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A B S T R A C T

Remote sensing based approaches have been widely used over the years to monitor and manage submerged
aquatic vegetation (SAV) or aquatic macrophytes mainly by mapping their spatial distribution and at the most,
modeling SAV biomass. Remote sensing based studies to map SAV heights are rare because of the complexities in
modeling water column optical proprieties. SAV height is a proxy for biomass and can be used to estimate plant
volume when combined with percent cover. The objective of this study was to explore the feasibility of a satellite
sensor to estimate the SAV height distribution in an inland reservoir. Also to test different radiative transfer
theory based bio-optical models for estimating SAV heights using SPOT-6 data. The satellite-based multispectral
data have rarely been used and SPOT-6 data, to the best of our knowledge, have never been used to estimate SAV
heights in inland water bodies. In addition to depth and hydroacoustic data, in situ hyperspectral radiance and
irradiance were measured at different depths to compute remote sensing reflectance (Rrs) and the attenuation
coefficients (Kd and KLu). Two models, Palandro et al. (2008) and Dierssen et al. (2003), were used to derive
bottom reflectance from both in situ and atmospherically corrected SPOT-6 Rrs. Bottom reflectance-based ve-
getation indices (green-red index, slope index, and simple ratio) were used to estimate SAV heights. Validation
was performed using echosounder acquired hydroacoustic data. In situ model calibration produced an R2 of 0.7,
however, the validation showed a systematic underestimation of SAV heights and high Root Mean Square Error
(RMSE); indicating that there is a greater sensitivity in in situ models to localized variations in water column
optical properties. The model based on SPOT-6 data presented higher accuracy, with R2 of 0.54 and RMSE of
0.29 m (NRMSE=15%). Although the models showed a decreased sensitivity for SAVs at depths greater than
5m with a height of 1.5 m, the finding nonetheless is significant because it proves that re-calibration of existing
bottom reflectance models with more field data can enhance the accuracy to be able to periodically map SAV
heights and biomass in inland waters. Although the initial results presented in this study are encouraging, further
calibration of the model is required across different species, seasons, sites, and turbidity regime in order to test
its application potential.

1. Introduction

Excessive growth of submerged aquatic vegetation (SAV) or sub-
merged macrophytes in inland waters can produce negative economic
and ecologic impacts. But when managed properly they play several
important functions, such as influencing nutrient cycling, maintaining
water and sediment chemistry, providing food and shelter for various
invertebrates and vertebrates, and changing the spatial structure of the
waterscape by increasing habitat complexity (Thomaz et al., 2008). In
addition to spreading rapidly around the globe by anthropogenic means

such as dispersal via hitchhiking and unauthorized release, some of the
invasive SAV species have experienced a range-shift in past few decades
spreading to higher latitudes mainly due to a pattern shift in tem-
perature, precipitation, and atmospheric CO2 triggered by climate
change. Inland waters with ecological imbalance can facilitate an un-
controlled growth of SAV, which could be a significant problem espe-
cially in developing countries with lax regulations such as Brazilian
reservoirs. Negative economic and ecologic impacts caused by excessive
SAV will affect navigation, water quality and supply, hydropower, ir-
rigation, fisheries, recreation, human and animal health, and land
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values (Jakubauskas et al., 2002; Rockwell, 2003). SAV will have major
effects on the productivity and biogeochemical cycles of the system
(Carpenter & Lodge, 1986). The increased run-off to the water body in
the rainy season may cause fragmentation of SAV, obstructing water
passing though the turbines of the hydroelectric plants causing sig-
nificant economic damage (Marcondes et al., 2003). According to
Wetzel (2001), excessive growth of macrophytes can curtail or elim-
inate human use of reservoirs, lakes and river ecosystems; hence several
approaches (i.e., mechanical, biological, chemical) have been proposed
for the control and management of aquatic macrophytes. Mechanical
control primarily involves cutting and removal of the vegetation (Engel,
1990; Armellina et al., 1996; Velini, 2005). Biodegradable or biologi-
cally inactive herbicides are commonly used as chemical control
(Schmidt, 2009). Sterile Grass Carp are widely used as biological con-
trol because of their aggressive grazing (Chilton and Muoneke, 1992;
Hanlon et al., 2000; Wells et al., 2003). However, the type and mag-
nitude of the control is mainly dependent on the spatial distribution of
SAV extent and biomass (Wetzel, 2001).

Remote sensing technologies have the potential to map and quantify
the SAV distribution and biomass at frequent interval. In fact, studies
using remote sensing-based empirical and radiative transfer models to
identify and map SAVs and other benthic habitats are fairly common in
estuarine and coastal environments compared to inland freshwater
environments (Dekker et al., 2005; Mishra et al., 2007; Hunter et al.,
2010; Roelfsema et al., 2014). Remote sensing techniques have been
rarely used to map SAV heights in optically complex inland waters. SAV
height, a proxy for biomass, is an important biophysical property and
can be used to estimate underwater light availability and plant volume
when combined with percent cover. In addition, per-pixel SAV height
data is easier to collect in the field compared to biomass which is often
the limiting factor in robust calibration of remote sensing models.

Mapping SAV in freshwaters using satellite remote sensing can
overcome problems related to access, scale, and distribution; however,
high-resolution images are required with appropriate spectral char-
acteristics (Ashraf et al., 2010). However, remote sensing data used in
SAV mapping, with a few exceptions, tend to be either in situ or air-
borne multi- or hyperspectral data not satellite data. For example,
Mishra et al. (2007) used hyperspectral Airborne Imaging Spectro-
radiometer for Applications (AISA) Eagle data to detect and classify the
seagrasses, coral reef and associated benthic habitats. The importance
of removing the effect of the water column in order to achieve accurate
mapping of benthic habitats was emphasized in the study. Roelfsema
et al. (2014) presented a semi-automated object-based image analysis
approach for mapping dominant seagrass species, percentage cover and
above-ground biomass of a shallow, clear water seagrass habitat using a
time-series of field data and coincident high spatial resolution satellite
imagery for the Eastern Banks, Moreton Bay, Australia. Hunter et al.
(2010) used data from Compact Airborne Spectrographic Imager-2
(CASI-2) to map the distribution of macrophytes in shallow lakes
(< 2.5m mean depth) in the Upper Thurne region of the Norfolk
Broads, UK. Giardino et al. (2015) presented an application of a phy-
sics-based method that relies on spectral inversion procedures to esti-
mate benthic substrate types in Lake Trasimeno (Italy) from airborne
imaging spectrometry data. Pande-Chhetri et al. (2014) presented
methods to classify SAVs in shallow water (< 3m) using the airborne
CASI hyperspectral sensor in St. Johns River, Florida (USA). Zou et al.
(2013) studied the spectral characteristics of SAV using in situ data in a
eutrophic aquatic system (Shanghai, China). They observed a non-
proportional decrease in reflectance with the reduction of SAV cov-
erage. Visser et al. (2015) investigated the possibility of creating maps
of SAV depth distribution in shallow clear water streams using low-
altitude optical remote sensing. At the time of sampling, their study
sites had a maximum water depth of around 0.5m and low turbidity.
Similarly, Williams et al. (2003) studied the use of high spatial re-
solution hyperspectral remote sensing to map SAV distributions and
abundance in the Potomac River, Maryland, USA.

