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Abstract This paper presents two models for hepatitis B, both given by fractional differen-
tial equations. The first model is formulated without parameters that indicate drug therapy,
while the second one considers the drug therapy. The basic reproduction number and the
stability analysis are considered for both models. Moreover, some numerical simulations by
nonstandard finite difference schemes are presented. The numerical results show that the
solutions converges to an equilibrium point as predicted in the stability analysis.
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1 Introduction

The hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B
virus (HBV). It is a major global health problem that affects approximately one hundred
million people (Ferreira 2000). It can cause chronic infection and puts people at high risk
of death from cirrhosis and liver cancer. For example, in Brazil at least 15% of population
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Fig. 1 Diagrammatic representation of the mathematical model for hepatitis B without therapy

have been infected with the virus and about 1% with the chronic liver disease (Forde et al.
2016; Lewin et al. 2001). The transmission can occur through sexual relationships and blood
transmission. Themain symptoms are fever, fatigue, loss of appetite, nausea, vomiting among
others (Degertekin and Lok Anna 2009; Ferreira 2000).

Mathematical models have been used to analyze viral infection dynamics of HIV and
hepatitis B and C over time. Especially for hepatitis B, there are a lot of mathematical models
which describe the dynamics of this disease (Ciupe 2007; Forde et al. 2016; Zhou and Sun
2014). These models, usually, are given by a ordinary differential equation (ODE) system
usually considering three state variables at the time t : target cells, T (t), infected cells, I (t),
and free virus, V (t). Most of these models do not consider parameters that include drug
therapy in its formulation (Ciupe 2007; Degertekin and Lok Anna 2009; Forde et al. 2016).
Figure 1 shows the schematic representation of this disease.

Therefore, the dynamics of the model are governed by the following classical system of
ODE equations:

⎧
⎨

⎩

T ′(t) = s̄ − d̄T − β̄V T + ρ̄ I
I ′(t) = β̄V T − δ̄′ I − ρ̄ I
V ′(t) = p̄ I − c̄V

(1)

where d̄ is the death rate of target cells, δ̄′ is death rate of infected cells, ρ̄ rate of cure, i.e.,
noncytolytic loss of infected cells, δ̄ = δ̄′ + ρ̄ net loss rate of infected cells, c̄ free virus
clearance rate, p̄ is the rate of production of virus per infected cell, β̄ rate of infection of
new target cells and s̄ rate of production of new target cells. The units of all the parame-
ters are time−1. Initial values for T (t), I (t), V (t) have to be considered, T (0), I (0), V (0),
respectively.

Several studies (Lewin et al. 2001; Nowak et al. 1996) have modified model (1) to include
antiviral drug therapy. Treatment with some drug inhibits the formation of new virion. This
means that under drug therapy the production rate of new virion, p̄, is decreased. Since the
drug efficacy is ε̄, then under therapy the production virion rate is (1 − ε̄) p̄. When the drug
is 100% (ε̄ = 1) efficient, it leads to the complete suppression of new virion production. To
incorporate the possibility of therapy affecting infection, a parameter that accounts for the
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efficacy of the drug in blocking new infection is introduced, c̄, so that the infection rate in
the presence of drug is (1 − c̄)β̄ (Ferreira 2000; Lewin et al. 2001).

On the other hand, the non-integer order calculus, i.e., the branch of calculus that dealswith
derivatives and integrals of non-integer order, traditionally known as fractional calculus (FC)
(Camargo and de Oliveira 2015; Debnath 2003; Ortigueira and Machado 2015; Podlubny
1999), has played a fundamental role in the modeling of several problems. Since fractional
derivatives are not local operators, they proved to be accurate to describe processes with
memory, i.e., calculating time-fractional derivative at point time requires the previous time
(Camargo and de Oliveira 2015), as is the case of many biological systems (Arafa et al.
2016). Besides, fractional differential equation is a possible tool to reduce the errors arising
from the neglected parameters in the usual modeling of real-life phenomena (Diethelm 2004;
Matignon 1996; Kuroda et al. 2017; Okyene and Oduro 2016; Podlubny 1999; Varalta et al.
2014).

