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1. Introduction

A self-bound matter-wave bright soliton can travel with a 
constant velocity in one-dimension (1D) [1], while maintain-
ing its shape, due to a balance between defocusing forces and 
nonlinear attraction. Solitons have been observed in diverse 
systems obeying classical and quantum dynamics, such as, in 
water wave, nonlinear optics [2] and Bose–Einstein conden-
sate (BEC) [3] among others. The 1D soliton could be ana-
lytic with energy and momentum conservation necessary to 
maintain its shape during propagation. However, such a soli-
ton cannot be realized in three dimensions in the mean-field 
weak-coupling Gross–Pitaevskii (GP) limit due to a collapse 
instability for attractive interaction [1, 2].

On the theoretical front Petrov [4] demonstrated the pos-
sibility of a three-dimensional (3D) binary BEC droplet in the 

presence of an inter-species attraction and an intra-species 
repulsion with a Lee–Huang–Yang (LHY) correction [5]. The 
possibility of forming a binary 1D BEC soliton with intra-
species repulsion and inter-species attraction was suggested 
before [6]. In the presence of a repulsive three-body interac-
tion the statics and dynamics of a BEC quantum ball were 
studied in details recently [7] employing the numerical and 
variational solutions of a mean-field model. A droplet can 
also be realized in a spin–orbit- [8] or Rabi-coupled [9] multi-
component spinor BEC. On the experimental front, a BEC 
droplet has been observed [10] in a dipolar dysprosium and 
erbium BEC with a repulsive short-range contact interaction. 
Later, the formation of the dipolar droplet has been explained 
[11] by a LHY correction to the short-range contact interac-
tion. More recently, a binary BEC droplet has been observed 
in the presence of a repulsive intra-species interaction and an 
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Abstract
We demonstrate the possibility of creating a self-bound stable three-dimensional matter-
wave spherical boson–fermion quantum ball in the presence of an attractive boson–fermion 
interaction and a small repulsive three-boson interaction. The two-boson interaction could be 
attractive or repulsive whereas the fermions are taken to be in a fully-paired super-fluid state 
in the Bardeen–Cooper–Schreifer (quasi-noninteracting weak-coupling) limit. We also include 
the Lee–Huang–Yang (LHY) correction to a repulsive bosonic interaction term. The repulsive 
three-boson interaction and the LHY correction can stop a global collapse while acting jointly 
or separately. The present study is based on a mean-field model, where the bosons are subject 
to a Gross–Pitaevskii (GP) Lagrangian functional and the fully-paired fermions are described 
by a Galilean-invariant density functional Lagrangian. The boson–fermion interaction is 
taken to be the mean-field Hartree interaction, quite similar to the interaction term in the GP 
equation. The study is illustrated by a variational and a numerical solution of the mean-field 
model for the boson–fermion 7Li–6Li system.

Keywords: Bose–Einstein condensate, superfluid fermion, soliton

(Some figures may appear in colour only in the online journal)

Astro Ltd

IOP

Letter

2018

1612-202X

1612-202X/18/095501+7$33.00

https://doi.org/10.1088/1612-202X/aacb0aLaser Phys. Lett. 15 (2018) 095501 (7pp)

publisher-id
doi
mailto:adhikari44@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1612-202X/aacb0a&domain=pdf&date_stamp=2018-07-06
https://doi.org/10.1088/1612-202X/aacb0a


2

S K Adhikari 

attractive inter-species interaction [12, 13] and its formation 
was explained by including a LHY-type correction term to the 
intra-species repulsion.

