where ¢, = (=1)"¢,, ¢, > ¢ > 0and {d,}}° | is a positive
chain sequence. Then, the support of p lies within C; U Cs.

Proof As in the proof of the previous theorem, it is enough to show that all the n zeros
of R,(z), n > 1, lie on C; U Cy, or equivalently from the relation (2), just prove that all

n zeros, in (—1, 1), of the functions W, (x), n > 1, given by (3), belong to the set X =

(—1, _c/m] U [c/m, 1).
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Let e be areal number suchthat0 < ¢ < ¢, and consider the numbers xég) =—c:// 1+ cg
and x}s) = ce/y/1+cZ, where c; = c —e.

Initially, we will show that all the n zeros of W), (x), in (—1, 1), belong to the set X® =
(-1, x(gs)] U [xfg), 1). To do this, we will use mathematical induction on 7.

Notice that x| = —¢1/,/1 + E% is the only zero of W (x) = x +¢1+/1 — xZin (=1, 1).
Therefore, since ¢; > ¢ > ¢, we have that x1,; € X @), Consequently, the result is valid for
n=1.

Now, suppose that all the k zeros, k € N, of Wk (x), in (—1, 1), belong to X© We claim
that W41 (x) has no zeros in the interval Y® = (—1,1) \ X® = (x((f), xl(a)). Indeed, from
Lemma 3, we have sign(Wy.4+1 (xég))) = sign(Wk1 (x](g))). Hence, if we assume that there
exists at least one zero of Wy1(x) inside the interval ¥ (®) then, since sign(Wi1 (xés))) =
sign(Wiy1 (xfg))), we conclude that Wy 1 (x) has at least two zeros in Y ©). Consequently,
using the interlacing property for the zeros of W1 (x) and Wy (x), given in (4), we should
have, at least, one zero of Wy (x) inside the interval Y ©). But this cannot happen because all
the zeros of Wi (x), in (—1, 1), belong to X (&) Therefore, using mathematical induction, we
conclude that all the zeros of W, (x) belong to X © foralln > 1.

Finally, by letting ¢ — 0, we see that W, (x) has all its n zeros in X, which completes
the proof of the theorem. O

Corollary 1 Let pu be the probability measure on the unit circle associated with the pair of
sequences {{cn};'lozl, {d,,}flozl}, where c, = (=1)"¢,, ¢, < ¢ < 0and {d,}2 | is a positive

chain sequence. Then, the support of u lies on C1 U C;.

Proof First, one can observe that —c, = (—1)" (—¢,), with —¢, > —c > 0. Hence, if &
is the probability measure associated with the pair {{—cn | e 12 Sl } , from Theorem 9 it
follows that Ié,, (z) given by (11) has all zeros on C; U C; and that /i has its support within
C1 U Cy. Now, the result is an immediate consequence of Lemma 2. O

Let u be the measure associated with the pair { {en}o2 1 dn )i }, where {c, }°2 | satisfies
the condition ¢y, = —c2,—1, n > 1.
Starting from p we desire to get a new measure [i associated with the pair of real sequences

{{5"}30:1’ {Jn};’lil }, where {¢,};2 | must satisfy the condition ¢2, = ¢2,—1 = c2, n > 1.

Let us consider the sequence of complex numbers {,}°2 | given by

I+
ﬂn=—(ﬂ),n=1,2,.... (19)
1—icy,

The next theorem shows how to get the required measure f from the measure .
Theorem 10 Let (1 be the probability measure on the unit circle associated with the pair of
sequences {{cn}flozl, {d, }2‘;1} , Where ¢y = —cop—1, n > 1. Let {8,}72 | be the sequence
of complex numbers defined by (19). In addition, let [i be the measure associated with the
sequence of Verblunsky coefficients {, } oo, given by

n+1 n

~ 2 ~ 2

Gonpr = [ [ 87 | @2nt1 and Gou = [ [] B> Burieze, n=0,1,2,.... (20)
j=1 j=1
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where {a, )2 is the sequence of Verblunsky coefficients related to . If{{En 1o {d, | } is
the pair of sequences associated with the measure i and if {11, }°, is the minimal parameter
sequence for {d, )2, then the following holds

n=1

Con = Con—1 = Cop, Moy =1—moy1 and Mo, =mz,, n=12,....
Proof Using the assumption ¢z, = —c2,—1, We obtain