For example, in medicine, it has been shown that the electrical conductance of the mem-
branes of cells of biological organism have fractional order. As a result, they can be classified
into groups of non-integer order models (Varalta et al. 2014). Fractional derivatives embody
essential features of cell rheological behavior and have enjoyed greatest success in the field
of rheology (Arafa et al. 2016). Besides that, models in HIV made it clear that fractional
models are more approximate than their integer order form (Arafa et al. 2016; Diethelm et al.
2005).

This paper proposes and solves a fractional version of the usual models for hepatitis B
and is organized as follows. In Sect. 2, some definitions of fractional calculus in the sense of
Riemann–Liouville, Caputo and Grunwald–Letnikov are presented. In Sect. 4, the fractional
models are presented in terms of fractional differential equations (FDE) and the stability
is analyzed. In Sect. 5, some numerical simulations are shown. Finally, Sect. 6 brings the
concluding remakes.

2 Preliminary concepts

In this section, somebasic definitions, special functions andproperties of theFCare presented.

Definition 2.1 Let f : R → R be a differential function and α ∈ C such that Re(α) > 0.
The Riemann–Liouville operator of order α of f (t), t ∈ R, denoted by I α f (t), is defined
as1

Iα f (t) = φα(t) ∗ f (t) =
∫ t

0

(t − τ)α−1

	(α)
f (τ ) dτ, (2)

where the symbol ∗ denotes the Laplace convolution and φα(t) is the Gel’fand–Shilov func-

tion, defined for α /∈ Z−, as φα(t) =
⎧
⎨

⎩

tα−1

	(α)
, if t ≥ 0

0, if t < 0
and 	(α) is the Gamma function.

For convenience, we defined I 0 f (t) = f (t).

Definition 2.2 Let f : R → R be an differential function, α ∈ Cwith Re(α) > 0 andm the
natural number, such that, m − 1 < Re(α) ≤ m. The Caputo fractional derivative of order α

1 Note that, from Definition 2, that Iα tβ = tβ+α	(β + 1)/	(β + α + 1), i.e., the polynomial case is a
recovered if α, β ∈ N.
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is defined as
Dα f (t) = Im−α Dm f (t) = φm−α ∗ Dm f (t). (3)

Since I 0 f (t) = f (t), if α ∈ N then the usual derivative is recovered. Also fromDefinition

2.2, Dαtβ = tβ−α	(β+1)
	(β−α+1) , i.e., the classical result is obtained if α = m and β = n, with

n,m ∈ N, including the case where β is zero, i.e., the derivative of the constant function is
zero.2

2.1 Laplace transform

Letα ∈ C andm be like inDefinition 2.2, then fromEq. (3) and Laplace convolution theorem,
the Laplace transform of Caputo Fractional derivative of order α is obtained as follows:

L[Dα f (t)] = L[φm−α ∗ Dm]
= L[
m−α(t)]L[Dm]
= sα−m L[Dm f (t)].

As a result,

L[Dα f (t)] = sαF(s) −
n−1∑

k=0

f (k)(0)sα−k−1. (4)

2.2 Mittag–Leffler functions

Here we present the Mittag–Leffler functions.

Definition 2.3 The classical Mittag–Leffler function (MLF) and its generalization with two
parameters are complex functions, defined for all z ∈ C, depending on a complex parameters
and defined, respectively, as

Eα(z) =
∞∑

n=0

zn

	(nα + 1)
, Eα,β(z) =

∞∑

n=0

zn

	(αn + β)
, Re(α), Re(β) > 0. (5)

It comes from Eq. (5) that E1(z) = ez and Eα,1(z) = Eα(z). Besides that, the classical
MLF function recovers the most important aspect of the exponential function, i.e., taking the
Caputo fractional derivative we obtain

dα

dtα
Eα(tα) = Eα(tα).

This is the reason why some authors refer to MLF functions as the fractional generalization
of the exponential function (Camargo and de Oliveira 2015).

The Laplace transform to MLF function with two parameters is given by

L
[
tβ−1Eα,β(a tα)

] = sα−β

sα − a
and L−1

[
sα−β

sα − a

]

= tβ−1Eα,β(a tα). (6)

where |a/sα| < 1. For recovering the Laplace transform of the classical MLF function,
consider β = 1 in the previous equations (Camargo and de Oliveira 2015).

2 This fact is one of themain differences between the fractional derivatives of Camargo and deOliveira (2015).
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3 Grunwald–Letnikov operator

Next operator is very useful to obtain numerical solutions of fractional differential equations.