We demonstrate that it is possible to bind a large number 
of spin-1/2 fermions in a self-bound 3D boson–fermion super-
fluid quantum ball at zero temperature in the presence of an 
attractive boson–fermion interaction and a repulsive three-
boson interaction together with the LHY correction for a repul-
sive boson–boson interaction. We prefer the name quantum 
ball over droplet for the localized boson–fermion state after 
establishing the robustness of such a bosonic state to maintain 
the spherical ball-like structure after collision [7], in contrast 
to easily deformable liquid droplets. Due to Pauli repulsion it 
is difficult to bind the fermions: the bosons with an attractive 
inter-species interaction act like a glue to bind the fermions. 
The possibility of binding fermions in a 1D boson–fermion 
mixture without a trap in the presence of inter-species attrac-
tion was suggested theoretically [14], and later realized exper-
imentally [15]. In this study, we take the fermions to be fully 
paired in a quasi-noninteracting weak-coupling super-fluid 
Bardeen–Cooper–Schrieffer (BCS) state, although this condi-
tion is not required for binding; all fermions in a spin-polarized 
state can also be bound in a boson–fermion quantum ball. The 
repulsive three-boson interaction and its LHY correction lead to 
terms with a higher order nonlinearity in the dynamical ‘mean-
field’ boson–fermion equation, compared to the nonlinearity 
resulting from the boson–boson interaction, and create a strong 
repulsive core at the origin and hence stop a global collapse of 
the boson–fermion mixture and stabilize the quantum ball.

We consider a numerical and a variational solution of a 
mean-field model for the formation of the boson–fermion 
quantum ball. The Lagrangian functional of the bosons is 
taken as in the GP Lagrangian functional including a three-
boson interaction term and a LHY correction for a repulsive 
boson–boson interaction and that of the fermions is taken as 
a Galilean invariant density functional Lagrangian [16]. The 
boson–fermion interaction is taken as the interaction term 
in the GP Lagrangian functional [17]. The Euler–Lagrange 
equations for the Lagrangian functional lead to a coupled set 
of equations employed in this study. We illustrate the forma-
tion of a boson–fermion quantum ball in the 7Li–6Li mixture 
using realistic values of different parameters.

In section 2 the mean-field model for the boson–fermion 
mixture is developed. A time-dependent, analytic, Euler–
Lagrange Gaussian variational approximation of the model is 
also presented. The results of numerical calculation are shown 
in section 3. Finally, in section 4 we present a brief summary 
of our findings.

2. Analytic model for a boson–fermion quantum 
ball

We consider a binary boson–fermion super-fluid mixture at 
zero temperature interacting via inter- and intra-species inter-
actions with the mass and number of the two species i = 1, 2, 
denoted by mi, Ni, respectively. The first species (7Li) is taken 

to be bosons while the second species (6Li) fermions. The 
spin-half fermions are assumed to be fully paired with an 
equal number of spin-up and -down atoms. We start by writ-
ing the Lagrangian density of the system

L =
[∑

i

i�
Ni

2
(φiφ̇

∗
i − φ∗

i φ̇i) +
N1�2

2m1
|∇φ1|2
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1
3
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2
|φ1|6 +

1
2

4π�2a1

m1
N2
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+
3
5

�2
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]
, i =

√
−1,

 

(1)

where a1 is the scattering length of bosons (comp-
onent 1), a12 is the boson–fermion scattering length, 
mR = m1m2/(m1 + m2) is the boson–fermion reduced mass 
and the overhead dot denotes time derivative. In (1) the first 
term on the right is the usual time-dependent term [16, 18], 
the second and the third terms represent the kinetic ener-
gies of bosons and fermions, respectively [16], the term 
containing K3 is the three-boson interaction term. The pref-
actor N2�2/8m2 in the fermion kinetic energy guarantees 
Galilean invariance of the Lagrangian [16]. The next term 
proportional to a1 is the interaction energy of bosons and that 
proportional to a12 is the boson–fermion interaction energy. 
The term containing α ≡ 64/(3

√
π) represents the beyond-

mean-field LHY correction to the repulsive bosonic intra-
atomic interaction (a1  >  0). The fermions are assumed to be 
quasi-noninteracting in a completely full Fermi sea and con-
tributes the term proportional to |φ2|10/3 in (1), which is just 
the static kinetic energy of all the fermions [16]. Both the 
three-body and the LHY terms have higher-order nonlinear-
ity compared to the two-body interaction term, viz. the term 
containing a1 in (1). These terms with a positive real part of 
K3 guarantee a large positive energy near the origin r = 0 
and stop the collapse of the system.

