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a b s t r a c t 

Mantle cell lymphoma, follicular lymphoma and chronic lymphocytic leukemia are the principle sub- 

types of the non-Hodgkin lymphomas. The diversity of clinical presentations and the histopathological 

features have made diagnosis of such lymphomas a complex task for specialists. Computer aided diagno- 

sis systems employ computational vision and image processing techniques, which contribute toward the 

detection, diagnosis and prognosis of digitised images of histological samples. Studies aimed at improv- 

ing the understanding of morphological and non-morphological features for classification of lymphoma 

remain a challenge in this area. This work presents a new approach for the classification of information 

extracted from morphological and non-morphological features of nuclei of lymphoma images. We ex- 

tracted data of the RGB model of the image and employed contrast limited adaptive histogram equalisa- 

tion and 2D order-statistics filter methods to enhance the contrast and remove noise. The regions of inter- 

est were identified by the global thresholding method. The flood-fill and watershed techniques were used 

to remove the small false positive regions. The area, extent, perimeter, convex area, solidity, eccentricity, 

equivalent diameter, minor axis and major axis measurements were computed for the regions detected in 

the nuclei. In the feature selection stage, we applied the ANOVA, Ansari-Bradley and Wilcoxon rank sum 

methods. Finally, we employed the polynomial, support vector machine, random forest and decision tree 

classifiers in order to evaluate the performance of the proposed approach. The non-morphological fea- 

tures achieved higher AUC and AC values for all cases: the obtained rates were between 95% and 100%. 

These results are relevant, especially when we consider the difficulties of clinical practice in distinguish- 

ing the studied groups. The proposed approach is useful as an automated protocol for the diagnosis of 

lymphoma histological tissue. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Investigation through pathological anatomy can be performed

n tissue samples stained with hematoxylin and eosin (H&E). This

ask is essential in order to allow for the identification of the type

f lesion, the monitoring of disease progression and the choice of

reatment for the patient [1] . Specialists currently use this strategy

o investigate various cancer types. 

Lymphomas are neoplasms that originate in the lymphatic sys-

em and represent one of the most common types of cancer found

n the World population. There are more than 38 subtypes of lym-
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homas [1,2] divided into Hodgkin lymphomas (HL) and the non-

odgkin lymphomas (NHL), which are differentiated by morpho-

ogical, genetic and clinical information [3] . According to published

tatistics, between 2,530 and 10,180 new cases were estimated in

razil, respectively, for HL and NHL between 2018 and 2019 [4] . In

he United States, 8500 new cases of HL and 74,680 new cases of

HL are expected for the year 2018 [5] . In worldwide, more than

5 and 385 thousand new cases of HL and NHL, respectively, were

stimated in 2012 [4] . NHL is the most common cancer of the lym-

hatic system with almost 90% of all cases [6] . 

These statistical data demonstrate the importance of new re-

earch that contributes to a more accurate diagnosis of lymphomas

elonging to this class of lesion. Mantle cell lymphoma (MCL), fol-

icular lymphoma (FL) and chronic lymphocytic leukemia (CLL) are

he main subtypes of the NHL group. The diversity of clinical pre-

https://doi.org/10.1016/j.cmpb.2018.05.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2018.05.035&domain=pdf
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sentations and the histopathological features have made diagno-

sis a complex task for specialists [7] . Factors related to subjectivity

and workload of specialists does not contribute to a more precise

diagnosis. These problems have led to the development of algo-

rithms in computational systems that can assist the specialists in

reaching a more desirable result [8,9] . 

The computer aided diagnosis system (CAD) employs compu-

tational vision and image processing techniques, which contribute

toward the detection, diagnosis and prognosis of digitised images

of histological samples. These systems allow greater objectivity and

less variability in the process of image analysis [10] . The techniques

commonly used for tissue analysis are thresholding, region grow-

ing, graph cuts, active contour, morphological descriptors and tex-

ture features. 

In the Literature, the authors [11] presented a lymphoma image

from a public domain dataset that can be employed for developing

and evaluating biological image analysis methods. There are sev-

eral studies that proposed the combination of detection methods,

feature extraction and classification to the diagnosis of these sub-

types of lymphoma. There are those works that investigated the

degree of severity of the FL samples [12–14] . However, a limited

number of samples of several lesion subtypes was employed to

evaluate the performance of the proposed system. The researchers

in Orlov et al. [1] presented a classification system for histological

images of the MCL, FL and CLL subtypes using the Chebyshev and

Fourier wavelets for realising feature extraction and the weighted

neighbours distance, radial basis functions, naive Bayes network al-

gorithms were used for the classification of the samples. The sys-

tem presented relevant performance, but the authors did not in-

vestigate the nuclei regions during the feature extraction stage and

classification. The authors in [15] developed an approach for clas-

sification that consists of dividing the image into 25 blocks for the

extraction of a set of 505 visual features from each block. In Nasci-

mento et al. [16] an investigation was also made into the classi-

fication of these lesions with descriptors based on the stationary

wavelet transform. In addition authors also presented approaches

for quantifying and extracting features from the histological im-

ages of the lymphoma image dataset [17,18] . In these works, the

authors did not employ the detection stage for nuclei before the

feature extraction stage. The analysis of detected regions allows

for the extraction of morphological features and this information

may contribute toward results of higher relevance in the classi-

fication of the lesions. Moreover, new studies aimed at improv-

ing the understanding of morphological and non-morphological

features for classification of lymphoma remain as challenges in 

this area. 