Definition 3.1 The Grunwald–Letnikov operator (GL) is given by

Dα
GL f (t) = lim

h→0
h−α

[k]∑

j=0

w
(α)
j f (t − jh) t ∈ [0, t f ], (7)

where 0 < α < 1, [k] is the integer part k = t−a
hk

, a and t are the real limits of operator Dα,

which denote the fractional derivative, hk > 0 is the step-size, t f is the final time and w
(α)
j

are the weights the coefficients in the power series expansion of (1 − ξ)α, i.e.,

(1 − ξ)α =
∞∑

j=0

w
(α)
j ξ j , wα

j = 	( j − α)

	(−α)	( j + 1)

and, fromapractical point of view, they canbe evaluated recursively bymeans of the following
recurrence:

w
(α)
0 = 1 , w

(α)
j =

(

1 − 1 + α

j

)

w
(α)
j−1 , j = 1, 2, . . . (8)

w
(α−1)
0 = 1 , w

(α−1)
j =

(

1 − α

j

)

w
(α−1)
j−1 , j = 1, 2, . . . . (9)

Lemma 3.2 Let 0 < α < 1 and w
(α)
n , w

(α−1)
n be the weights of GL operator. Then for any

n = 1, 2, . . . −1 < w
(α)
n < 0 and 0 < w

(α−1)
n < 1.

4 Fractional modeling of hepatitis B

Nowwewill present two fractionalmodels for hepatitis B, the firstmodel is presentedwithout
the drug therapy, while the second one has parameters that simulate the drug effect in the
dynamics of the disease. Both models are based on model (1) presented by Lewin et al.
(2001).

The main motivation of considering a fractional-order hepatitis B model in this paper is
that FC has a relation with memory system. Such cells learn from their experience of fighting
any threat. Sowhenwe usemodels with ordinary differential equations, thesememory effects
are neglected (Forde et al. 2016; Kuroda et al. 2017; Salman and Yousef 2017; Varalta et al.
2014).

4.1 Model of hepatitis B virus (HBV) without drug therapy

To consider the fractional version of the system (1), it is relevant to analyze the dimensions,
so the fractional system does not produce inconsistencies. Indeed, there are several equivalent
ways to take this in count; for example, inDokoumetzidis et al. (2010), the authors transform a
system of ODEs into a system of integral equation and by choosing an appropriated kernel (in
terms of the Gel’fand–Shilov function) introduce the Riemann–Liouville fractional integrals
(Podlubny 1999), finally, taking the usual derivative a system of FDEs, with appropriated
dimensions and Riemann–Liouville derivatives is obtained.
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Since in our applications
d

dt
has the unit of day−1,

dα

dtα
has the unit of day−α , taking

0 < α ≤ 1and τ aparameter that possesses the dimensionof day, then theunit of

[
1

τ 1−α

dα

dtα

]

is day−1 (Podlubny 2002). As a result, the fractional version of Eq. (1) can be introduced in
the following way (Gómez et al. 2012):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

τ 1−α
DαT (t) = s̄ − d̄T − β̄V T + ρ̄ I

1

τ 1−α
Dα I (t) = β̄V T − δ̄′ I − ρ̄ I

1

τ 1−α
DαV (t) = p̄ I − c̄V .

(10)

Naturally, if a = τ 1−α ā, for every constant a, we may rewrite the system as
⎧
⎨

⎩

DαT (t) = s − dT − βV T + ρ I
Dα I (t) = βVT − δ′ I − ρ I
DαV (t) = pI − cV .

(11)

where Dα is Caputo derivative of order α, 0 < α ≤ 1. The meaning of the parameters are
similar to system (1) presented in Sect. 1. Note that now the units of the each parameter in
system (11) are time−α and each one of them depends on τ (Dokoumetzidis et al. 2010).

To prove that the solution of system (11) is non-negative, we introduce the following
Lemmas.