It is convenient to write a dimensionless form of expres-
sion (1) as

L =
[∑

i

i
Ni
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∗
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N3
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6
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3m1

10m2
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2/3|φ2|10/3

+ 2πa12N1N2
m1

mR
|φ1|2|φ2|2

]
, i =

√
−1,

 

(2)

where length is expressed in units of a fixed length l, density 
|φi|2 in units of l−3, time in units of t0 = m1l2/�, energy in 
units of �2/m1l2 and K3 in units of �l4/m1. The wave functions 
are normalized as 

∫
|φi|2dr = 1.

With Lagrangian density (2) the dynamics for the binary 
boson–fermion mixture is governed by the Euler–Lagrange 
equations

Laser Phys. Lett. 15 (2018) 095501
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d
dt

∂L
∂ψ̇∗

i

=
∂L
∂ψ∗

i
. (3)

In explicit notation (3) become [18]

i
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(4)

i
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(5)

Convenient analytic variational approximation to (4) and 
(5) can be obtained with the following Gaussian ansatz for the 
wave functions [18, 19]

φi(r, t) =
π−3/4

wi(t)
√

wi(t)
exp

[
− r2

2w2
i (t)

+ iβi(t)r2
]

 (6)

where wi are the widths and βi are additional variational 
parameters, called chirps. The effective Lagrangian for the 
binary system L =

∫
drL is

L =

2∑
i=1
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(7)

The repulsive three-boson K3-dependent term with a 1/w6
1 

divergence and the LHY two-boson α-dependent term with a 

1/w9/2
1  divergence at the origin (w1 = w2 = 0) create a repul-

sive core in the Lagrangian L(w1, w2) which stops the global 
collapse.

The four Euler–Lagrange variational equations  of the 
effective Lagrangian L for the four variational parameters 
α ≡ w1, w2,β1,β2

d
dt

∂

∂α̇
=

∂L
∂α

, (8)

can be simplified to yield the following coupled ordinary 
differ ential equations for the widths, wi in usual fashion [19]
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1
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(9)
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.

 (10)
The solution of the time-dependent equations (9)–(10) gives 
the dynamics of the variational approximation. For static prop-
erties of the boson–fermion quantum ball, the time derivatives 
in these equations should be set equal to zero.

The energy of the system is given by
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2
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1
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√

3π3w6
1
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8
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1
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9
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√
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2
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πmR(w2
1 + w2

2)
3/2

.

 

(11)

The widths of the stationary state can be obtained from the 
solution of equations (9) and (10) setting the time derivatives 
of the widths equal to zero. This procedure is equivalent to a 
minimization of the energy (11), provided the stationary state 
corresponds to a energy minimum.

3. Numerical results

The 3D binary mean-field equations (4) and (5) do not have 
analytic solution and different numerical methods, such as 
split-step Crank–Nicolson [20] and Fourier spectral [21] 
methods, are used for its solution. We solve these equa-
tions  numerically by the split-step Crank–Nicolson method 
using both real- and imaginary-time propagation. Imaginary-
time simulation is employed to get the lowest-energy bound 
state of the boson–fermion quantum ball, while the real-time 
simulation is to be used to study the dynamics using the ini-
tial profile obtained in the imaginary-time propagation [22]. 
There are different C and FORTRAN programs for solving the 
GP equation [20, 22] and one should use the appropriate one. 
In the imaginary-time propagation the initial state was taken 
as in 6 and the width wi set equal to the variational widths. 
The convergence will be quick if the guess for the widths wi is 
close to the final converged width.

We consider the boson–fermion 7Li–6Li mixture 
in this study with the experimental scattering length 
a1  =  a(7Li)  =  −27.4a0. This negative scattering length imply 
intra-species attraction in 7Li. We also consider a1 = 100a0: 
it is also possible to have a boson–fermion quantum ball for 
for a repulsive boson–boson interaction and an attractive 
boson–fermion interaction. In the latter case the LHY correc-
tion is also effective. The fermions are considered to be in the 
weak-coupling BCS limit without any inter-species interac-
tion between spin-up and -down fermions. The yet unknown 
inter-species scattering length a12 is taken as a variable. The 
variation of a12 and a1 can be achieved experimentally by the 
optical [23] and magnetic [24] Feshbach resonance techniques. 