14+ icyan
=1 and T4 = — 22 n=01,... . Q1)

I —icony2

Hence, from (5) and (21), we have
1 —2mopy1 +icont2 1 —2mpui0 —icopan
o = L "2 and a1 = s 2 on=0.1,... 2
I +ico2 I +icony2

Now, let {11, } ;2 , be the minimal parameter sequence for a positive chain sequence {t?n 10

and {&,}°, the sequence of Verblunsky coefficients of a probability measure on the unit

circle, [, associated with the pair of real sequences [{6,1}3‘;1, {3,,}2‘;1], where
Con = Cop—1 = Con, Mop—1 =1 —moy—y and Mo, =ma,, n=12,... . (23)
Using the relations (5), (19), (20), (22) and (23), one can see that for n > 0,
N 2 N ~ N
R 1 +icont S 4ic 1 —2mopq2 — iCopi2
a2ﬂ+l = T A H A A
I—icont1 )\ 1 — i I —icont2
. 2 n . 2 .
_ (1+102n+2) H(l—i—lczj) |:1—2m2n+2—lczn+2i|
1 —icomt2 il 1-— icoj 14+ icomt2
n+1
[18% ) ¢2nt1 = @ns1.
j=1

Similarly, using again (5), (19), (20), (22) and (23), we obtain for n > 0,

ﬁ L4ick \[ 1 —2m2p41 —iCons1
1 — iék 11— ié2n+1

k=1

3 ﬁ(1+iczj)2 [_(1+ic2n+2)][1—2m2n+1+ic2n+2]
, 1l —icyj 1 —icon42 I +icon+2

j=1

A2n

ﬂnJrlaZn = &Zn .

I

—

>
[\S]

j=1

Thus, &, = &, for n > 0 and, consequently, it = /i. Hence, from the uniqueness of the

pair {{5,,}2‘;1, {&n};ﬁl} given by Theorem 1, we have iy = mgy = 0,
Cp=¢C, and m, =m,, n=12,...,

which completes the proof of the theorem. O
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Corollary 2 Let i be the probability measure on the unit circle associated with the pair
of sequences {{Cn};'f:l, {dn};’lozl}, where ¢, = (—1)"c, n > 1 and ¢ € R. In addition, let

1—ic
Then, forn > 1, ¢, = c.

B=—- (H'ic) and [1(z) = u(Bz) the measure associated with the pair {{En}flo:l, {Jn};:o:l} .

Proof First, notice that if fi(z) = w(Bz), the corresponding Verblunsky coefficients are
related by &, = /3”+1an, n > 0 (see, for example, Costa et al. 2013). Hence, the result
follows from Theorem 10 with ¢y, = ¢, n > 1. O

4 Measures associated with periodic Verblunsky coefficients

The first theorem in this section gives a characterization of measures with associated sequence
of periodic Verblunsky coefficients in terms of the pair of real sequences {{cn Joo s dn )2 }
where {d,,}°2 | is a positive chain sequence. Throughout this section b, =1 — 2m,, n > 1,

o0

where {m,};° , is the minimal parameter sequence of {d,};2 ;.