In this paper, we present a new approach for the classification

of nuclei in MCL, FL and CLL images with information extracted

from morphological and non-morphological features. We extracted

data of the Red channel of the RGB model of the image and em-

ployed the contrast limited adaptive histogram equalisation and 2D

order-statistics filter methods to enhance the contrast and remove

the noise. The detected regions were identified by a global thresh-

olding method. The flood-fill and watershed techniques were used

to remove the false positive regions and the non-morphological

features were extracted from the channels of the RGB colour model

and the grayscale image. The area, extent, perimeter, convex area,

solidity, eccentricity, equivalent diameter, minor axis and major

axis measurements were computed for the detected regions of nu-

clei. In the feature selection stage, we applied the ANOVA, Ansari–

Bradley and Wilcoxon rank techniques. Finally, we employed the

polynomial, support vector machine, random forest and decision

tree classifiers to evaluate the performance of the proposed ap-

proach. 

The contributions of this paper can be summarized as follows: 
t

• It presents a novel approach for classification lymphoma sub-

types employed to images with variation of contrast and illumi-

nation from a public dataset [11] . This condition is relevant for

evaluating the robustness of the novel approach as presented in

the study by [19] ; 
• It shows the detection of the regions of interest with nuclei

from lymphoma subtypes; 
• The evaluation of morphological and non-morphological fea-

tures based on statistical measurements of lymphoma lesions; 
• It proposes the use of feature selection algorithms to evalu-

ate the performance of the classifier with information obtained

from morphological and non-morphological descriptors; 
• It shows the usefulness of our approach when applied to the

different lym phoma subtype: MCL, FL and CLL. 

The paper is organised as follows. In Section 2 , we detail the

ethodologies used in the various stages of the proposed ap-

roach. Section 3 presents the principle results and discussions, in-

roducing the criteria for classification performance evaluation and

howing the comparisons with other works. Finally, the conclu-

ions are summarized in Section 4 . 

. Methodology 

The approach proposed in this work is illustrated in Fig. 1 from

hich one can verify the presence of steps: (1) detection of nu-

lei from the histological images; (2) extraction of morphological

escriptors; (3) extraction of non-morphological descriptors using

tatistical metrics of each channel of the RGB colour model and

rayscale image; (4) feature selection through statistical techniques

or the generated set; (5) classification using the polynomial (PL),

andom forest (RF), decision tree (DT) and support vector machine

SVM) algorithms. The algorithms were developed using MATLAB 

®

anguage with the help of the WEKA platform 3.6.6 for classifying

he features. These experiments were performed on a notebook In-

el Core i5, 8 GB RAM and 1 TB. 

.1. Image database 

In this study, we used a public dataset from studies conducted

y researchers from National Cancer Institute and National Insti-

ute on Aging, in the United States, available for download at [11] .

 total of 30 histological slides of lymph nodes stained with H&E

ere used, containing 10 cases from the three cited types of lym-

homa. To better represent the clinical environment, instead of the

ightly controlled laboratory environment, the slides were obtained

ith significant variations in sectioning and staining. 

The microscopic images were digitally obtained, using a light

icroscope (Zeiss Axioscope) with 20 × objective and a color digi-

al camera (AXio Cam MR5). Regions from each slide were digitally

hotographed and stored with no compression in the tif format,

BG colour model, resolution of 1388 × 1040, with quantisation of

4 bits. In total, 375 images were generated, containing 113, 140

nd 122 regions of CLL, FL and MCL, respectively. 

Fig. 2 shows samples of histological images employed in our ex-

eriments to evaluate the proposed approach. CLL sample is de-

icted in Fig. 2 (a), FL sample is shown in Fig. 2 (b) and MCL sample

s presented in Fig. 2 (c). The cases are named according to the cod-

fication defined by National Cancer Institute and National Institute

n Aging. 

.2. Detection of nuclei 

.2.1. Preprocessing 

Firstly, we should improve the quality of the object contrast in

he histological image and make it more suitable for the applica-

ion of a thresholding algorithm. 
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Fig. 1. Block diagram of the main stages of the proposed approach: detection of nuclei from the lymphoma images; the morphological and non-morphological descriptors; 

the feature selection; and the classification algorithms. 

Fig. 2. Samples: (a) sj-03-2810_008; (b) sj-05-588-R1_006; (c) sj-04-4525-R4_001. 
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Then, we evaluate the histogram and the images of the three

olour channels from the RGB model. This experiment allows for

he identification of the high contrast between objects and back-

round in an image based on the R colour channel. Therefore, we

hose the R colour channel image g ( x, y ) for applying the meth-

ds. The contrast in the R channel is due to the features of the H&E

tain used in the tissue pigmentation process and hematoxylin is

ttracted by nucleic acids in cell nuclei, which are subsequently

tained a violet color. 
The contrast limited adaptive histogram equalisation (CLAHE)

ethod allows for the rearranging of the range of intensity lev-

ls of the image improving the image contrast level. The technique

ses an adaptive histogram equalisation function, which limits the

ontrast in homogeneous areas of the image and avoids enhance-

ent of noise. Further details can be found at [20] . Thus, we ap-

lied this technique to the R colour channel in order to increase

he differences between intensities of nuclei and the background

f the image. In this processing step, we used the Matlab function
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Fig. 3. Images of the R channel before (a) and after (c) applying the filters. His- 

togram of the R channel before (b) and after (d) applying the techniques. 
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adapthisteq and the parameters were set in a number of tiles

[8,8], clip-limit of 0.01, NBins of 256, distribution uniform and al-

pha of 0.4. The default values are determined based on suggestion

derived from [21] . 