Laser Phys. Lett. 15 (2018) 095501
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We consider the length scale l0  =  1 μm and consequently, the 
time scale t0  =  0.11 ms.

We find that a boson–fermion 7Li–6Li quantum ball is 
achievable for a moderately attractive inter-species attraction 
(negative a12) and for appropriate values of the number of 
atoms, for both attractive and repulsive boson–boson interac-
tion. We illustrate in figure 1 the N2 − |a12| variational stabil-
ity plots for a boson–fermion quantum ball for boson–boson 
scattering lengths (a) a  =  −27.4a0 and (b) a  =  100a0, for 
N1  =  1000 and K3 = 0, 10−37 m6 s−1, 10−38 m6 s−1, 10−39 m6 
s−1, and 10−40 m6 s−1. We find that a boson–fermion quantum 
ball can be formed for different non-zero values of K3 with 
other parameters unchanged. However, a reduced K3 value 
implies an increased net attraction, thus resulting in a more 
tightly bound boson–fermion quantum ball of reduced size. In 
the case of repulsive boson–boson interaction we also included 
the LHY correction. The stability plots are qualitatively dif-
ferent for attractive and repulsive boson–boson interaction. 
For an attractive boson–boson interaction a boson–fermion 
quant um ball can be formed for a weakly attractive boson–
fermion interaction. However, for a repulsive boson–boson 
interaction a boson–fermion quantum ball can be formed for 
the boson–fermion attraction above a critical value.

In figure  2 we display similar variational and numerical 
N2 − |a12| stability plots for N1 = 10 000 for (a) a1 = −27.4a0, 
(b) a1 = 100a0 (without LHY correction), and (c) a1 = 100a0 
(with LHY correction) for different K3 values. The numer-
ical results for the stationary quantum balls in figures 2–5 are 
obtained by imaginary-time simulation. The formation of the 
boson–fermion quantum ball is possible on the right of the 

plotted lines in figures 1 and 2. There is not enough attraction 
on the left side of these lines to bind such a quantum ball. The 
numerical lines lie on the left of the variational lines showing 
a larger domain for the formation of the quantum balls. This 
is a consequence of the fact that the variational energies set an 
upper bound on the actual energy. Also the stability lines with 
the LHY correction correspond to an increased repulsion and 
the stability lines move towards right, viz. figures  2(b) and 
(c) implying a reduced domain in the parameter space for the 
formation of boson–fermion quantum ball.

From figures 1 and 2 we find that if the value of the param-
eter K3 is suitably tuned, the effect of the three-body and LHY 
corrections on the formation of the binary ball could be quite 
similar. For example, compare the line K3 = 10–39 m6 s−1—  
without the LHY correction in figure 2(b)—with the line  
K3 = 0—with LHY correction in figure 2(c)—and compare 
the same lines in figure 1(b). We also compared the corre-
sponding shapes of the binary balls, which were also found 
to be similar.  Hence, for a proper description of the binary 
boson-fermion balls, both the LHY and three-body correc-
tions should be considered.

We used a Gaussian ansatz for the variational approx-
imation, which is the eigenfunction of a harmonic oscillator. 
This ansatz should work well in the presence of a harmonic 

Figure 1. Variational N2 − a12 stability plot for the formation of 
boson–fermion 7Li–6Li quantum ball of N1  =  1000 bosons for 
K3 = 0, 10−37 m6 s−1, 10−38 m6 s−1, 10−39 m6 s−1, 10−40 m6 s−1, 
and for boson–boson scattering length (a) a1 = −27.4a0 and  
(b) 100a0. In (b) results are shown with (w) and without (o) the 
LHY correction term. The formation of the boson–fermion quantum 
ball is possible in the region to the right of each line marked 
‘bound’. No bound quantum ball is possible on the left side of the 
lines marked ‘unbound’.

Figure 2. Variational (v) and numerical (n) N2 − a12 stability 
plot for the formation of boson–fermion 7Li–6Li quantum ball of 
N1 = 10 000 bosons for different K3 from 0 to 10−37 m6 s−1 and 
for boson–boson scattering length (a) a1 = −27.4a0, (b) 100a0 
(without LHY correction), and (c) 100a0 (with LHY correction). 
The formation of boson–fermion quantum ball is possible only in 
the right side of these lines.