Theorem 11 Let ju be the probability measure on the unit circle associated with the pair
of sequences {{Cn}?,o:p {dn}gil} . Then, the measure p has associated sequence of periodic

Verblunsky coefficients {a,},2 ) of period p if, and only if, for n > 0,

+ . . .
g ar 1+ ey ar byy1 —icut ar bn+p+1 — ICn+p+1
g I —icj & &

[ 1— iCn+1 1-— iCn+p+1

+ 2k, k, €7 24)
and

2 2 2 2
buii TG bapri T Gp

(25)

2 2
1 +Cn+l 1 +cn+p+l

Proof First one can observe, from (5), that for n > 0,

bny —ic b —ic
_ p+1 n+p+1 _ n+1 n+1
Optp =0y < Tptp |: . =Tn | ——
I —ichypy1 1 —icpy1
n+p . . .
H L +ic; |:bn+p+l —lcn+p+1i| _ |:bn+1 —lCn+li|
ot 1 —ic; I —icpipr1 1 —icpt1

Now the result follows by comparing, respectively, the modulus and the argument of the
numbers

n+p

H 1 +ic; [bn+p+1 —iCn+p+1] and |:bn+l - icn+1] 50
jmn+1 1-— le 1-— iCn+p+1 1-— iCnJr] ’ -
O
We say that p is a symmetric measure if du(z) = —du(1/z), z € T. From the results

established in Castillo et al. (2014), one can observe that y is symmetric if and only if ¢, = 0,
n > 1, with {c,}7° | given as in Theorem 1. Thus, as a consequence of Theorem 11, we have
the following result.
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Corollary 3 Let u be the probability measure on the unit circle associated with the pair of
sequences {{cn}n 1 Adn )2 1} where {c,};2 | and {m,};2 | are periodic sequences of period
p. In addition, suppose that ¢y, = —cap—1, n > 1. Then,

(i) if p is even, the measure [ has associated p —periodic sequence of Verblunsky coeffi-
cients;

(i) if p is odd, the measure w is symmetric and has associated p —periodic sequence of
Verblunsky coefficients.

Proof (i) Clearly, we have that (24) and (25) hold. Hence, the result follows by Theorem 11.
(ii) If p is odd, using the periodicity of {c,};2 | and the assumption that c2, = —c2,—1,
we conclude that ¢, = 0, n > 1. Hence w is symmetric. Moreover, since {m,}5> |

is a periodic sequence of period p and ¢, = 0, n > 1, the conditions (24) and (25)

of Theorem 11 can be easily verified. Consequently, the measure p has associated
—periodic sequence of Verblunsky coefficients. O

The Corollary 3 shows that if we choose the sequence {c,};> | p —periodic (p even) and

such that ¢, = —c2,_1, then it is possible, by choosing {m,}2 | also p —periodic, to get a
measure 1P whose Verblunsky coefficients are periodic with the same period. Notice that
in the case when ¢z, = —c2,—1 and ¢z, > 0 (or c2, < 0) for n > 1, the sequence {c,}° ;

has the alternating sign property.
The next theorem provides a geometric characterization for the choice of {c,};°, and
{m,,}°2 | considered above.

Theorem 12 Let p be an even natural number and ‘P’ be the probability measure associ-
ated with the pair {{cn} o Adn )2 1} Then, the following statements are equivalent:

(i) The sequences {c,},2 | and {m,}° | are p —periodic with c2y, = —c2u—1, n > 1.

(ii) The sequence of Verblunsky coefficients {a”}oo 2 o associated with the measure wP is p —
periodic. In addition, fork € {0, 1, ..., T}’ the straight lines connecting asy to 1 and
a2k+1 to —1 are parallel.

Proof (i)=(ii) From Corollary 3, it is immediate that {e,}°° ; is a periodic sequence with
period p. On the other hand, by the assumption that ¢2, = —c3,—1 and by (5), forn > 0, we
have

bony1 +icoi2

ay = —————— =1+ Ay(—1—icut1),
I +icont2
where Ay, = M . Similarly, for n > 0,
2n+l
bont2 — icon42 .
Wi = ——— = 1+ Aap1 (=1 +ico2),
I +icont2
__ I4bonyo
where Ay, = e,
Hence, foreach k € {0, 1, ..., pT_2}, one can see that ap; € rox, where oy is the straight
line with parametric equation given by rp;(#) = 1 + (=1 —icor41), t € R.
Similarly, for each k € {0, 1, ..., prz}’ one can see that aox+1 € rok+1, where rog41 is
the straight line with parametric equation given by ror41(t) = —1 4+ 1(—14icp+2), t € R.
Finally, since —1 — icok+1 = —1 + icor42 it follows that rp; || rax41, for each k €
-2
{0,1,..., ”2 1.
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(i)=() Leta; = x; +iyj, j=0,1,...,p—1.If j =2k, k € {0, 1,..., 232}, we can
write