In terms of satellite-based studies, Dekker et al. (2005) used Landsat
images to detect the change in seagrass and macrophyte communities of
Wallis Lake, a shallow estuarine lake in New South Wales, Australia
over a period of 14 years. Dogan et al. (2009) used QuickBird satellite
image to identify and map SAV, with high accuracy, in a shallow lake
(i.e., mean and maximum depths were 2.1 and 3.5m, respectively).
Heblinski et al. (2011) monitored and assessed the status of littoral
vegetation in Lake Sevan (Armenia), with a depth up to ∼3m using
QuickBird data. These studies concluded that accurate mapping of SAV
species relies on the condition of the water column being sufficiently
transparent to obtain a significant discriminatory part of the spectrum
of the substrate. Epiphytic growth over SAV could also be a con-
founding factor and hyperspectral remote sensing could resolve this
issue more clearly, however, there would be a significant increase in the
cost of data acquisition.

Several other studies have concluded that high resolution airborne
or satellite images may not be able to extract information about SAV in
relatively deep reservoirs using frequently adopted simple methods
such as image classification or empirical band ratios because of the
target’s low signal to noise ratio (Rotta et al., 2016, 2013; Boschi, 2011;
Malthus, 2017). Semi-analytical models have been proposed as an al-
ternative to remove the water column influence and to retrieve bottom
reflectance in water bodies to study submerged targets. However, most
models used to retrieve the bottom signal were developed for clear,
shallow coastal environments (Lee et al., 1994; Lee and Carder, 2002;
Mishra et al, 2005, 2007, 2006; Palandro et al., 2008; Brando et al.,
2009). Semi-analytical models for estimating SAV height in inland
waters such as lakes and tropical reservoirs by satellite remote sensing
remains a challenge to overcome, particularly when SAV in these water
bodies can survive at relatively deeper depths. SAV in Brazilian re-
servoirs can survive and grow at depths greater than 6m (Rotta et al.,
2012; 2016). Rotta et al. (2012) mapped SAV in the Porto Colômbia
Reservoir (Uberaba River, Minas Gerais State) using an echosounder
detecting presence of SAV up to 7m depth. The densest SAV was ob-
served by Batista et al. (2012) at depths between 2 and 4m in Ta-
quaruçu reservoir (Paranapanema River, between Paraná and São Paulo
State), showing SAV growing even at the depth range of 6–8m. The
status of SAV in Nova Avanhandava Reservoir (Tietê River, São Paulo
State) was analyzed by Rotta et al. (2016) who reported their occur-
rence at depths up to 9m. The detection of bottom signal is difficult at
such deeper waters even when using in situ sensing due to the at-
tenuation and scattering of radiation in the water column. Rotta et al.
(2016) concluded that it is necessary to recalibrate and tune existing
radiative transfer models with lots of field data in order to achieve the
desired accuracy in mapping SAV biomass and height using satellite
data.

The initial assumption made in this study was that benthic re-
flectance produced by applying radiative transfer models on satellite
data may reveal the true absorption characteristics of SAV canopies
which can then be incorporated in empirical models using existing
vegetation indices (VIs) to estimate SAV heights. VIs based on red
(∼660 nm) and green (∼560 nm) bands can be used in aquatic en-
vironments, such as green–red vegetation index (GRVI), Slope, and
band ratio (G/R). Tucker (1979) evaluated and quantified the re-
lationships between linear combinations of several VIs, including GRVI
and G/R, and experimental plot biomass, leaf water content, and
chlorophyll content. Motohka et al. (2010) evaluated GRVI as a phe-
nological indicator for several representative ecosystems in Japan. It
was able to detect subtle differences in the middle of the growing period
for accurately classifying ecosystem types. The sensitivity of chl-a
scattering at green to chl-a absorption at red is the underlying foun-
dation of the Slope model (Mishra and Mishra, 2010). The simple ratio
between reflectance at NIR and Red has been used in numerous studies
as an indirect method of measuring vegetation biophysical properties
such as leaf area index (LAI) (Jordan, 1969; Jensen, 2009). The simple
ratio (NIR/R) from Landsat TM data was correlated to ground-based
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measurements of LAI in boreal conifer forests (Chen and Cihlar, 1996).
Based on the same principle, the ratio between Green and Red (G/R)
benthic reflectance could be tested in models to retrieve SAV heights.

Monitoring SAV heights using field survey based hydroacoustic data
is a common practice (Sabol et al., 2002). Echosounder has been used
for SAV mapping, providing different biophysical measurements such
as canopy height, ECH (Effective Canopy Height) and biovolume (Rotta
et al., 2012). These kinds of surveys, mainly for moderate to large water
bodies, can be both expensive and time consuming. The exact cost of a
sonar survey will depend on the size of the study site and spatial extent
of the SAV; however, it is safe to assume that such surveys will be
costlier than satellite-based methods in places where labor cost is re-
latively high. On a related note, high resolution satellite data other than
SPOT-6 such as WorldView-3 or Planet Labs imagery can be obtained at
a cheaper cost and used in a satellite-based method to map SAV because
of the similarity in their band architecture. The goal of this study was
therefore to explore the feasibility of radiative transfer-based bio-op-
tical models for estimating SAV heights in the Nova Avanhandava re-
servoir using SPOT-6 satellite data. The specific objectives included (i)
to remove the water column influence for retrieving the bottom re-
flectance; (ii) to calibrate vegetation indices-based models derived
using benthic reflectance; and (iii) to compare the performance of SAV
height models applied to in situ data and SPOT-6 multispectral satellite
data. Multispectral satellite data have rarely been used and SPOT-6 data
have never been used to estimate benthic biophysical parameters such
as SAV heights in inland waterbodies. Therefore, the use of radiatve
transfer models to retrieve the bottom reflectance (such as Palandro
et al., 2008; Dierssen et al., 2003) for estimating SAV heights, even at
depths greater than 5m, can make an important technical and scientific
contribution supporting ecological studies and the management of
submerged macrophytes in inland waters.

2. Study area

This study was conducted in the Nova Avanhandava Reservoir,
which is located in the lower course of Tietê River, São Paulo state,
Brazil (Fig. 1). The reservoir, with a flooded area of 210 km2 and vo-
lume of 2.8× 109m3 is managed by the AES Tiete Company (http://
www.aestiete.com.br/) and has been operational since 1982. Fieldwork
was carried out between June 28th and 30th, 2013 in the Bonito River,
a tributary of the Tietê River. Twenty sampling points (P01-P20) were
selected, eight points with SAV (P03, P05, P09, P11, P13, P15, P17 e
P20) and twelve points without SAV (P01, P02, P04, P06, P07, P08,
P10, P12, P14, P16, P18 e P19) (Fig. 1c). An average total suspended
solids (TSS) of 1.52mg/L (range of 0.50 to 3.90mg/L) and average
chlorophyll-a concentration of 9.69 µg/L (values between 3.00 and
19.84 µg/L) were measured at the sampling points. The depth range
between 1.4 and 5.8 m were observed for points with SAV and between
8.2 and 22.7 m for points without SAV. SAV height, water column
depth, and GPS location were collected using an echosounder DT-X
(BioSonics Inc., Seattle, WA, http://www.biosonicsinc.com) mounted
under a boat that followed the paths indicated in yellow in Fig. 1c.