After applying the CLAHE algorithm to g ( x, y ), the 2D order-

statistics filter was employed to remove discrete points and noise.

This filter is a generalised version of the median filter, where a

neighbourhood is defined by the non-zero pixels of the domain

and each pixel in the image is replaced by the smallest orderth

from among its neighbours inside this domain [22] . This process

was performed by applying the Matlab function ordfilt2 , with

a 3 × 3 neighbourhood and order index 1, which represents the

minimum value. These parameters allow removing discrete points

without to degraded the cell nuclei, which have the larger size

than a 3 × 3 mask. 

Fig. 3 (a)–(d) show the histogram and the R channel of the RGB

model, before and after applying the techniques. 

2.2.2. Thresholding 

For the thresholding step, we computed a grayscale in order to

perform image binarization. A global thresholding was employed

for detection of these structures [23] . The threshold value was de-

fined and set at 90. In this stage, different threshold values were

tested in order to obtain the best match between the structures

and background of the image. The differences between intensities

of nuclei and the other structures on the image were more distinct

when the threshold value was set at 90. Other threshold values can

be applied, but with results that do not benefit the next steps of

the proposed method. 

However, there are regions that were not detected correctly due

the differences in brightness level affecting the structures. Then,

we applied a flood-fill operation with 4-connected neighborhoods

to select the pixels located within the regions of interest that were

not detected using the thresholding method [24] . This step ob-

tained a thresholded image as defined by f ( x, y ). 

Some of the cells that remained connected during the use of

global thresholding can be separated by the use of the watershed

transform with 8-connected neighborhood [25] . Therefore, we ap-

plied the watershed algorithm to the R channel image [26] . 
Given M 1 , M 2 , . . . , M R as the different regional minima of the R

hannel image g ( x, y ), let C( M i ) be the set of points in a catchment

asin associated with the regional minimum M i . The minimum and

aximum values of g ( x, y ) are represented by the notation min and

ax , respectively. Then, T [ n ] represents the set of coordinates ( s, t )

f the image in which g ( s, t ) < n . Mathematically, we can represent

t as 

 [ n ] = { (s, t) | g(s, t) < n } , (1)

here, T [ n ] is a set of coordinates of the image g ( x, y ) lying below

he plane g(x, y ) = n . The flooding process starts from the range of

 = min + 1 to n = max + 1 . Let C n ( M j ) represent the set of coor-

inates in the catchment basin associated with the minimum M j ,

hich are flooded at step n . Then, C n ( M i ) can be viewed as a bi-

ary image represented as 

 n [ M i ] = C(M i ) ∩ T [ n ] . (2)

hen, C [ n ] represents the union of the flooded catchment basins at

he stage n : 

C[ n ] = 

R ⋃ 

i =1 

C n (M i ) , (3)

nd C[ max + 1] is the union of all the catchment: 

[ max + 1] = 

R ⋃ 

i =1 

C(M i ) . (4)

hen, C[ n − 1] is a subset of C [ n ] and C [ n ] is a subset of T [ n ]. There-

ore C[ n − 1] can be represented as a subset of T [ n ]. 

Next, C[ min + 1] is initialised with T [ min + 1] to find the water-

hed lines. The algorithm recursively finds C [ n ] from C[ n − 1] . The

alculation of C [ n ] from C[ n − 1] is as follows. Let Q be the set of

onnected components in T [ n ]. Then for each connected compo-

ent q ε Q [ n ] there may be three possibilities: 

• q ∩ C[ n − 1] is empty, 
• q ∩ C[ n − 1] contains one connected component of C[ n − 1] , 
• q ∩ C[ n − 1] contains more than one connected component of

C[ n − 1] . 

Further flooding would lead to the merging of these catchment

asins. A one pixel thick dam can be constructed by dilating q ∩
[ n − 1] with a 3 × 3 structuring element of 1s and constraining

he dilation to q . 

We then perform an element-by-element multiplication of the

hresholded image and the watershed image, as illustrated in

ig. 4 (a) and (b), respectively. In Fig. 4 the image is shown after

he application of this operation to where the connected cells were

eparated. The region marked in red was amplified to show the ar-

as before and after separation of the candidate cell nuclei. 

.2.3. Post-processing 

As false positive areas may remain in the image, regions with

n area smaller than a fixed value represented by n should be

emoved. By means of the experiments conducted on a group of

nown abnormal images, we established n = 30 since the cell nu-

lei have the larger size than this area value. On the other hand,

egions with an area value smaller than n were removed because

hey represent small noises. Moreover, the tests performed show

hat values greater than n = 30 degraded the regions representing

ell nuclei and made the nuclei feature computation step unviable.

After identifying the groups of pixels, we applied the

onnected-components labelling technique to identify groups of

ixels on the image. This procedure assigns unique identifiers for

ach group of pixels on a image [27] and allows for the individ-

al analysis of the structures. In this study, we used the algorithm

roposed by [28] . Fig. 5 shows the regions marked in red with the

dentified nuclei. 
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Fig. 4. Image with regions generated by application of these techniques. The 

marked region in red on the thresholding image was zoomed (a) and the image 

obtained after the separation of connected cells was zoomed (b). (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 5. Nuclei marked in red after the post-processing stage with a value of n = 

30. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 1 

Morphological features computed 

from the image. 

Feature Name 

mf 1 Area 

mf 2 Extent 

mf 3 Perimeter 

mf 4 Convex area 

mf 5 Solidity 

mf 6 Eccentricity 

mf 7 Equivalent diameter 

mf 8 Minor axis 

mf 9 Major axis 
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.3. Nuclei feature computation 

In the next step, we computed the morphological and non-

orphological features from the detected nuclei regions. For mor-

hological features we computed shape and geometric information,

hich are defined on Table 1 [29,30] . 