ok = 1+ Aok (=1 — icak41), (26)
where
Ak = ]b# Cok+1 = 2 and b1 =1+ m 27
1+&5 xok — 1 xok — 1
Likewise, if j = 2k + 1, k € {0, 1,..., 2%}, we can write
k1 = —1 4+ Aopq1 (=1 +iCoxq2), (28)
where
Adk41 = —i:ikﬂv Cok+2 = I and boygsa = —1 (L+ xoer) + yzzkﬂ-
14540 I+ x2k+1 I+ xox41
(29)
Hence, if we set l;n =1 —2my, from oy, = a,, (27) and (29), one can see that
Cnyp=0Cn and muqp,=m,, n=12 ... (30)
Foreachk € {0, 1, ..., pT_z}, let rox be the straight line connecting ok to 1 and g the

straight line connecting agx+1 to —1. Then, from (26), (28), (30) and since rok || r2k+1, k €
{0,1,..., 252}, it follows that

Cont2 = —Cont1, n=0,1,.... 31)
Hence, from (26) to (31), we have, forn > 0,

bant1 +iGonsa bonyr — iCmg2
oy =———-—— and ooy = ———— . (32)
L +icaut2 I +icon+2
Finally, using the formula (5) for «;, and the relation (32) one can see, by mathematical
induction, that forn > 1,

ép=c, and m, =m,.
This completes the proof. O

Observe that Theorem 12 shows that to choose a periodic sequence {«,} of period p (p
even) with «; on certain parallel straight lines is equivalent to choosing the sequences {c;}
and {m,} also p—periodic with the additional property cz,4+2 = —c2,+1, # > 0. In Figs. 1
and 2, we show some examples of possible choices for {c, } and {m,}.

The following results deal with how to calculate (from the point of view of chain sequences)
the pure points and the respective masses of a measure 1(7), whose associated sequence of
Verblunsky coefficients is periodic. In Simon (2005b), there is another approach to the same
problem.

We begin with a lemma that leads to a characterization of the possible pure points (that
we denote by w) of the measure 1P in terms of the sequence {7, (w)} defined in (6).

Lemma 4 Let 1P be a probability measure on the unit circle with associated p —periodic
sequence of Verblunsky coefficients. Then, w is a possible pure point of the measure ‘P if
and only if, the sequence {T,(w)};°, is periodic of period p.

@ Springer f DMAC



1156 C. F. Bracciali et al.

Fig. 1 Verblunsky coefficients
associated with the choice

{cn} ={—c,c,—c,c,...}and o
{bn} = {b1,b2,b1, by, ...}, with
c>0

&%)

aq

Fig. 2 Verblunsky coefficients
associated with the choice {c,} =
{=c2, 00, —c4,ca,—c2,¢2,.. .}
and {b,} =

{b1, by, b3, by, by, by, ...}, with
cp <0andcyg >0

Proof By Theorems 6 and 7, we see that w is a possible pure point of w(P) if, and only
if, ¢, (w) — w;‘,(w) = 0. Notice that the condition ¢,(w) — w;k,(w) = 0 is equivalent to

p(w) = 1.
Furthermore, using the periodicity of the sequence {a,};°, and the recurrence relation
(6), we also see that 7, (w) = 1 is equivalent to the periodicity of the sequence {, (w)};'lozo.
]

The next theorem provides a way to determine all the pure points of the measure p?) and,
also, to calculate the mass of each pure point.

Theorem 13 Let 1P be a probability measure on the unit circle with associated p —periodic
sequence of Verblunsky coefficients {a,},° . In addition, suppose that w is a point on the

unit circle such that ¢, (w) — go;k,(w) = 0. Then, w is a pure point of uP) if, and only if,

P p
[T - wejmia;al? < TT[1 = lej—il].