3. Data

3.1. In situ data

3.1.1. Hyperspectral data
Hyperspectral irradiance and radiance data were acquired using two

RAMSES optical radiometers (TriOS, Rastede, Germany, http://www.
trios.de) (Fig. 2). Both irradiance (ACC-VIS) and radiance (ARC-VIS)
sensors have 190 channels from 320 to 950 nm, and a spectral sampling
of 3.3 nm with an accuracy of 0.3 nm. A vertical profile of downwelling
irradiance (Ed, in mWm−2 nm−1) and upwelling radiance (Lu, in
mWm−2 nm−1 Sr−1) was acquired at each sampling location. Lu data
were acquired with a 7° field of view. Ed and Lu were collected in

multiple ways at all sampling locations including just above the water
surface, Ed(0+) and Lu(0+), just below the air–water interface, Ed(0–)
and Lu(0–), and at various depth intervals, Ed(Z) and Lu(Z), in the water
column. Profile measurements were conducted at every 0.5m depth
interval at each sampling location with SAV, and the last reading was
acquired at about 1m above the SAV canopy to prevent resuspension of
particles adhering to the plant (i.e., the epiphytic biomass), which could
have influenced the spectral response. A depth interval of 1.0m was
used for locations deeper than 10m up to a maximum depth equivalent
to about 1% of Ed(0–). An additional sensor was used to measure the
global solar irradiance (Es, in mWm−2 nm−1) on the boat, normalizing
the radiometric data. Cloud cover variability and changes in solar ze-
nith angle can cause variations in incident surface irradiance, it is
therefore strongly recommended that all scans be normalized to a
specific scan (Mueller, 2003).

3.1.2. Remote sensing reflectance
Above-water remote sensing reflectance (Rrs) was computed using

the in situ radiance and irradiance following the method proposed by
Dall’Olmo and Gitelson (2005) and Gitelson et al. (2008) (Eq. (1)).
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where

Lu(0–): is the upwelling radiance at nadir just below-surface;
Ed(0+): is the downwelling irradiance above-water;
t: is the transmittance at air-water interface (0.98);
n: is the refractive index of water relative to air (1.33);
Fi: is the spectral immersion coefficient.

In situ Rrs data were resampled to represent SPOT-6 bands so that
the model calibrated based on field data could be scaled up to SPOT-6
data. To simulate the Rrs(λ) for each SPOT band centered at wavelength
λ, weighted averages of the Rrs spectrum were calculated by using
spectral responses of SPOT-6 (Astrium, 2013, Fig. 3), as given below
(Eq. (2)).
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where Rrs(λ) is the spectral remote sensing reflectance; S(λ) is the band-
specific spectral response function of SPOT-6, and Rrs_i is the simulated
Rrs using in situ data representing SPOT-6 bands.

3.1.3. Attenuation coefficients – Kd and KLu

The Ed(Z) and Lu(Z) data are crucial in estimating water column
attenuation coefficients. Changes in cloud cover can modify the Es,
causing uncertainties in diffuse attenuation coefficient (K) profiles.
According to Mueller (2003), changes in cloud cover lead to variability
of the in-water light field which must be corrected to obtain accurate
estimations of optical properties from irradiance or radiance. Therefore,
accurate computation of Kd and KLu requires normalization of the Ed(Z)
and Lu(Z). The normalization factor NF(Z) for each reading was cal-
culated as:
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where

−E t[ (0 )]s : is the downwelling irradiance measured for the first scan
at time t(0−) on the boat;
E t Z[ ( )]s : is the downwelling irradiance measured at time t(Z) on the
boat.

Fig. 2 shows the downwelling irradiance measured on the boat (Es)
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which was used to calculate NF(Z). To normalize the spectral data and
eliminate noise due to changes in illumination, Eqs. (4) and (5) can be
used for Ed and Lu respectively.

′ =E Z E Z NF Z( ) ( ) ( )d d (4)

′ =L Z L Z NF Z( ) ( ) ( )u u (5)

where

′E Z( )d : is the normalized downwelling irradiance at depth Z;
E Z( )d : is the original downwelling irradiance at depth Z;

′L Z( )u : is the normalized upwelling radiance at depth Z;
L Z( )u : is the original upwelling radiance at depth Z.

The diffuse attenuation coefficients (K) were computed after the
normalization procedure. K is the parameter that represents the pro-
pagation of light through the water column. Diffuse attenuation

coefficients of downwelling irradiance (Kd) are important for char-
acterizing the water column because they can quantify the presence of
light at different depths and determine the depth of the euphotic zone
(Mishra et al., 2005). Radiance and irradiance decrease exponentially
with depth, therefore, Kd can be represented by (Mobley, 1994):

′ = ′ − −E Z E e( ) (0 )d d
K Zd (6)

where

′ −E (0 )d : is the downwelling irradiance just below-water;
Z: depth.

Analogous to Eq. (6), the attenuation coefficient of upwelling ra-
diance, KLu can be written as (Mueller, 2003):

′ = ′ − −L Z L e( ) (0 )u u
K ZLu (7)

Palandro et al. (2008) also estimated Kd using the Rrs from satellite

Fig. 1. Location of the Nova Avanhandava Reservoir in (a) Brazil and (b) São Paulo state. (c) The specific research site (Bonito River), with sampling stations with
SAV (green dots) and without SAV (red dots) and transects representing hydroacoustic data collection (yellow line). The underlying image is SPOT-6 bands 2, 1, 0 as
RGB (July 9th, 2013; WGS-84; UTM 22S). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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images (Rrs_s) and depth (Eq. (8)). In this study, Kd is described as Kd
P

and it was used in the models to retrieve the bottom reflectance (Eqs.
(9) and (10))

= × −R C ers s
K Z

_
2 dP

(8)

where

Rrs_s: above-water remote sensing reflectance of image for a pixel
with bottom depth Z;
C: pixel-independent constant.

The wavelengths used were green (560 nm) and red (660 nm)
bands. Blue (490 nm) and near infrared (NIR) (825 nm) bands were not
used because the blue band is strongly influenced by atmospheric

scattering, while NIR goes through intense attenuation in the water
column. Using these bands would have produced large errors in the
model output because of the residual scattering and attenuation in Blue
and NIR respectively even after implementing correction procedures.

3.1.4. Echosounder
Water column depth (Z) and SAV height data were collected using

the scientific digital sonar DT-X (Echosounder) (BioSonics, Seattle, WA;
http://www.biosonicsinc.com) during field campaigns carried out on
July 4th and 5th, 2013. The transducer, notebook and GPS were con-
nected to a surface unit with a dedicated processor for operation
(Biosonics, 2004a). The echosounder transducer was vertically posi-
tioned at 0.5m depth on the outside of the boat. The data collected
using the echosounder were visualized in real-time via the laptop and
stored in separate files for each transect. Echosounder data recorded in
numerous transects are shown in Fig. 1 (yellow lines). SAV was found in
many parts of the reservoir and E. densa and E. najas were the main SAV
species in the Bonito River (Fig. 4a).