Laser Phys. Lett. 15 (2018) 095501
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trap with small values of nonlinear interaction. In the present 
case, there is no harmonic trap and the nonlinearities could 
be quite large. Hence the variational approximation is not 
expected to be good in general. We have seen that the vari-
ational approximation has yielded qualitatively correct result 
for the stability plots, viz. figures 1 and 2. To test how well the 
variational approximation can yield the density profiles, we 
have compared in figure 3 the variational and numerical densi-
ties of the boson–fermion quantum ball for different cases for 
(a)–(b) K3 = 10−37 m6 s−1, (c)–(d) 10−38 m6 s−1, and (e)–(f) 
10−39 m6 s−1. For repulsive boson–boson interaction, we have 
also included the LHY correction term in figures  3(a) and 
(c). The inclusion of LHY correction implies more repulsion: 
consequently, the density profiles are more extended in space 
with smaller central densities in these plots. In all cases the 
numerical densities are very different from a Gaussian shape. 

Considering that there is no harmonic trap in the model, the 
agreement between the variational and numerical results is 
quite satisfactory.

Now we compare the variational and numerical ener-
gies of the boson–fermion quantum ball versus num-
ber of fermions in figure  4 for N1 = 10 000 and for (a) 
a1 = −27.4a0, a12 = −70a0, K  =  10−39 m6 s−1 and (b) 
a1 = 100a0, a12 = −350a0, K  =  10−37 m6 s−1. The variational 
energies are are always larger than the numerical energies. In 
figure 5 we plot the root-mean-square (rms) sizes 〈r1〉 and 〈r2〉 of 
bosons and fermions versus N2 for N1 = 10 000, a1 = −27.4a0 
and for (a) a12 = −70a0, K = 10−39 m6 s−1 and (b) 
a12 = −150a0, K = 10−38 m6 s−1. The agreement between the 
variational and numerical results is reasonable in both cases.

We have seen that these boson–fermion quantum balls are 
very tightly bound, viz. the large energy/boson in figure  4. 

Figure 3. Variational (v) and numerical (n) densities ρi = |ψi|2 of the bosons and fermions for different sets of parameters and for (a)  
N1 = N2 = 1000, a1 = 100a0, a12 = −350a0, K3 = 10−37 m6 s−1 with LHY correction, (b) N1 = N2 = 1000, a1 = 100a0, a12 = −350a0,
K3 = 10−37 m6 s−1 without LHY correction, (c) N1 = N2 = 1000, a1 = 100a0, a12 = −200a0, K3 = 10−38 m6 s−1 
with LHY correction, (d) N1 = N2 = 1000, a1 = 100a0, a12 = −200a0, K3 = 10−38 m6 s−1 without LHY correction, (e) 
N1 = 10 000, N2 = 2000, a1 = −27.4a0, a12 = −30a0, K3 = 10−39 m6 s−1, (f) N1 = 10 000, N2 = 2000, a1 = 0, a12 = −45a0, K3 = 10−39 
m6 s−1. The plotted quantities in this and following figures are dimensionless. The unit of length l in all figures is l  =  1 μm.

Laser Phys. Lett. 15 (2018) 095501



6

S K Adhikari 

The best way to observe these solitons is to prepare these 
boson–fermion quantum balls in a harmonic trap and then 
remove the trap. To this end we numerically prepared by 
imaginary-time propagation a boson–fermion quantum ball  
for N1 = 10 000, N2 = 2000, a1 = 0, a12 = −45a0, K3 = 10−39 
m6 s−1 in a harmonic trap of frequency ω = 2π × 1443 
Hz which corresponds to a harmonic oscillator length 
l ≡