Jj=1 Jj=1
Moreover, if w is a pure point of 1P| then the mass at this point is given by

uP (w)) = —~

y+46

’

@ Springer f bMA



Orthogonal polynomials on the unit circle 1157

1 — P —wri_ 2
whereS_ZH wrj_(w)ej_|* ndy:l—H| wtj_1(w)aj_1] .

_ 2 _ . 2
n=1 j=1 L —laj-1l il I —aj—1]
—wzj_1 (w12

I—jaj—1]?
By Theorem 2, we know that w is a pure point if, and only if, the infinite sum A(w) =
> nzi [T)j=1 q; is convergent.
By Lemma 4 and the periodicity of {a,},2, it follows that g;1, = q;, j > 1. Thus, if
q= Hle qj, we can write A(w) as

Aw) = g (Zq”) +q192 (Zq”) +otqi92--qp (Zq”). (33)
n=0 n=0 n=0

Observe that A(w) is convergent if, and only if, |¢| < 1. Thus, the first part of the statement
follows.
Furthermore, if |¢| < 1 using (33), we have

A(w)=( ) ZHq, =—. (34)

n=1 j=1

Proof For j > 1,letqg; =

Finally, by Theorem 2 and (34), we get

1 4

(p)
WO = Ty s

S An example

In this section, we discuss, using the following example, the results obtained in the previous
sections.
Let the real sequences {c,};° ; and {d,};>, be given by

cn=(=D"c and dy =1 —=mu_1)m,, n=1,
where ¢ € R and the real sequence {m,},°, is such that mo = 0,

— b 1—bp
mop—1 = T and mp, = 7

with by, by € R, |b1| < 1 and |by| < 1.

Notice that, if ¢ # 0, {c,};2, has the alternating sign property and that {d,};°, is a

positive chain sequence, with {m,} >, being its minimal parameter sequence. Moreover,
{ca}52, and {m,}72 | are periodic sequences of period 2.

By Theorem 1, associated with the pair {{cn}nzl, {dn}n 1} , there exists a unique proba-
bility measure, say ,u(z), on the unit circle. Furthermore, from Corollary 3 it follows that the
sequence of Verblunsky coefficients associated with ;2 is periodic with period 2 (in Fig. 1,
the position of these coefficients for the case ¢ > 0 is illustrated).

n>1,

}OO

From the definition of {c,};° |, one can also see that
1+ic
T, =1 and 1,41 = 1 —ic’ n>0. (35)
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Thus, from (5) we have, forn > 0,

_bitic  (bi+c)+ic(l —by)

= = d
“an 1+ic 1+¢2 an
by —ic (b —c®) —ic(l+by)
o = = .
ntl 1 +ic 1+¢2

In this case, since p = 2, we have A(z) = z7 ' Tr(T>(2)). By (7) and (8),

a2 =121 2y =172 z  —ap z  —ao
Ta(z) = (1 — |eo|?) /(1 = a1 |") (—oqz 1 )(—aoz 1 )

Hence, computing A(e'?) one can see that, for 6 € [0, 277),

14 ¢? biby — ¢? ]

iy _
Al = 2[ [(1 = bD)(1 — b3)]'/> T b1 — b))/

and, consequently,

(1 =bH12(1 - b)'2

2
2 2
RN 2 =2 |1 |:(1+c)cos€)+b1b2 c:|

Furthermore, by considering the normalized orthogonal polynomials ¢3(z) = k2¢2(z)
one can also verify that
1
(1 =DbH12(1 - b3)1/2
1
+(1 —bHI2(1 - b})1/2

») = {1+ A2 + (br1by — by — 2¢7)z}

{ic(by + Dz +[(c* = by) —ic(by + D1}

and, consequently, for 6 € [0, 27),

(1 4+ bo)[sinf + c¢(1 —cosH)]