Visual Acquisition software (Biosonics, Seattle, WA) was used to
control the acquisition of data and display echograms which describe
the submerged relief depth and the presence or absence of SAV. Fig. 4b
shows an echogram acquired during the fieldwork. After processing
through EcoSAV software (Biosonics, Seattle, WA), an ASCII file con-
taining the date, time of day, position (Lat, Long), depth (m), SAV
coverage (%), and mean height of the SAV (m) was generated
(Biosonics, 2008). The echosounder surveys were conducted employing
an appropriate spatial distribution and number of samples for the entire
study area, with over 15,000 points. The echosounder was calibrated
according to Biosonics recommendations (Biosonics, 2004b), using a
standard target sphere of known target strength (TS). The standard
target is optimized in size, material, material purity and dimensional
tolerances to result in high TS accuracy and stability. This echosounder
and the EcoSAV software were evaluated in advance. Biosonics digital
echosounder and EcoSAV have been used in previous studies, for ex-
ample, by Sabol et al. (2002) to detect SAV. Divers measured the dis-
tance between the transducer face, top of the SAV canopy, and the
bottom. Ground truth exhibited close agreement between true SAV
height and the hydroacoustic estimates (R2= 0.78). EcoSAV was also
used by Chamberlain et al. (2009), who found similar agreement be-
tween ground-truthed and hydroacoustic datasets. Moreover, they
showed that the spatial differences in SAV coverage and height were
accurately detected by the hydroacoustic method.

3.2. SPOT-6 data

SPOT-6 image acquired at 13:08:43 (GMT) on July 9th, 2013 was
obtained from Airbus Defense and Space/Geo-Intelligence. SPOT-6 and
SPOT-7, built by AIRBUS Defense & Space, ensure service continuity of
SPOT-4 and SPOT-5 satellites, which have been operating since 1998
and 2002. The revisit time is 1 day with SPOT-6 and SPOT-7 operating
simultaneously (Astrium, 2013). SPOT-6 has three bands in visible re-
gion and one band in near infrared (NIR): B0 (455–525 nm), B1
(530–590 nm), B2 (625–695 nm) and B3 (760–890 nm). The image was
acquired for Nova Avanhandava Reservoir with an across angle of
-6.6002° and along angle of 19.1336°, in WGS-84 coordinate system.
The Rrs from SPOT-6 image is represented as Rrs_s.

4. Methodology

4.1. Atmospheric correction of SPOT-6

Atmospheric correction of the SPOT-6 image was performed using
FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes) software. FLAASH is an atmospheric correction method
based on MODTRAN4 (MODerate spectral resolution atmospheric
TRANsmittance algorithm and computer model) code (Adler-Golden

Fig. 2. Hyperspectral data collection in the field. Es (Global solar irradiance)
and Ed (Downwelling irradiance) were measured using the irradiance sensor
ACC-VIS/RAMSES (TriOS, Rastede) and Lu (Upwelling radiance) was measured
using the radiance sensor ARC-VIS/RAMSES (TriOS, Rastede).

Fig. 3. Relative spectral response function of SPOT-6 (Astrium, 2013). Each
spectrum represents the sensitivity of a specific band. The blue (blue line),
green (green line), red (red line) and NIR (dark red line) bands have the centers
at 485, 560, 660, and 825 nm, respectively. The panchromatic band (black line)
covers wavelengths between 450 and 745 nm. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

L.H.S. Rotta et al. ISPRS Journal of Photogrammetry and Remote Sensing 144 (2018) 341–356

345

http://www.biosonicsinc.com


et al., 1999). The user must specify the appropriate input parameters
that characterize the atmospheric conditions and illumination/viewing
geometry at the time of image acquisition. The tropical atmospheric
model and the rural aerosol model were selected. The initial visibility
must be between 40 and 100 km if the weather condition is clear (ITT,
2009). Based on an empirical iterative approach, an initial visibility of
70 km was established. Others input parameters were set as, sensor
altitude: 695 km, ground elevation: 362m from msl, zenith angle:
161.5° and azimuth angle: 195° (−165°).

4.2. Bottom reflectance

In Nova Avanhandava Reservoir, SAV was found up to 10m depth
(Rotta et al., 2016), therefore, removing the water column response
from the remote sensing signal is fundamental to retrieving bottom
reflectance for SAV height mapping and analysis. Two different models
for retrieving bottom reflectance from Rrs (Rrs_i and Rrs_s) were used and
compared. The first method was proposed by Palandro et al. (2008) in
which Kd is used to remove the water-column attenuation effect from
Rrs in order to isolate the remote sensing reflectance of the bottom (Rrs

b)
(Eq. (9)). The second method is derived from Beer’s Law to retrieve the
irradiance reflectance (Eu/Ed) of the bottom (Rb) proposed by Dierssen
et al. (2003) (Eq. (10)). Hereafter, the models are referred to as PAL08
and DIE03. Average values of Kd and KLu for each band were used in
Eqs. (9) and (10) to derive bottom reflectance. The performance of both
models was compared. The green (560 nm) and red (660 nm) bands,
simulated for SPOT-6, were also used to retrieve the bottom using Kd

P.

= −R R exp K Z
0.54

( 2 )rs
b rs

d (9)

where

Rrs
b: remote sensing reflectance of the bottom;

=
−

−
R R Q

t
exp K Z
exp K Z

( )
( )

b rs b Lu

d (10)

where

Rb: irradiance reflectance of the bottom;
Qb: ratio Eu/Lu at the bottom interface and was assumed to be π;
t: transmittance of upwelling radiance and downwelling irradiance
across the air–water interface and was assumed as 0.54 (MOBLEY,
1994).

4.3. SAV height estimation

Chlorophyll-a and b are two of the most important pigments that
absorb light in the blue and red bands for vegetation photosynthesis.
Green light is absorbed less compared with the red and blue bands
which results in a reflectance peak around 550 nm (Mobley, 1994; Kirk,
2011). Absorption characteristics of plant canopies can be incorporated
in empirical models using vegetation indices (VIs) to identify stress,
biomass, productivity and other biophysical traits (Jensen, 2009; Ghosh
et al., 2016). Three VIs based on SPOT-6 derived Rrs

b and Rb at red
(660 nm) and green (560 nm) bands were used to calibrate the SAV
height models including a green-red vegetation index (GRVI, Eq. (11)),
a Slope model (Eq. (12)), and a band ratio (G/R, Eq. (13)). These in-
dices have been widely used to study terrestrial vegetation (Tucker,
1979; Motohka et al., 2010; Falkowski et al., 2005; Hunt et al., 2005;
Mishra et al., 2012). Although submerged, SAV presents structures si-
milar to terrestrial vegetation, so the VIs developed for a terrestrial
environment were assumed to work for submerged aquatic plants
provided necessary water column corrections have been implemented
on the remote sensing data.

=
−

+
GRVI R R

R R
560 660

560 660 (11)

=
−

−
Slope R R

660 560
560 660

(12)

=G R R
R

/ 560

660 (13)

R560 is the reflectance in green and R660 the reflectance in red
bands. R is replaced by Rrs

b derived from PAL08 (Eq. (9)) or Rb from
DIE03 (Eq. (10)). Ultimately the bottom reflectance data by PAL08 and
DIE03 were used in three indices (GRVI, Slope and G/R) to calibrate a
model for estimating SAV height. The model calibration was performed
using: (a) the simulated SPOT-6 bands from hyperspectral in situ data
(Rrs_i), and (b) the SPOT-6 image (Rrs_s).