Lemma 4.1 Generalized mean value theorem (Odibat and Shawagfeh 2007). Suppose that
f (x) ∈ C[a, b] and Dα f (x) ∈ C(a, b], for 0 < α ≤ 1, then

f (x) = f (a) + 1

	(α)
(Dα f )(ξ)(x − a)α

where a ≤ ξ ≤ x, for all x ∈ (a, b].
Lemma 4.2 Assume that f (x) ∈ C[a, b] and Dα f (x) ∈ C(a, b] for 0 < α ≤ 1. If
Dα f (x) ≥ 0, for all x ∈ (a, b), then f (x) is nondecreasing for each x ∈ [a, b]. If
Dα f (x) ≤ 0, for all x ∈ (a, b), so f (x) in non-increasing for each x ∈ [a, b].
Theorem 4.3 There is a unique solution to system (11) and the solution will remain in R3+.

The proof of existence and unity can be seen in Odibat and Shawagfeh (2007). In the follow-
ing, we will show that the domain R

3+ is a positively invariant set.

Proposition 4.4 The region� = {(T (t), I (t), V (t)) : 0 ≤ T (t)+ I (t) ≤ 1 , 0 ≤ V (t) ≤ 1}
is a positively invariant set for system (11).

Proof Suppose T (0) + I (0) ≤ 1 and V (0) ≤ 1. Then, in the system (11), we get

Dα(T (t) + I (t)) = s − dT (t) − δ′ I (t)
≤ s + dT (t) + d I (t).

From the Laplace transform properties

L[T (t) + I (t)] ≤ λ−1s

λα − d
+ λα−1

λα − d
[T (0) + I (0)],
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where λ is the Laplace transform parameter and Re(λ) > 0. We can rewrite last inequality
as

L[T (t) + I (t)] ≤ λα−(1+α)s

λα − d
+ λα−1

λα − d
[T (0) + I (0)]. (12)

Applying L−1 we have

L−1[L[T (t) + I (t)]] ≤ L−1

[
sλα−(1+α)

λα − d

]

+ L−1
[

λα−1

λα − d

]

[T (0) + I (0)]

≤ t (1+α)−1Eα,1+α(dtα)s + Eα,1(dt
α).

Using the identity to ML function, Eα,β(z) = zEα,α+β(z) + 1

	(β)
, Machado (2003)

T (t) + I (t) ≤ [t2αsd + 1]Eα,1(dt
α) + 1

From convergence of ML function (Machado 2003), we conclude 0 ≤ T (t) + I (t) ≤ 1.
Using the same sort of calculation, we can show that 0 ≤ V (t) ≤ 1.

4.2 Equilibria and asymptotical stability

Now the existence and stability of the equilibrium points of system (11) is presented. To
prove the locally asymptotical stability of equilibria of system (11), the following Theorem
is useful.

Theorem 4.5 (Ahmed et al. 2007) The equilibrium (x∗, y∗) of the following fractional-order
differential system

⎧
⎨

⎩

Dαx(t) = f1(x(t), y(t))
Dα y(t) = f2(x(t), y(t))
x(0) = x0, y(0) = y0.

(13)

is locally asymptotically stable if all the eigenvalues of the Jacobian matrix, J, evaluated at

the equilibrium satisfy the following condition |arg(λi )| >
απ

2
.

Theorem 4.6 System (11) has the disease-free equilibrium point

P0 = (T 0, I 0, V 0) =
( s

d
, 0, 0

)
, (14)

for all the values of the parameters in this system, whereas only if R0 > 1, there is (unique)
endemic equilibrium point as

P1 = (T 1, I 1, V 1),

T 1 = −c(δ′ + ρ)

pβ
,

I 1 = βps − cd(δ′ − ρ)

βpδ′ ,

V 1 = sp

δ′c
− d(δ′ − ρ)

βδ.
. (15)
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4.2.1 The basic reproduction number R0

Definition 4.7 The basic reproduction number, denoted by R0, is the expected number of
secondary cases produced, in a completely susceptible population, by a typical infective
individual.

Remark 4.8 For simple infectious processes, this parameter determines a threshold, that is, if
R0 > 1 an initial infection generates a secondary infection, i.e., a proliferation of the disease
is spectated. On the other hand, if R0 < 1 an initial infection creates less than one secondary
infection, it causes the extinction of the disease (Diekmann et al. 2009; Dietz 1983).

Remark 4.9 The basic reproduction number, R0, for hepatitis B is the number of new infected
cells that will appear from a single infected cell.

Motivated by Driessche and Watmough (2002) we calculate this parameter to system (11).
Consider the follow system, which describes two populations, I (t) and V (t). The first one
represents the production of new infections and the second one gets the change in the state
of infected individuals.