We calculated the information (see Table 1 ) for each nuclei

resent on the detected image. Then, the mean, median, standard

eviation and mode metrics were computed for all nuclei of the

istological image. The information obtained was stored in the vec-

or. 

orphological = [ m f 1 ∪ · · · ∪ m f 36 f eatures ] . (5)

or the non-morphological features, we obtained the information

or pixel intensity values, first order statistics, from the different
olour channels of the RGB model and grayscale channel. The sep-

ration of the colour channels of the histological image resulted

n 4 new images with the brightness information of each separa-

ion channel of the RGB model and grayscale. Through use of the

rightness level information from each colour channel, we com-

uted the mean, median, standard deviation, minimum and maxi-

um of pixels for each nuclei region on the image. Following this,

he mean, median, standard deviation and mode metrics were ob-

ained for each colour channel image. Then, this information was

tored in a vector with 80 features of which 5 represent the met-

ics of brightness for each nuclei metrics of each image colour

hannels (RGB and grayscale). 

on-Morphological = [ nm f 1 ∪ · · · ∪ nm f 80 f eatures ] . (6)

.4. Feature selection 

The performance of the results can be affected when there

re redundant or irrelevant features in stage of classification [31] .

hen, the feature selection technique removes the redundant fea-

ures and retains information, which contributes to the perfor-

ance of the classifier. Moreover, it avoids the so-called curse of

imensionality and over-fitting problems [32,33] . After applying

he feature extraction methods, we computed the analysis of vari-

nce (ANOVA), Wilcoxon rank sum (WRS) and AnsariBradley (AB)

echniques over all extracted features in order to select a relevant

et of features. The tests were applied with a confidence interval

f ρ= 5% where the features with ρ-values smaller than 0.05 and

an be used for discrimination of information. 

By applying ANOVA a dataset of features can be grouped into

tatistically similar subgroups, except for isolated features dis-

arded as noise [30] . In this method, the null hypothesis is that

he mean for all features is the same. The alternative hypothesis

s that at least two of these are different. Then, the sam ples are

sed to test and evaluate if each attribute is different from the

thers. If any two groups are statistically the same, both are dis-

arded since they do not contribute to the classification step. The

RS method is a non-parametric test of the null hypothesis, where

wo independent populations are the same against an alternative

ypothesis and these two distributions differ only with respect to

he median. This test assumes that within each population under

nvestigation the observations are independent and identically dis-

ributed. It has higher efficiency on non-normal distributions, such

s a mixture of normal distributions [34] . The AB technique is a

on-parametric hypothesis test that assumes that two independent

opulations come from same distribution, and not any alternative

ypothesis where two distributions differ only in scale [34,35] . 

.5. Performance of the proposed approach 

The purpose of the classifier is to identify and interpret the in-

ormation about the lesions based on features extracted from im-

ges [36] . In this case, the classification algorithms were employed

ith two groups separately (CLL-FL, CLL-MCL and FL-MCL). 

Some of the main machine learning algorithms were used in

his work. We chose J48 (WEKAs own version of C4.5) module,

andom Forest module and SMO (WEKAs own version of support

ector machine) module for implementation of the classifiers DT,

F, and SVM, respectively, in WEKA [37–39] . The parameters for

ach machine learning algorithm are summarized in Table 2 . More-

ver, we also employed PL classification algorithm to distinguish

he classes for each image group of lymphoma. 

We employed the 10-fold cross-validation method, where 90%

f data were used for training and 10% were used for testing. The

eature selection algorithms were applied to each training set in

rder to select the relevant features and these features were eval-

ated using the test set. The classifiers were trained on k-1 sets
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Table 2 

The machine learning parameters used for each of the different algorithms 

in WEKA. 

Algorithms Parameters 

DT weka.classifiers.trees.J48 -C 0.25 -M 2 

RF weka.classifiers.trees.RandomForest -I 100 -k 0 -S 1 

SVM weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 

-N 0 -V 1 -W 1 -K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Resulted of the average values of features obtained after the application of 

the selection algorithms for the investigated lesions: (a) morphological, (b) non- 

morphological and (c) a subspace that combines these two information. 
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and tested on the one holdout set. In these subsections, we pro-

vide details of the algorithms. 

2.5.1. Decision tree 

The DT algorithm is a method of inductive inference, robust to

noisy data and capable of learning disjunctive expressions [40] . On

the root node, the data splitting process is applied to each internal

node based on a particular rule of the tree. This process is repeated

until a previously specified stop criterion is reached. Each split is

based on an optimal threshold value of a single feature. 

There are many ways a decision tree can be structured from a

set of features. The algorithms based on heuristics are proposed for

the induction of decision trees. The top-down induction of a deci-

sion tree is employed as the basis for many decision tree induc-

tion algorithms. The main algorithms are ID3 [41] , C4.5 [42] and

CART [43] . 