The in situ SAV height models were calibrated based on eight points
(Fig. 1 – green dots) collected in the field campaign using a spectro-
radiometer, where the Rrs were resampled to SPOT-6 bands (Rrs_i). Due
to the low number of in situ sample points, validation was performed on
the Rrs_s from 100 random SPT-6 pixels at locations with SAV (indicated
by the echosounder). In other words, the calibrated model with the
eight points was applied to the 100 Rrs_s SPT-6 pixels selected for the
comparison between estimated (in situ model) and true (echosounder)

Fig. 4. (a) Area covered by SAV in the Bonito River, and (b) Echogram from echosounder Biosonics DT-X indicating regions of SAV canopy and bottom.
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SAV height values. The calibration and validation of the SPOT-6 image-
based SAV height models was performed using 206 Rrs_s pixels from
locations with SAV. Out of these 206 pixels, 106 were used in cali-
bration (model fit) and 100 pixels were used for validation (the same
pixels used in in situ SAV height model validation as described in the
previous section).

The models were evaluated based on R2, p-value, root mean squared
error (RMSE) (Eq. (14)), normalized root mean squared error (NRMSE)
(Eq. (15)) and bias (Eq. (16)). The RMSE, NRMSE and Pbias were cal-
culated just for models with significant p-value (p < 0.05).
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∑ −
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where

yi: is the measured value for the i observation;
̂yi : is the estimated value for the i observation;

ymax : is the maximum observed value;
ymin: is the minimum observed value.

Finally, both in situ data and SPOT-6 based models were applied to
the satellite image in order to estimate and map SAV height for the
entire study area. A mask was prepared based on echosounder data to
identify two regions, with and without SAV. The models were applied
only to the region with SAV.

5. Results and discussion

5.1. Remote sensing reflectance

Rrs calculated using Eq. (1) is shown in Fig. 5a for points without
SAV, Fig. 5b for points with SAV and Fig. 5c for the SPOT-6 bands
simulated (Rrs_s) for points with SAV. The most discrepant curve is P04
(point without SAV), showing high values of Rrs between green and red
spectral regions. There was higher TSS concentration, about 2mg L−1,
at P04 and it had the highest value of Kd PAR – photosynthetic active
radiation (about 1.5 m−1) (data not shown), which explains the higher
Rrs in 560–700 nm. Points P12, P14, P16 and P19 (without SAV) pre-
sented a smooth reflectance peak at around 700 nm, which might in-
dicate the presence of phytoplankton. The chl-a concentrations were
greater than 13 µg L−1 at these points. Rundquist et al. (1996) and
many other studies have verified high red-edge-NIR reflectivity of algal
chlorophyll in their experiments. Rrs at other points without SAV did
not show a red-edge-NIR peak due to low chl-a (between 3.0 and
9.9 µg L−1).

A general decrease in the magnitude of Rrs for SAV points was ob-
served from upstream to downstream locations, (i.e., from P03 to P20).
This behavior is strongly correlated with the spatial distribution of TSS
concentration, which exhibits the highest values in the upstream region
of the river. According to Jensen (2009), from 580 to 690 nm and NIR
(∼800 nm) reflectance increases if suspended matter increases.
Therefore, high overall Rrs at upstream locations could be a result of
high backscattering of TSS. A prominent reflectance peak near 700 nm
observed at SAV locations such as P20 indicates shallow water (1.4 m
for P20) with a strong bottom signal mainly from vegetation. This is
because a prominent 700 nm reflectance peak, a proxy for chl-a scat-
tering, indicates dominance of chl-a signal in Rrs either due to chl-a
from phytoplankton cells floating in the water column or chl-a from
SAV in optically shallow areas. The points with SAV, except for P20, are
at depths between 2.8 and 5.8m, which hinder the identification of

spectral features in Rrs curves indicating the presence of SAV. Similar
curves were presented by Watanabe et al. (2013) in regions of 2 to 3m
of water column overlying the SAV canopy in another Nova Avanhan-
dava Reservoir tributary. As shown in Fig. 5a and b, the difference
between Rrs at points with SAV and without SAV is practically im-
perceptible at relatively deeper regions. Therefore, bottom retrieval is
strongly recommended.

The simulated SPOT bands (Rrs_i) presented similar shape compared
to in situ Rrs; however, several spectral details were lost due to the
generalization. Rrs in the region around 700 nm, important for identi-
fication of chl-a in vegetation, was lost because of the lack of a band in
SPOT-6 for this range. The curves maintained the reflectance values in
the green (560 nm) and red (660 nm) bands even considering the wide
bandwidth of SPOT-6. The relationship between the green and red
bands was therefore preserved, which means the output of the equa-
tions using 560 and 660 nm from SPOT-6 data may present similar
results as in situ and Rrs_i data.

5.2. Attenuation coefficients – Kd and KLu

The attenuation coefficients, Kd and KLu, must be known to de-
termine the relationship between Rrs and Rrs

b or Rb. The attenuation
coefficient of upwelling and downwelling flux is not equivalent, be-
cause of the influence of signal originating from the bottom (Maritorena
et al., 1994). According to Dierssen et al. (2003), the upwelling flux
from the bottom is theoretically always greater than Kd, because the
bottom makes the angular structure of the light more isotropic. Fig. 6
shows Kd (a) and KLu (b) derived from in situ Ed and Lu data at locations
with SAV. Fig. 6c displays Kd

P, that is the Kd derived as the slope of
linear regression between depth and ln Rrs_s (Palandro et al., 2008) from
the SPOT-6 image.

Strong absorption was noted for Kd and KLu at 400–450 nm (Fig. 6a
and 6b), which may be caused by the presence of chl-a in the water and
mainly CDOM (Colored Dissolved Organic Matter). A peak was ob-
served at 650–700 nm for KLu, which may indicate the presence of chl-a
in the water, besides the upwelling signal from SAV on the bottom.
Lower values were detected between 550 and 600 nm, and there was an
increase in Kd and KLu above 600 nm, due to pure water absorption
which is higher in red and NIR, as presented by Pope and Fry (1997).
Chl-a absorption is characterized by strong absorption in the blue and
red spectral regions, peaking at 430 and 665 nm, respectively, with very
little absorption in the green (Mobley, 1994). According to Kirk (2011),
in inland waters, blue wavelengths are usually the most strongly atte-
nuated, due to the higher levels of CDOM typically found in this kind of
environment. Green light is usually the most penetrating wavelength in
inland water, followed by red.

The linear models between ln Rrs_s and depth presented satisfactory
fits. However, Kd

P values were significantly lower than Kd. Palandro
et al. (2008) used high reflectance bottom type (sand) at different
depths in a coastal area and assumed a negligible contribution of the
shallow-water column to the total signal for calculating Kd

P. In this
study, the presence of different SAV height on the bottom of the study
area causes absorption of light with diverse magnitudes. Also, sus-
pended solids and chl-a have strong interference on water absorption
and scattering. Consequently, the Kd

P value calculated from Rrs_s in
Nova Avanhandava was lower than Kd. However, Kd

P was used to test
its performance in models for retrieving Rrs

b and Rb.