{
Dα I (t) = βV (t)T (t) − δ′ I (t) − ρ I (t)
DαV (t) = pI (t) − cV (t)

(16)

Computing the Jacobian matrix of system (16) evaluated at the disease-free point (14), we
get F and V matrices.

F =
∣
∣
∣
∣
∣

0 β
s

d
p 0

∣
∣
∣
∣
∣
, V =

∣
∣
∣
∣
−δ′ − ρ 0
0 −c

∣
∣
∣
∣ . (17)

Then, K = −V−1F =
∣
∣
∣
∣
∣
∣

0 β
s

d(δ′ + ρ)
p

c
0

∣
∣
∣
∣
∣
∣
. The eigenvalues of K are

λ1 = +
√

pβs

c(δ′ + ρ)d
, λ2 = −

√
pβs

c(δ′ + ρ)d
.

Therefore,3

R0 = pβs

c(δ′ + ρ)d
. (18)

Theorem 4.10 The disease-free equilibrium P0 is locally asymptotically stable if R0 < 1.

Proof Computing the Jacobian matrix of system (11) evaluated at the disease-free point, P0,
one gets

J (P0) =
∣
∣
∣
∣
∣
∣

−d ρ −βs
d

0 δ′ − ρ
sβ
d

0 p −c

∣
∣
∣
∣
∣
∣
. (19)

3 As made in Driessche and Watmough (2002) the basic reproduction number will be the biggest eigenvalue
of K . For convenience, we omit the square root.
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and consequently, the eigenvalues of J (P0) are

λ1 = −d, λ2 = −(δ + c) − √
�

2
, λ3 = −(δ + c) + √

�

2
where

� = (δ + c)2 + 4β
s

d
p − 4cδ.

= δ2 + 2δc + c2 + 4β
s

d
p − 4cδ

= (δ − c)2 + 4β
s

d
p

Then � > 0. If R0 < 1 we observe β s
d p < cδ. Then

� < (δ + c)2 + 4cδ − 4cδ

� < (δ + c)2.

It is easy to see that λ1 and λ2 are negative numbers. On the other hand,

λ3 = −(δ + c) + √
�

2
<

−(δ + c) + √
(δ + c)2

2
= 0.

Therefore, λ3 < 0. Then, we have that all eigenvalues of the Jacobian matrix at J (P0) are
negative, i.e., |arg(λi )| = π, i = 1, 2, 3, and from Theorem 4.5, we have the disease-free
equilibrium point as locally asymptotically stable.

Now the local stability of the endemic equilibrium point P1 is shown. First the definition
of an additive compound matrix (ACM) is presented (Tumwiine 2007).

Definition 4.11 Let A be any n × m matrix of real and complex numbers, and let ai1,..., jk
be the minor of A determined by the rows (i1, . . . , ik) and the columns ( j1, . . . , j2), 1 ≤
i1 < i2 < · · · < ik < n, 1 ≤ j1 < j2 < · · · < jk < m. The kth multiplicative compound

matrix, Ak , of A is the

(
n
k

)

×
(
n
k

)

matrix whose entries, written in a lexicographic order,

are ai1,..., jk . When A is a n ×m matrix with columns, a1, a2, . . . , ak, then Ak is the exterior
product a1 ∧ a2 ∧ · · · ∧ ak .

Definition 4.12 If A = ai j is a n × n matrix, its kth additive compound A[k] of the A is the
(
n
k

)

×
(
n
k

)

matrix given by A[k] = |D(I + hA)(k)| = 0, where D is a differentiation with

respect to h. For any integer i = 1, . . . ,

(
n
k

)

, let (i) = (i1, . . . , ik) be the ith member in the

lexicographic ordering of all k − tuples of integers such that 1 ≤ i1 < i2 < · · · < ik ≤ in .
Then,

bi j =
⎧
⎨

⎩

ai1i1 + · · · + aik ik , if (i) = ( j)
(−1)r+sais ir , if is does not occur in ( j) and js does not occur in (i)
0, if (i) differs from ( j) in two or more entries.

Remark 4.13 For n = 3, the matrices A[k] are

A[1] = A, A[2] =
⎡

⎣
a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

⎤

⎦ , A[3] = a11 + a22 + a33.
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Lemma 4.14 Let M be a real matrix 3 × 3. If tr(M) < 0, det(M) < 0 and det(M [2]) < 0,
then all eigenvalues of M have negative real part.