On the WEKA, the C4.5 algorithm is used for generating the de-

cision tree. This algorithm is an extension of the ID3 method. To

select the splitting attributes, the concepts of entropy and infor-

mation gain are used. In this case, for a set of samples ( X ), entropy

is given by 

Entropy (X ) = 

m ∑ 

c=1 

−p c .log 2 p c , (7)

where p c is the proportion of examples in X associated with the c th

class label and m is the total number of class labels. The entropy

metric measures the impurity of a collection of examples relative

to their values of the class attribute. The higher entropy values cor-

respond to more uniformly distributed examples and improve the

classification process. Using the entropy measure, the information

gain of a descriptor is given by 

Gain (X, D ) = Entropy (X ) −
T ∑ 

v =1 

| X v | 
| X | .Entropy (X v ) , (8)

where X v is the number of examples in the subset of X for which

the descriptor D has the v th value in the domain of D , and | X | is

the number of examples in X . Further details for C4.5 can be found

in [42] . 

2.5.2. Random forest 

The RF algorithm uses a decision tree as a base classifier to

make predictions that are built from different bootstrap samples

of the training data, with random features selected in the induc-

tion tree process [37] . 

In the algorithm, two parameters must be determined; these

are m and N. m is the number of variables to be used for each

node and N is the number of trees to be created. 

The method produces a large set of features that is called ν .

In turn, ν is submitted to the algorithm, which starts by taking a

random training set I ⊂ν . After acquiring I , the algorithm makes

each tree grow randomly from different trunks I ′ ⊂ I . Each node of

the tree is labelled by a number n , and the corresponding I n ⊂ I is

split into left and right subsets I � and I r , respectively. Noteworthy

here is that I 1 = I ′ . This split is determined by a threshold t and

a function f ( ν i ), ν i ∈ ν and i ∈ I n . Once these decision trees are ob-

tained, the algorithm combines these in order to construct a new
ree called I ∗. After construction, the forest is used to predict the

stimated labels. Then, the final labelling of the group is performed

sing a majority vote from the forest. 

.5.3. Support vector machines 

The SVM technique is based on a supervised learning algorithm

hat can be used to analyse data and recognise patterns in sta-

istical classification and regression analysis [44] . Its purpose is to

inimise and balance two types of data: training set and test set.

hen, given a training set { (z i , y i ) : z i ∈ R 

n f , y i ∈ {−1 , +1 }} n s 
i =1 

with

 f the number of features and n s the number of samples. Hence,

n order to establish the two classes we can use the dual form to

nd the Lagrange multipliers { αi } n s that minimise the objective
i =1 
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Fig. 7. Empirical cumulative distribution function of the p -values of the feature 

groups: (a) Morphological, (b) Non-morphological and (c) A subspace that combines 

these two types of features. 
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Fig. 8. The AUC values obtained with the classifiers and the ANOVA algorithm for 

the investigated lesion of lymphoma: (a) CLL-FL; (b) CLL-MCL and (c) FL-MCL. 
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unction 

(α) = 

1 

2 

−
n s ∑ 

i =1 

αi + 

n s ∑ 

i =1 

n s ∑ 

j=1 

αi α j y i y j K(z i , z j ) (9)

onstrained to 

n s 
 

i =1 

αi y i = 0 , 0 ≤ αi ≤ C, ∀ i = 1 , 2 , . . . , n s , (10)

here C is a positive constant given by the user, and K ( · , · ) is a

artially defined positive kernel function. 

Let { αi } n s i =1 
be an optimal solution of (9) and (10) . The decision

unction is given by 

SV M 

(z) = b + 

n s ∑ 

i =1 

αi y i K(z i , z) , (11)
here b is some bias value. Here, we have used the polynomial

ernel function given by 

(x i , x j ) = (x i x j + 1) 2 . (12)

.5.4. Polynomial 

The PL classifier is a non-linear parametrized method that non-

inearly expands a sequence of input vectors into a larger dimen-

ion space and identifies these vectors for a desired output se-

uence. The purpose of this expansion is to improve the separation

f the different classes in the expanded vector space [45] . 

The polynomial function is defined by Eq. (13) 

(x ) = a T p n (x ) , (13)
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Table 3 

Results obtained (%) with classification algorithms for the lymphoma images of the 

dataset with the 10-fold cross-validation method with morphological features. 

Classification Features CLL-FL CLL-MCL FL-MCL 

algorithm select SE SP AC SE SP AC SE SP AC 

ANOVA 70 83 76 64 79 71 67 67 66 

SVM WRS 71 81 76 64 80 72 67 67 66 

AB 69 81 75 65 78 71 69 66 67 

ANOVA 61 85 73 76 73 74 69 61 65 

DT WRS 72 77 74 69 67 67 69 72 70 

AB 74 73 73 64 74 69 74 65 69 

ANOVA 68 88 77 76 81 78 63 74 68 

RF WRS 71 83 77 69 82 76 65 79 71 

AB 74 89 81 70 75 72 65 75 70 

ANOVA 99 94 96 95 91 94 95 92 94 

PL WRS 96 97 96 92 95 94 86 96 91 

AB 99 94 96 95 95 95 92 94 93 

Table 4 

Performance of classifier (%) with the non-morphological features from the histological images. 

Classification Features CLL-FL CLL-MCL FL-MCL 

algorithm select SE SP AC SE SP AC SE SP AC 

ANOVA 91 80 86 99 100 99 99 100 99 

SVM WRS 91 84 87 99 100 99 99 100 99 

AB 82 74 78 99 100 99 99 100 99 

ANOVA 87 92 89 99 100 99 99 100 99 

DT WRS 91 89 90 99 100 99 99 100 99 

AB 87 88 87 99 100 99 99 100 99 

ANOVA 91 94 92 99 100 99 94 97 95 

RF WRS 91 94 92 99 99 99 95 98 96 

AB 86 91 88 93 100 96 100 99 99 

ANOVA 100 100 100 99 99 99 100 100 100 

PL WRS 100 100 100 100 99 99 100 100 100 

AB 100 100 100 100 100 100 100 100 100 

Table 5 

Results (%) of the investigation of the subspace that combines morphological and non- 

morphological features for classification of lesions in the lymphoma histological images. 