5.3. Atmospheric correction of SPOT image

Atmospheric correction is generally evaluated by comparing Rrs

spectra from the images before (top of atmosphere – TOA) and after the
procedure at all sampling locations and comparing the pixels after at-
mospheric correction with corresponding ground-based measurements
(Mishra et al., 2007). Significant decreases in reflectance after atmo-
spheric correction are noted for Rrs, mainly in the blue band, caused by
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a strong Rayleigh scattering in the atmosphere. The Rrs decrease at red
and NIR bands is due to high absorption by the water itself. A peak in
the green band is observed after atmospheric correction, which in-
dicates the presence of chlorophyll and other absorbing components in

the water (Fig. 7).
In situ Rrs spectra acquired by RAMSES/TriOS sensors were simu-

lated to match the SPOT-6 sensor bands (Rrs_i) and were compared with
SPOT-6 atmospherically corrected Rrs_s at sampling points with different

Fig. 5. (a) In situ Rrs for sample points without SAV, (b) in situ Rrs for the sample points with SAV, and (c) Rrs_i simulated bands of SPOT 6 for points with SAV.

Fig. 6. (a) Kd derived from Ed, (b) KLu derived from Lu. Dashed lines represent the average values. (c) Scatter plot between Rrs_i and depth to obtain Kd
P using green

and red bands according to Palandro et al. (2008).
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conditions of water quality and bottom for performance validation
(Fig. 8). As described in the sections above, P04 (Fig. 8a) shows the
maximum Rrs value most likely due to the high concentration of sus-
pended solids (Secchi depth= 0.8m). P06 (Fig. 8b) is close to P04,
however, it has a lower concentration of suspended solids (Secchi
depth=2.6m), which decreases the Rrs value. P14 (Fig. 8c) has the
lowest Rrs values compared to other points without SAV (Fig. 8a and
8b), because of the high transparency of the water column (Secchi
depth=4.2m) even at greater depths. Fig. 8d (P03), 8e (P09) and 8f
(P11) represent the Rrs acquired at shallow points with SAV. Rrs at P03
(Fig. 8d) was higher than Rrs at P09 and P11, probably because of the
low SAV height of 0.2m (lower SAV height may absorb less radiation
than higher SAV height) and high suspended solids concentration
(closer to P04, with lower Secchi depth). P09 (Fig. 8e) and P11 (Fig. 8f)
have depths of 2.8 and 3.8 m, respectively, and SAV height of 0.7 (P09)
and 1.2m (P11). Due to their similarity, the Rrs values at P09 and P11
were similar.

5.4. Bottom reflectance

Rrs
b and Rb represent bottom reflectance after removing attenuation

by the water column. Fig. 9 represents the bottom reflectance of si-
mulated SPOT-6 green and red bands (bands used to calculate the in-
dices – Eqs. (11), (12) and (13)) based on PAL08 and DIE03. PAL08 and
DIE03 models produced different shapes of bottom reflectance spectra.
The main difference between PAL08 and DIE03 was the use of KLu by
DIE03, indicating that the upwelling and downwelling irradiance are
not equal, and therefore, the incorporation of KLu in bottom retrieval
process is important.

Different slopes between the green and red bands were observed in
Rrs

b from Fig. 9a (PAL08, using Kd) for all points, with greater value at
P20, followed by P09 and P15. However, this decrease in slope did not
accord with the observed SAV height (data not shown). Due to the
exponential behavior of PAL08 (Eq. (9)), Kd (or Kd

P) exerts a direct
influence on the Rrs

b values (Palandro et al., 2008). Since Kd
P values are

Fig. 7. Rrs of SPOT-6 bands at all sampling locations (a) before (TOA) and (b) after FLAASH atmospheric correction.

Fig. 8. Comparison between the Rrs of SPOT-6 data (Rrs_s) and in situ radiometer data (Rrs_i) for six different targets, showing validation of FLAASH atmospheric
correction model; (a), (b) and (c) are reflectance data acquired at deep water locations without SAV; (d), (e) and (f) are reflectance at locations with SAV.
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much lower than Kd, PAL08 Rrs
b based on Kd

P (Fig. 9c) are greater than
PAL08 Rrs

b using Kd (Fig. 9a). P03 and P05 presented similar Rb values
for green and red bands from DIE03 model (Fig. 9b and d) (i.e., low
slope), probably influenced by the high concentration of suspended
solids in that region. Based on Eq. (10), the higher the Kd value, the
greater the Rb value, if KLu remains constant. And because Kd is greater
than Kd

P, and KLu is constant, DIE03 Rb obtained using Kd
P (Fig. 9d) is

higher than DIE03 Rb using Kd (Fig. 9b). The high difference between
green and red reflectance for P20, P15, and P09 in Fig. 9d was high-
lighted, since they are at depths between 1.4 and 2.8 m, and with tall
SAV height.

5.5. Estimation of SAV height

PAL08 Rrs
b and DIE03 Rb and the SAV height data from echosounder

were used to calibrate SAV height models. Two types of model em-
pirical were developed, SAV models using SPOT-6 simulated in situ data
(Rrs_i); and models using atmospherically corrected SPOT-6 data (Rrs_s).

5.5.1. In situ SAV height models
PAL08 Rrs

b and DIE03 Rb retrieved using Rrs_i data from the eight
sampling locations with SAV (shown in Fig. 1) were used in the in situ
SAV height model calibration. Table 1 shows the performance of
models based on the VIs, such as GRVI, Slope and G/R. The validation
was performed using 100 pixels collected randomly from SPOT image
at locations with SAV. All SAV height models based on PAL08 Rrs

b (from
α1 to α6) presented R2 values lower than 0.3; moreover, p-values were
not significant (p < 0.05), ranging from 0.187 to 0.787. These results
may indicate that the PAL08 model was not suitable for retrieving the

bottom in inland waters, since the relationship between the VIs from
Rrs

b (or Rb) and SAV height was not significant. On the other hand, SAV
height models based on DIE03 Rb were significant with strong corre-
lation for most VIs except for Slope model (i.e., α8 and α11). In addi-
tion, SAV model α7, which uses GRVI, produced negative estimation
during validation.

The α7 and α10 presented similar performance compared to α9 and
α12 (R2, RMSE, NRMSE and Pbias), however models based on simple
two-band ratio, G/R were chosen mainly because of the simplicity in VI
calculation and also to cancel out any residual error propagated in the
bottom reflectance calculations. Both models, α9 and α12, showed si-
milar performance with RMSE of 0.52m and 0.58m respectively
(Fig. 10). Tucker (1979) similarly evaluated the relationship between
various VIs and blue grama grass based on in situ data. Using the simple
ratio G/R, the author obtained R2 of 0.78, 0.82 and 0.75 for total
chlorophyll, total wet biomass and total dry biomass respectively, de-
monstrating the potential of G/R in vegetation studies. Even though Kd

P

calculated based on Rrs_s as proposed by Palandro et al. (2008) has
exhibited high accuracy in ocean waters, it did not present convincing
results for this study area, probably because of the interference due to
the presence of SAV on the bottom and a higher concentration of total
suspended solids and chlorophyll-a when compared to oceanic en-
vironments.