This Lemma is stated and proved in McCallemail and David (2009).

Theorem 4.15 The endemic equilibriumpoint, P1, is locally asymptotically stable if R0 > 1.

Proof The Jacobian matrix of system (11) in the endemic equilibrium point, P1, is given by

J (P1) =

∣
∣
∣
∣
∣
∣
∣

−βps−cdρ
cδ ρ − c(δ+ρ)

p
βps−cdδ−cdρ

δc δ − ρ
c(δ+ρ)

d
0 p −c

∣
∣
∣
∣
∣
∣
∣

. (20)

Since R0 > 1 it is easy to see that tr(J (P1)) = −βps + cdρ

(δ − ρ)c
− ρ − c < 0.

Then,

det(J (P1)) = −(δ − ρ)

δ − ρ
[(βps − cdδ) + βps + cdδ]

= 1

δ − ρ
[−δ(βps − cdδ) + ρ(βps − cdδ)]

= −(βps − cdρ).

Therefore, as all are constant positive parameters and from the hypothesis R0 > 1 → βps >

cdδ, it follows that det(J (P1)) < 0.
Let J [2](P1) be the additive compound matrix.

J [2](P1) =
∣
∣
∣
∣
∣
∣

−Vβ − d − δ −Tβ Tβ

p −Vβ − d − c ρ

0 βV −ρ − c.

∣
∣
∣
∣
∣
∣
.

Then,

det(J [2](P1)) = (−Vβ − d − ρ)(−Vβ − d − c)(δ − c) + TβpβV

−[βVρ(−Vβ − d − ρ) − Tβp(−δ − c)]
= − [δ(Vβ + d + δ)(Vβ + d + c) + c(Vβ + d + δ)(Vβ + d + c)

−βV p(Vβ + d + δ) + δ(Tβp) + c(Tβp)] < 0.

Therefore, det(J [2](P1)) < 0 and from Lemma 4.14, the equilibrium point P1 is locally
asymptotically stable. ��
4.3 Model of hepatitis B virus (HBV) drug therapy

Now, to understand the various action modes of antiviral therapy in the solution of system
(11) we introduce some parameters that model the efficacy of drug in blocking new infections
byHBV. The drug efficacy, ε̄, then under therapy the production virion rate is (1− ε̄) p̄.When
the drug is 100% (ε̄ = 1) efficient, it leads the complete suppression of new virion production.
To incorporate the possibility of therapy affecting infection, a parameter that accounts for the
efficacy of the drug in blocking new infection is introduced, c̄, so that the infection rate in
the presence of drug is (1− c̄)β̄ (Ferreira 2000; Lewin et al. 2001). As explained in Sect. 4.1
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the fractional model for hepatitis B with drug therapy can be written as
⎧
⎨

⎩

DαT (t) = s − dT (t) − (1 − η)βV (t)T (t) + ρ I (t)
Dα I (t) = (1 − η)βV (t)T (t) − δ′ I (t) − ρ I (t)
DαV (t) = (1 − ε)pI (t) − cV (t),

(21)

where Dα is the Caputo fractional derivative of order α, 0 < α ≤ 1, and each parameter
depends on τ as in Eq. (21).

Theorem 4.16 System (21) has the disease-free equilibrium point

P0 = (T0, I0, V0) =
( s

d
, 0, 0

)
, (22)

for all the parameter values in this system, whereas only if R0 > 1, there is (unique) endemic
equilibrium point as

P1 = (T1, I1, V1), (23)

where

T1 = −c(δ′ + ρ)

p(1 − η)β(1 − ε)
,

I1 = (1 − η)β(1 − ε)ps − cd(δ′ − ρ)

(1 − η)β(1 − ε)pδ′ ,

V1 = s(1 − ε)p

δ′c
− d(δ′ − ρ)

(1 − η)βδ′ .

The basic reproduction number, R0, to system (21) is

R0 = pβs(1 − η)(1 − ε)

cd(δ′ + ρ)
. (24)

Theorem 4.17 The disease-free equilibrium P0 is locally asymptotically stable if R0 < 1.

Theorem 4.18 The endemic equilibriumpoint, P1, is locally asymptotically stable if R0 > 1.