Classification Features CLL-FL CLL-MCL FL-MCL 

algorithm select SE SP AC SE SP AC SE SP AC 

ANOVA 89 87 87 71 83 77 87 96 91 

SVM WRS 92 87 89 68 79 73 87 94 90 

AB 85 87 85 84 83 83 89 92 90 

ANOVA 93 85 88 80 74 77 92 89 90 

DT WRS 90 91 90 82 74 78 90 84 87 

AB 87 92 89 86 76 80 92 90 91 

ANOVA 92 95 98 79 81 80 88 95 91 

RF WRS 93 95 94 73 82 77 92 96 94 

AB 89 93 91 79 86 82 92 96 94 

ANOVA 100 100 100 99 96 98 100 100 100 

PL WRS 100 100 100 99 97 98 100 100 100 

AB 100 100 100 100 100 100 100 100 100 
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where a is a coefficient vector of the polynomial basis func-

tion, p n ( x ) is the polynomial basis function and n represents the

order or degree of the polynomial function. 

The vector of the polynomial discriminant function a can be

calculated by Eq. (14) 

a = (M 

T M ) −1 M 

T b = M 

† b , (14)

where the matrix M † of dimension L × N is shown in Eq. (15) 

M 

† = (M 

T M ) −1 M 

T . (15)

This is known as the pseudo-inverse of M [46] . 

If there are only two classes, the objective of the classifier is

similar to the decision rule given by Eq. (16) 

Decide 

{
ω 1 , if g(x ) > 0 

ω 2 , if g(x ) < 0 

. (16)
The algorithm is divided into two stages, namely training and

est, which are detailed in [47] . In this study, the feature set for 3-

imensions was used to calculate the polynomial basis of the 4th

rder. At this step, different values of degree were tested to cal-

ulate the polynomial basis. The value of degree 4th was chosen

ecause it presented the best performance in the separation of the

lasses which the data have the behaviour non-linear. 

.6. Evaluation of performance 

For the statistical analysis, we employed the Students t-test to

easure the significance of the features for discriminating between

he information from the CLL, FL and MCL images. We used the

cNemar’s statistical test to evaluate the classification algorithms
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Table 6 

The p -values for comparisons between PL and the other classifiers for different feature selection algo- 

rithms. 

Hypothesis Selection Features CLL-FL CLL-MCL FL-MCL 

algorithm ρ ρ ρ

ANOVA morphological 3.36E-005 9.27E-006 7.16E-008 

non-morphological 0.0049125225 9.62E-001 0.9619767493 

combination 0.0115147722 2.5.136E-006 0.1156694431 

WRS morphological 3.36E-005 1.44E-005 5.57E-007 

PL vs SVM non-morphological 0.0250495925 9.62E-001 0.9619767493 

combination 0.0319296016 1.47E-006 0.1156694431 

AB morphological 2.21E-005 9.09E-007 2.03E-007 

non-morphological 9.27E-006 0.9619767493 0.9619767493 

combination 0.0150435225 0.0150435225 0.0506305012 

ANOVA morphological 1.47E-006 5.57E-007 2.03E-007 

non-morphological 0.0403698405 0.9619767493 0.9619767493 

combination 0.1668118624 0.0 0 05011547 0.0506305012 

WRS morphological 5.93E-006 1.21E-007 3.36E-005 

PL vs DT non-morphological 0.0403698405 0.9619767493 0.9619767493 

combination 0.2333286016 1.44E-005 0.0952047047 

AB morphological 3.76E-006 7.16E-008 2.36E-006 

non-morphological 0.0115147722 0.9619767493 0.9619767493 

combination 0.0250495925 3.36E-005 0.1668118624 

ANOVA morphological 0.0 0 03495796 3.50E-004 1.44E-005 

non-morphological 0.1668118624 0.9619767493 0.4176 854 972 

combination 0.4176 854 972 7.59E-005 0.0952047047 

WRS morphological 7.59E-005 3.50E-004 7.59E-005 

PL vs RF non-morphological 0.1668118624 9.62E-001 0.4176 854 972 

combination 0.1668118624 2.21E-005 0.2333286016 

AB morphological 0.0026697499 3.76E-006 3.76E-006 

non-morphological 0.0250495925 0.5354219419 0.9619767493 

combination 0.1980334747 0.0 010 038484 0.1156694431 
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ver the dataset. When the ρ-value is 0.05 or less are, it is consid-

red as statistically significant [48] . 

In order to evaluate the classification of the lesion, we applied

uantitative performance measures considering the following met-

ics: true positives (TP), true negatives (TN), false positives (FP) and

alse negatives (FN). Positive (P) and negative (N) sample elements

ere grouped according to some special features. These groups

implified computing statistical information to evaluate separabil-

ty properties described in [49] . These properties are: 

• Accuracy (AC): the proportion of correct predictions related to

the total number of evaluated cases 

AC = 

T P + T N 

P + N 

; (17) 

• Sensitivity (SE): the proportion of positive cases correctly iden-

tified 

SE = 

T P 

T P + F N 

; (18) 

• Specificity (SP): the proportion of negative cases correctly iden-

tified 

SP = 

T N 

T N + F P 
. (19) 

Another important performance measure is the area under the

OC curve (AUC), described in [50,51] . This measure relates the

uccess rate to the failure rate of groups. Both rates range from

ero to one. The ROC curve is plotted on the x − y plane, in which

he sensitivity varies along y , whereas the specificity varies along

 . One takes the AUC as an evaluation of the classifier. A classifi-

ation test is called perfect when its AUC equals 1.0, and is called

erfectly wrong when its AUC equals 0.0. 