5.5.2. SPOT-6 SAV height models
PAL08 Rrs

b and DIE03 Rb retrieved from 108 random pixels with
SAV were used to compute GRVI, Slope and G/R and calibrate the SAV
height models (see Table 2). The validation was performed using the
same 100 pixels for in situ SAV height model (i.e., 100 pixels with SAV

Fig. 9. (a) Rrs
b retrieved by PAL08 and (b) Rb retrieved by DIE03, using Kd. (c) Rrs

b retrieved by PAL08 and (d) Rb retrieved by DIE03, using Kd
P.
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collected randomly from the SPOT image). As opposed to the in situ SAV
height models, most of the SPOT-6 models including PAL08 models
produced significant p-values (lower than 0.05), except for β5, β10 and
β12. Models, β1 to β6, based on PAL08 did not yield an adequate fit (R2

between 0.028 and 0.291). PAL08 showed that it was not able to re-
trieve the bottom signal adequately in the studied area, since neither
the in situ data-based models nor the image-based models for estimating
SAV height provided satisfactory results with it. Further, the models
based on Kd

P (β4, β5, β6, β10, β11 and β12) did not yield an adequate
fit (poor R2 and/or p-value), which indicated that the procedure used to
calculate the Kd

P may not be suitable for inland waters, since it was
developed for coastal waters. Several models, while significant, pro-
duced poor correlations with R2 lower than 0.3. DIE03 derived β7 and
β9 were selected as the best models based on p-value (p < 0.05) and
R2. The t-test (significance level of 5% and degree of freedom, n=107)

was used for analyzing whether the difference between β7 and β9 is
representative. The t-test proved that there were no significant statis-
tical differences between these models. The RMSE (0.29m) were the
same for both models. Ultimately, β9 was selected for implementation
due to a slightly higher R2 (Fig. 11).

Four models exhibited significant p-value and R2 greater than 0.72,
based on the in situ data for SAV height estimates. DIE03 (Kd or Kd

P) was
used in these models to retrieve the bottom, applying GRVI and G/R in
the regression. The models based on the SPOT-6 image presented sa-
tisfactory results only when DIE03 was used with Kd (i.e., the use of Kd

P

did not produce reasonable results). Both models based on in situ data
and SPOT image obtained significant results when DIE03 was used with
Kd, and the G/R and GRVI indices presented similar results. Even
though Slope has been used successfully for detection of algal chl-a
concentration (Mishra and Mishra, 2010; Srichandan et al., 2015), all

Table 1
SAV height model calibration (n=8) and validation (n= 100) results using SPOT-6 simulated in situ Rrs_i data.

Rrs
b or Rb Model Equation R2 p-value RMSE (m) NRMSE (%) Pbias (%)

PAL08 (Kd) α1 SAV=−1.34(GRVI)+ 1.8727 0.0773 0.505 – – –
α2 SAV=53200(Slope)+ 0.7273 0.1340 0.373 – – –
α3 SAV=−0.0485(G/R)+ 1.2405 0.0565 0.571 – – –

PAL08 (Kd
P) α4 SAV=2.8635(GRVI)− 0.676 0.2150 0.247 – – –

α5 SAV=−4786.7(Slope)+ 1.032 0.0131 0.787 – – –
α6 SAV=0.3476(G/R)− 0.3266 0.2700 0.187 – – –

DIE03 (Kd, KLu) α7 SAV=2.9759(GRVI)− 0.0717 0.7377 0.006 0.52 27.2 59.5
α8 SAV=4765.8(Slope)+ 0.5321 0.1508 0.342 – – –
α9 SAV=0.7877(G/R)− 0.7118 0.7282 0.007 0.52 27.0 57.3

DIE03 (Kd
P, KLu) α10 SAV=2.4595(GRVI)+ 0.2857 0.7502 0.005 0.54 28.0 −46.4

α11 SAV=12060(Slope)+ 0.5929 0.2662 0.191 – – –
α12 SAV=0.8352(G/R)− 0.5578 0.7506 0.005 0.58 30.2 −50.0

Fig. 10. Best performing SAV models using in situ data. (a, b, c) Calibration, validation and residual for model α9; (d, e, f) calibration, validation and residual for
model α12.
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the models that used Slope, including in situ and image-based models,
showed low R2.

Models calibrated using field data usually present satisfactory re-
sults because of the absence of atmospheric interference. However, in
case of in situ SAV height models, the localized variations in Rrs_s may
have affected the fit of the model and increased the uncertainty.
Although R2 was greater than 0.7, the validation was weak showing a
large residual error (Fig. 10b and e). Both models presented similar
RMSE, but the validation of model α12 was poorer, with a random
spread (Fig. 10e). In addition, the residual of model α12 (Fig. 10f) was
−1.5m for samples with low SAV height (up to 0.5 m), so a strong
overestimation at locations with low SAV height was observed; thereby
model α12 was discarded from SAV height mapping. A slight increase
in estimated SAV height was noted with the increase in measured SAV
height when model α9 was applied (Fig. 10b), but an underestimation
was evident. The residual of that model (Fig. 10c) presented values
between 0 and 0.5m for SAV heights up to 0.7 m, which indicated a
slight underestimation. As the SAV height increased, the residual of
model α9 also increased. This suggests that the higher the measured
SAV, the higher the residual in model estimation (i.e., leading to an
underestimation in SAV height values).

SPOT-6 calibrated models presented a suitable fit, where a clear
tendency of the SAV height increasing was observed with increasing G/
R value (Fig. 11a). Even though the points were not all close to the 1:1
line (Fig. 11b), an appropriate adjustment was noted between the es-
timated and the measured SAV heights. Overall, a lower error was
produced (NRMSE=15.1%) using the image in comparison with the
model based on in situ data (NRMSE=27.0%). Residual values be-
tween −0.5 and +0.5 for model β9 (Fig. 11c) were produced for SAV
height up to 1m. In regions with SAV heights greater than 1m, the
residual was between 0 and 1m (underestimation); however, based on

field data (echosounder), < 25% of samples showed SAV higher than
1m. Overall, SPOT-6 image-based model was comparatively more ac-
curate in SAV height estimation than the in situ model. Some conditions
may explain the differences between these models, such as the number
of sample points, atmosphere interference, and environmental condi-
tions on the day of data acquisition. Ghosh et al (2016) observed a
similar phenomenon when comparing in situ reflectance-based VIs with
MODIS derived VIs. They concluded that fine-scale spectral variabilities
present in in situ reflectance data weaken the VIs’ performance in pre-
dicting biophysical parameters, whereas, satellite data are influenced
by a spatial averaging out effect which enhances the accuracy of VI
based empirical models.

5.5.3. SAV height map
Both in situ data (α9) and SPOT-6 (β9) based models were used to

estimate and map SAV height (Fig. 12a and b). The α9 model showed a
pattern of underestimation in SAV heights (Fig. 10b). Consequently, the
SAV height map generated from this model (Fig. 12a) presented low
values. Most classes are below 1m, which did not match the SAV height
measured in the field (echosounder). This fact was confirmed by the
histogram of the image, with most values between 0.0 and 0.6 m. The
model calibrated with the image (β9) presented satisfactory results with
RMSE lower than 0.3m. The predominance of SAV height was noted
between 0.4 and 1.0m, which can be observed in both the thematic
map and the histogram (Fig. 12b). In the highlighted inset, there is a
region where the SAV height is greater than 1m, which was confirmed
by the ground-based data. A higher transparency (lower Kd) was noted
in downstream regions (P20 for example), which can improve the SAV
growth. The lower Kd is caused by the slow water flow due to the dam
and greater depths that favor the deposition of suspended solids on the
bottom. In upstream regions (P01 to P09), a lower SAV height was

Table 2
SAV height model calibration (n=108) and validation (n=100) results using atmospherically corrected SPOT-6 Rrs_s data.