√
�/m1ω = 1 μm for 7Li atoms. Then we performed real-

time propagation without a trap with the same parameters 
using the imaginary-time state as the initial state. In this simu-
lation we have included an imaginary part to the three-body 
term K3 to take into account the three-boson loss. There is 

estimate of three-body loss for 7Li atoms [25] for different 
values of scattering length a1, although its value for a1  =  0 
is not given there. We take the three-body loss K3 = −i10−39 
m6 s−1, which is the average value away from the nearby 
Feshbach resonance where a1 → ±∞. In the present real-time 
simulation we use K3 = (1 − i)10−39 m6 s−1, which takes into 
account a realistic three-body loss. Due to the presence of the 
absorptive term in K3, the number of bosons decay with time. 
Nevertheless, a smaller number of bosons is enough to keep 
the fermions bound due to the attractive boson–fermion inter-
action. In figure  6 we plot the rms sizes of the bosons and 
fermions versus time. A practically constant rms size of the 
fermions guarantee the stability of the quantum ball. Due to a 
sudden introduction of the three-body loss term at t  =  0 some 
disturbance is created in the quantum ball, as the initial state 
obtained by imaginary-time simulation is not an eigenstate of 
the absorptive Hamiltonian with three-body loss. The large 
values of the rms radius r2 of fermions result due to some 
small noise at large values of r, although the quantum ball 
remain localized near the center.

4. Summary and discussion

We demonstrated the possibility of the creation of a stable, 
stationary, self-bound super-fluid boson–fermion quantum 
ball under attractive inter-species interaction using a varia-
tional and a numerical solution of a mean-field model. The 
boson–boson interaction could be attractive or repulsive. The 
collapse is avoided by a three-boson interaction and/or a LHY 
correction to the two-boson interaction. The static properties 
of the boson–fermion quantum ball are studied by the varia-
tional approximation and a numerical imaginary-time solution 
of the mean-field model. The dynamics is studied by a real-
time solution of the same using the imaginary-time solution as 
input. The numerical and variational results for the rms radii, 
densities, and energies of the boson–fermion quantum ball are 
in agreement with each other.

The binary quantum ball is very tightly bound even for a 
small three-boson interaction and/or a small LHY correction, 
hence should be easy to observe in a laboratory like the boson–
boson quantum ball [12]. We demonstrate a possible practical 

Figure 4. Variational (v) and numerical (n) energies versus N2 for 
N1 = 10 000, and (a) a1 = −27.4a0, a12 = −70a0, K3 = 10−39 m6 
s−1 and (b) a1 = 100a0, a12 = −350a0, K3 = 10−37 m6 s−1 without 
LHY correction. The unit of energy is �2/(m1l2).

Figure 5. Variational (v) and numerical (n) rms sizes 〈r1〉 and 〈r2〉 
versus N2 for N1 = 10 000, a1 = −27.4a0 for (a) K3 = 10−39 m6 s−1 , 
a12 = −70a0 and (b) K3 = 10−38 m6 s−1, a12 = −150a0.

Figure 6. Dynamical oscillation of the rms sizes 〈r1, r2〉 upon real-
time propagation of the boson–fermion 7Li–6Li quantum ball of 
figure 3(f) prepared by imaginary-time propagation in a harmonic 
trap of frequency ω = 2π × 1443 Hz. The plotted quantities are 
dimensionless. The harmonic oscillator length l  =  1 μm, and the 
time scale t0  =  0.11 ms.

Laser Phys. Lett. 15 (2018) 095501
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mean for its formation. A boson–fermion mixture should be 
kept in a harmonic trap of harmonic oscillator length of few 
microns with parameters appropriate for the formation of a 
quantum ball. Actually, one of the easiest way of achieving a 
degenerate fermion gas is by sympathetic cooling in a boson–
fermion mixture, such as in 7Li–6Li [26]. Such a mixture should 
be used to create the boson–fermion quant um ball. Usually the 
size of the quantum ball will be much smaller than the har-
monic oscillator length, indicating that the harmonic trap has 
no effect on the formation of the quantum ball. Consequently, 
the removal of the harmonic trap will have marginal effect on 
the quantum ball. To demonstrate this in numerical simulation, 
we form a quantum ball by imaginary-time propagation in a 
harmonic trap. Then we use the state so formed in a real-time 
propagation without a harmonic trap maintaining all other 
parameters the same. Bounded values of the rms radii in real-
time propagation illustrates the stability of the quantum ball as 
well as the feasibility of its creation in a laboratory.
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