In our experiments, all tests were evaluated with the accuracy

nd AUC, which is considered to be the most significant measure

or evaluating the classification algorithms [52] . 
. Results and discussion 

The dataset of lymphoma images was evaluated by applying the

echniques described previously, and in this section the results are

xplained and discussed. The next Section 3.1 explains our pro-

osed procedure concerning the average values for the number of

eatures for the three feature selection methods. At this point we

re going to consider the steps for the classification of the lesions

y using different algorithms ( Section 2.5 ). 

.1. Feature selection 

In Fig. 6 (a)–(c), the average values and standard deviation are

hown respectively for three classes of features, morphological,

on-morphological and the subspace that combines this informa-

ion, after the application of the feature selection algorithms. 

In Fig. 6 (a), one can see that the morphological features for

he CLL-MCL group obtained the same behaviour in relation to

he reduction of the number of features after applying the WRS

nd AB algorithms. The non-morphological features were also anal-

sed separately by the feature selection methods, and Fig. 6 (b)

hows that the methods were able to reduce the number of ini-

ial features (80 descriptors). The AB algorithm presented signifi-

ant results when compared to the other methods, which provided

 smaller number of features for the different groups of lymphoma

ubtypes (CLL-FL and FL-MCL). For the CLL-MCL group, the ANOVA

nd WRS techniques yield a lower number of attributes, approxi-

ately 9 features. The use of information obtained from morpho-

ogical and non-morphological features provided a reduction in the

nitial number of descriptors. 

.2. Impact from features sets 

The Students t-test method was used for each feature of the

roups and the p -values obtained from each can be used as a mea-

ure of how effective it is at separating classes. Fig. 7 presents the
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Fig. 9. Results of the AUC metric with the WRS feature selection technique and the 

classifiers: (a) CLL-FL; (b) CLL-MCL and (c) FL-MCL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The AUC metric obtained with the AB method and the classifiers with the 

investigated lesions groups: (a) CLL-FL; (b) CLL-MCL and (c) FL-MCL. 
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empirical cumulative distribution function (CDF) for the dataset p -

values. 

In Fig. 7 (a), one notes that more than 60% of the features have

p -values close to zero and over 70% of the features have p -values

smaller than 0.05 for the morphological features. For the non-

morphological features, the CLL-FL and FL-MCL data groups have

more than 80% of the features containg p -values smaller than 0.05,

which can be used for discrimination of the information concern-

ing each class of lesion. Only the CLL-MCL data group resulted in

10% of relevant information, which can be applied to the discrim-

ination of the features. These data show that there are morpho-

logical descriptors that have an adequate separation between the

groups investigated. For non-morphological features, the CLL-MCL

group presents a number of descriptors with lower statistical rele-

vance in relation to the other groups. This behaviour is maintained

with the subspace that combines this information (see Fig. 7 (c)). 
Tables 3–5 present the results for the set of features. Discrimi-

ative performances were evaluated by the SE, SP and AC metrics. 

On Table 3 , one observes that the results are improved using

he PL algorithm and the feature selection algorithms. It is evident

hat the PL algorithm resulted in the best values of AC for the CLL-

L group (AC = 96%). The PL algorithm demonstrated a superior

erformance when compared to other classifiers from the FL-MCL,

LL-FL and CLL-MCL groups. For instance, the value of AC with the

VM, DT and RF algorithms and the ANOVA and WRS techniques

ere on average 20% lower when compared to the PL classifier

nd the selection algorithms. The use of the DT and ANOVA algo-

ithms applied to the classification of the morphological features

resented the worst results for the FL-MCL group. 

The non-morphological features show more relevant results

hen compared to the morphological features (see Table 4 ). These
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Table 7 

Comparison of performance from different approaches for lymphoma tissues. 

Reference Feature extraction Feature selection Classifier AC AUC 

[1] Fourier, Chebyshev and Fisher linear discriminant, Weighted neighbor distance 99.0 –

Wavelet transforms minimum redundancy maximum Nave Bayes network 

relevance and Fisher/ 

Correlation 

[15] Color Dominant, Color Histogram, Chi-Square Collateral Representative 92.7 –

Co-occurence, Wavelet, Decision Tree and Support 

Tamura, Gabor and LBP. Vector Machine 

[16] Stationary Wavelet Transform Analysis of Variance Support Vector Machine 100.0 –

[54] Color histogram, edge histogram, Support Vector Machine and 95.5 –

Wavelet transforms Caffe deep learning 

LBP, color LBP, color multiscale 

LBP,gist, curvelets, color 

correlogram, color moments, 

image statistics and wavelet 

[17] A high-dimensional multi-modal LDA, generalized Support Vector Machine 96.8 –

descriptor based in Fisher discriminant analysis, 

vector with LBP, HOG, census full matrix learning and 

transform and GIST features dictionary learning 

[18] A FV descriptors with local Separation-guided dimension Support Vector Machine 97.9 0.99 

features: dense SIFT, deep reduction 

belief networks and a CNN model 

[55] Percolation theory Logistic – 0.99 

Our method Color channel, morphological Analysis of Variance, Decision Tree, Random 100.0 1.00 

features Wilcoxon rank sum and Forest, Support Vector 

AnsariBradley Machine and Polynomial 
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eatures usually present in species descriptions of internal informa-

ion of each nuclei present on the histological image. On Table 4 ,

ll classifiers showed observable relevant results concerning the

LL-MCL group for a histological analysis system. The PL algorithm

resented results with greater differences in the CLL-FL group. 