Im(e “pa(e")) =
(1 —bH12(1 - b3)1/2

Hence, from Theorem 5, the weight function w(#) associated with M(z) is such that

JA =D =53 — [+ ) cos b + byby — 212

w(®) = .
[(1 4+ by)[sinB + c(1 — cosH)]|

Now, we need to compute the bands B; and B; for the measure ;1,(2). By solving the
equation A(e'?) = 2, we find the solutions

1—b21/21—b21/2+ 2_bb
Qr:arccos(( D 1_:)2 ¢ 22) and 0 =21 — 0,
C

Likewise, by solving A(eie) = -2, we find

~ (c2 — (1 =b)'2(1 = D)2 —by1by
01 = arccos

s ) and 0, =27 —0, .

L+ -
Thus, each band B; is determined by the points z; =¢'% and ij — , je{L,2}.
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To determine the possible pure points of 12>, by Theorems 6 and 7, we need to solve the
-1 : 2c

equation ¢2(z) — @5 (z) = 0, whose solutions are w; = 1 and wy = e ITra -

Now, looking at the bands B; and at the possible pure points w, it 1s not hard to see that
the measure 1 is always supported on C1 U Cy, in accordance with Theorem 9.

Finally, we give a complete characterization about the singular part of the measure ?
in terms of the parameters b1, by and c.

First, we analyze the point w; = 1. Notice that t,(w;) = 1, given by (35) is peri-
odic of period 2, according to Lemma 4. From Theorem 13, one can see that w; is a pure
2 n 2
1 —7ji10j—
point of /,L(z) if, and only if, b1 + by > 0. Moreover, if §; = ZH | 1 J=1 ;I and
ot el
21—t
yi=1-— H #]_21, again by Theorem 13 we obtain
ol I —aj—1]
by +b
@ (fwi}) = n__n 2.
w {wr}) o 1tb
Consider now the point wy = ‘11:% — i 142:;2 = H“ . From Corollary 2, if fi(z) =

u(z)(wzz), we have ¢, = ¢, n > 1. Moreover,

. ﬁl—iék 1—ic\" -
T, = = , n>1.
T i 1+ic

Fig.3 Case0 <c¢ < 1and @)

Estimative for the support of the measure 1
by > by >0 = Support of the measure x?)

Pure point

Fig.4 Case 0 <c < 1and Estimative for the support of the measureu(z)

0< b2 = *bl e Support of the measure,u(z)

5 -1 2c
o= [ —
1 B 2 1+ 14¢

Pure point

2y B,
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)

Fig.5 Case0 <c¢ < 1and
0< h2 = bl e Support of the measureu(z)

Estimative for the support of the measure

Fig. 6 Case0 < c¢ < 1and e Estimative for the support of the measure ;L(Z)
b] = bz =0 e Support of the measure M(Z)
-1 2c
Bl w27(1+c2'71+c2)
EQ =21 wy =1
7
/ | 1
Goi | Gi=10
I
!
o wy =z =25
N
\
Wy = 29
By

On the other hand, it is known (see, for example, Costa et al. (2013)) that 7, =
wz_”‘r,,(wz), n > 0. Hence, one can see that 7,(w2) = (—1)", n > 0. Thus, it follows
that 7, (w») is periodic of period 2, according to Lemma 4.

From Theorem 13, w is a pure point of u® if, and only if, b» — by > 0. Moreover, if

2 n 2 2 2
[T —watj—1(w2)erj—1] [T —watj—1(w2)erj—1]
8§ = and =1- ,
=2 e R | e e YN
n=1 j=1 J j=1 J
we obtain
V2 by — by
1? ({wa}) = =

2+ 6 1+b,

The Figs. 3, 4, 5 and 6 illustrate a comparison between the estimative for the support of
the measure 112’ obtained in Theorem 2 (see also Theorem 3) and the true support of the
measure ,u(z) in some particular cases. Notice that in the case b1 = b, = 0, the estimative is
accurate, i.e., the support of the measure 12> is exactly C; U C, (see Fig 6).
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