Rrs
b or Rb Model Equation R2 p-value RMSE (m) NRMSE (%) Pbias (%)

PAL08 (Kd) β1 SAV=−1.0418(GRVI)+ 1.4631 0.1673 0.000 0.38 20.0 2.1
β2 SAV=20187(Slope)+ 0.6554 0.0724 0.005 0.40 20.6 4.0
β3 SAV=−0.032(G/R)+ 1.0157 0.291 0.000 0.34 17.6 −0.1

PAL08 (Kd
P) β4 SAV=−1.0374(GRVI)+ 1.2243 0.0885 0.002 0.39 20.1 1.5

β5 SAV=2645.6(Slope)+ 0.625 0.028 0.083 – – –
β6 SAV=−0.1413(G/R)+ 1.1586 0.1146 0.000 0.38 19.5 0.8

DIE03 (Kd, KLu) β7 SAV=3.157(GRVI)+ 0.2915 0.5261 0.000 0.29 14.8 7.7
β8 SAV=3480.9(Slope)+ 0.5658 0.1529 0.000 0.37 19.0 4.9
β9 SAV=1.2077(G/R)− 0.8987 0.5431 0.000 0.29 15.1 8.7

DIE03 (Kd
P, KLu) β10 SAV=0.3291(GRVI)+ 0.6078 0.0036 0.540 – – –

β11 SAV=5270.9(Slope)+ 0.6228 0.0954 0.001 0.38 19.9 4.76
β12 SAV=0.0803(G/R)+ 0.5535 0.005 0.468 – – –

Fig. 11. Calibration (a) and validation (b) of DIE03 based β9 using atmospherically corrected SPOT-6 image.
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noted mainly because of the higher Kd. Therefore, the SAV height dis-
tribution in the studied area corroborated with the SAV height dis-
tribution presented in the maps (Fig. 12) (i.e., taller SAV in downstream
regions and lower SAV height in upstream regions).

The SAV height profiles (transect) based on field data acquired by
the echosounder calculated using the in situ model and based on the
SPOT-6 image model are shown in Fig. 13. These transects were ac-
quired in nine regions distributed throughout the study area (i–ix in
Fig. 12a and a-i in Fig. 13). A strong similarity was observed between
the curves based on in situ data and those based on image data, that is, if
an increase (or decrease) in SAV height based on the in situ model was
noted, the same happened with the SAV height based on SPOT-6. In
addition, the values of the SAV height calculated using image model
were always higher than the values calculated from the in situ data
model, which was expected, since both models used for SAV mapping
were calibrated using the G/R index and the bottom reflectance re-
trieved by DIE03 (with Kd). The image-based model (β9) presented
higher SAV height values than the in situ data-based model (α9). In
general, a slight overestimation was observed in the β9 model and an
underestimation in the α9.

In the downstream regions, where taller SAVs were observed
(Fig. 13a and b), there was difficulty in accurately estimating the SAV
height greater than 1m. In upstream regions (Fig. 13g, h and i, for
example), both α9 and β9 models predicted SAV heights in good
agreement with ground-truth. Therefore, based on adjusted models, the
SAV height was estimated with higher accuracy in regions with shorter
plants. Regions with SAV height lower than 1m presented better esti-
mation than regions with SAV height higher than 1m. In the middle of

the reservoir (Fig. 13d–f), with SAV height between 0.2 and 1.2m, it
was observed that the image-based model presented a behavior closer
to ground-truth. Overall, the model based on the SPOT-6 image pre-
sented more accurate results.

6. Conclusion

This study presented a comprehensive methodology to generate
SAV height distribution maps using both in situ and SPOT-6 satellite
data. Only a handful of studies can be found on bottom reflectance
derivation of benthic habitats using satellite data and none of the stu-
dies involve the use SPOT-6 data. Despite the difficulties in estimating
SAV heights from inland waterbodies due to their optical complexities,
the results provide useful initial evidence that it may be possible to use
existing radiative transfer models to map them with adequate accuracy.
The importance of accurate bottom reflectance retrieval for SAV height
models has been emphasized in this study. Two widely used bottom
reflectance models, proposed by Dierssen et al. (2003) and Palandro
et al. (2008) were used with both SPOT-6 simulated in situ reflectance
data and actual atmospherically corrected SPOT-6 data to derive
bottom reflectance and develop SAV height models. This study also
demonstrates the performance comparison of both models.

The model calibrated using in situ data presented a greater R2, but
with an underestimation of SAV height and high RMSE. This could ei-
ther be due to the low number of sampling points (n=8) used in ca-
libration which may not be sufficient to build a robust prediction model
or greater sensitivity of Rrs_i point data to localized variations in opti-
cally active constituents in water. Consequently, a greater number of

Fig. 12. SAV height map in the Bonito River based on models (a) α9 using in situ data and (b) β9 using the atmospherically corrected SPOT-6 image. Regions
indicated as i, ii, iii, iv, v, vi, vii, viii and ix are transects in which SAV height distribution was extracted for further analysis.
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sample points in calibration using in situ data is recommended for future
research. Overall, the model based on the SPOT-6 image yielded more
accurate results. Furthermore, regions with SAV lower than 1m pre-
sented better estimation than regions with SAV higher than 1m. The
finding is quite significant because the bottom signal detection is
hampered by the water column even for shallow waterbodies, and the
maximum depth of SAV occurrence in the study area is high (around
10m). Not many benthic reflectance studies have worked well in such
deep waters. For example, Dogan et al. (2009) and Heblinski et al.
(2011) showed SAV mapping with high accuracy, however, the max-
imum depth was about 3.5m. The SPOT-6 based SAV model may have

benefited from the average-out effect often experienced by satellite data
compared to corresponding in situ optical data. Based on significant
estimation of SAV height using a multispectral satellite sensor, SPOT-6,
it is recommended to test the procedure using other sensors with dif-
ferent spectral and spatial resolutions. For future research, the use of
per-pixel values of Kd and KLu is suggested to retrieve the Rrs

b and Rb in
each region, since these values are different at each sampling point. The
results could then be compared to the models developed in this study,
where the average Kd and KLu were used to estimate SAV height.

Inland waters including hydroelectric reservoirs face numerous
problems due to the uncontrolled growth in SAV which is expected to

Fig. 13. Transects of measured SAV height (ground based – green line) in comparison with the SAV height calculated using in situ-based data (gray line) and image-
based (black line) models. (a), (b), (c), (d), (e), (f), (g), (h) and (i) represent the regions i, ii, iii, iv, v, vi, vii, viii and ix -indicated in Fig. 12a respectively.
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increase in future because of nutrient pollution and climate change.
Sonar surveys have been used to monitor SAV growth, but with high
cost and time. Collecting SAV biomass samples in the field is quite
challenging compared to SAV height which can be used to compute
biomass instead. Using satellite-based models could be the only viable
way, in terms of cost and temporal frequency, to perform periodic
mapping of SAV height in inland waters which can significantly aid in
ecosystem management. Although the initial results presented in this
study are encouraging, the method needs to be further evaluated across
different species, seasons, and turbidity regime, and at various other
waterbodies to test its robustness and geographic scalability. Only then
the proposed procedure can be used in other inland waters where part
of the radiation reaching the bottom returns to the surface of the water,
thus being detectable by remote sensing.
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