The strategy of a subspace that combines the morphological

nd non-morphological features is present on Table 5 . These exper-

ments showed that part of the results obtained with the PL algo-

ithm for different lymphoma achieved accuracy rates higher than

6%. However, some experiments have shown that there are classi-

cation algorithms in which the information combination provided

ccuracy values lower than the results obtained only with the non-

orphological descriptors. For the CLL-MCL group, the result ob-

ained with the WRS and SVM algorithms presented a 73% accu-

acy rate. The value is less than the result obtained only from the

easurement with the non-morphological descriptors (AC = 99%). 

Fig. 8–10 show a comparison between AUC obtained using the

eature selection methods and classifiers. The AUC values pre-

ented in these Figures show that non-morphological descriptors

re more relevant than morphological for different combinations of

lassifier and feature selection methods. The strategy of a subspace

hat combines morphological and non-morphological features also

ontributed toward obtaining relevant AUC values. 

The results showed that the PL algorithm provided AUC supe-

ior than 0.90 for different com parisons of the lesions and the fea-

ure selection methods. Then, we applied the McNemar’s test for

omparisons of the PL algorithm and the other classifiers. The p -

alues are shown on Table 6 for the evaluation with the cross-

alidation technique. In these experiments, if the p -value for a hy-

othesis is larger than 0.05, then this hypothesis is rejected [53] .

he p -values that express statistically significant differences be-

ween given pairs of models are marked in italic. Considering

he values of pair (PL versus SVM) with the selection algorithms

 Table 6 ), only the FL-MCL group was rejected for all the subspace

hat combines this information. This behaviour is also noted with

on-morphological features for FL-MCL group. When we analysed

he other pairs that were making comparisons between the classi-

ers, they present similar results in relation to the FL-MCL group.

his analysis showed a statistically irrelevant behaviour among the

c  
lassifiers for the FL-MCL group when dealing with the feature se-

ection algorithms for the evaluation of the non-morphological de-

criptors and the subspace that combines morphological and non-

orphological features. 

.3. Comparison with previous works 

In literature there are methods have been developed to investi-

ate the classification of lymphoma tissues. In Table 7 , we present

 quantitative comparison in terms of maximum AUC and AC val-

es, that can be seen as complementary. We detail the extraction

ethod, feature selection and classifier used in the original works

bout the dataset of lymphoma. We also include the results ob-

ained with our method. Part of the methods in Table 7 lead to an

lmost ideal system. We believe that the different methodologies

re rather complementary than ratable. 

. Conclusions and future scope 

This study presented a computer aided biopsy analysis support

ystem of lymphoma for the classification of CLL, MCL and FL im-

ges based on morphological and non-morphological features. This

ork investigated the different descriptors and their performance

ith the classification algorithms. The main goal is to provide a

econd reading for specialists in order to aid in lesion diagnostics.

n order to develop our technique, we presented several experi-

ents that helped to choose adequate combinations from among

he different descriptors. The obtained results showed that the al-

orithms presented relevant information for the detection of lym-

homa subtypes. The PL classifier provided a good discriminative

erformance: CLL-MCL (AUC = 0.906); CLL-FL (AUC = 0.891); and,

L-MCL (AUC = 0.859). Based on these values for AUC, we can state

hat the proposed technique using non-morphological descriptors

nd feature selection is a relevant tool for classification of lym-

homa tissues concerning digital histology. 

In this study, we also analysed the morphological information

btained from the images, with results for AC between 94% and

6%. The use of the ANOVA method was relevant to the investiga-

ion of lymphoma subtypes. The strategy of using a subspace that

ombines the information for features showed that the values of
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AC or AUC could be improved when the PL algorithm is used for

classification. However, the use this strategy for other classification

algorithms presented lower results than the PL algorithm. 

The PL algorithm is a supervised classifier and presents perti-

nent results with non-linear data. This algorithm expands the in-

put data in a superior space dimension, in a manner that allows

for the adequate separation between the analyzed classes. In this

study different combinations were concatenated from the features

of dimensions in order to obtain the result. There are new param-

eters that can be applied with the objective of evaluating the be-

havior of the algorithm. 

The statistical evaluation showed that the classifiers did not

perform similarly when the morphological features were analysed

for the feature selection methods. Only in the comparison between

SVM versus PL were all the feature selection algorithms relevant

for evaluation among the descriptors investigated in this study.

Then, this study shows that the information subspace along with

the use of non-morphological features presented similar results for

the different classifiers. 

The main drawbacks are present in the steps addressed to dis-

tinguish the nuclei cell, as well as some limitations of the PL clas-

sifier. For instance, the proposed method was not able to separate

the overlapping lymphocytes and perform the distinction between

nuclei and cytoplasm regions. In stage classification, the limitations

of the PL classifier are related to the processing time of the algo-

rithm as it is of an exponential order. Therefore, the higher the

number of features involved, higher will be the processing time. In

this manner, it is not feasible at the present moment to use this in

real time for routine diagnostics. Future studies can be addressed

to investigate the feature sets that allow thorough discrimination

for the improvement of the effectiveness and efficiency of classi-

fication processes. Despite these drawbacks, the proposed method

was capable of providing relevant results and can be applied as a

second reading for specialists in order to aid the diagnosis of MCL,

FL and CLL groups. 
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