The stability analysis of model (21) is similar to model (11), and so we omit its proof.

5 Numerical simulations

In this section, different possible scenarios, depending on the order of the fractional derivative,
α, are presented to analyze the hepatitis B model dynamics. To solve a nonlinear differential
system set with fractional order, a method based on the nonstandard finite difference schemes
(NSFD) approach (Cardoso et al. 2017; Mickens and Smith 1990; Ongun et al. 2013) is used.

Given a mesh-grid tN = t0 + hN , N is the number of points of the discretization, from
GL operator (7), a fractional derivative can be proximate according to the NSFD schemes as
follows:

Dα f (t) ∼= 1

φ(h, λ)

N∑

j=0

w
(α)
j ( f (t − jh)), (25)
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Table 1 Biological parameters

Parameters Description Value (day−1)

s̄ Rate of production target cells 10

d̄ Death rate of target cells 0.5

β̄ Infection of new target cells 0.00122

ρ̄ Rate of cure 0.1

δ̄′ Rate of infected cells 0.3

p̄ Production of virus 0.8

c̄ Free virus clearance 0.7

c̄ Efficacy blocking new infection 0.01

ε̄ Drug efficacy 0.41

where the dominator function φ(h, λ) is a function of h, and must satisfy the consistency
condition,

φ(h, λ) = h + O(h p) , p > α, h → 0,

where O(h p) is the truncate error. λ is a vector parameter.
The nonlinear term on the right-hand side of the system (11) is replaced by:

T (t) → T (ti−1), V (t)T (t) → V (ti−1)T (ti−1), V (t) → V (ti−1), I (t) → I (ti−1),

i = 1, . . . , N .
Applying the truncated GL discretization (25) in the system (11) we obtain:

⎧
⎪⎨

⎪⎩

Ti = w
(α−1)
i T0 − ∑n

j=1 wα(Tn− j ) + φ(h, λ)[s − dTi−1 − βVi−1Ti−1 + ρ Ii−1]
Ii = w

(α−1)
i I0 − ∑n

j=1 wα(In− j ) + φ(h, λ)[βVi−1Ti−1δ
′ Ii−1 − ρ Ii−1]

Vi = w
(α−1)
i V0 − ∑n

j=1 wα(Vn− j ) + φ(h, λ)[pIi−1 − cVi−1].

Here, we adopted the denominator function φ(h, μ + 1) = 1 − e−hα(μ+1)

μ + 1
(Mickens and

Smith 1990; Ongun et al. 2013).
For all simulations performed, the numerical parameters are: h = T

N = 0.01, for a total
time of simulation T given; μ = 3 (Lewin et al. 2001) to the denominator function φ.

The biological parameters are described from Table 1 (Ferreira 2000; Forde et al. 2016).
Note that the biological parameters are denoted with a bar and the corresponding parameters,
without bar, are functions of τ , according to the relation mentioned before, i.e, a = τ 1−α ā.
In reference Gómez et al. (2012) the value of τ is estimated according to the value of the
constant terms presented in the corresponding ODE. In our numerical simulation several
values of τ were considered and the behavior of the system was essentially the same. We
were able to note that the bigger the τ , the slower is the convergence to the equilibrium point.
Now we present the numerical results taking τ = 0.02.
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5.1 Numerical tests

5.1.1 Test 1

In Figs. 2 and 3,we can see the numerical solution ofmodel (11). Figure 2 shows the dynamics
of hepatitis B, with initial condition of T (0) = 1.4 × 101, I (0) = 0.13 × 102, T (0) =
0.1 × 102, reproduction number R0 = 0.64 and several values of the fractional order, α. As
can be seen, following the course of the disease, the system evolves to the free equilibrium
point with population number of (20, 0, 0), as determined by Eq. (14). The convergence to
the equilibrium point, when R0 < 1, is predicted by Theorem 4.10.

Figure 3 shows the dynamics of hepatitis B, when the reproduction number is R0 > 1.
As can be seen, following the course of the disease, the system evolves to the endemic
equilibrium point with population number of (0.04; 96.8; 0.8), as determined by Eq. 15.
In this case, we can note that the disease is proliferating. The convergence to the endemic
equilibrium point, when R0 > 1, is predicted by Theorem 4.15.

The comparison between different values of the fractional order is shown in both Figs. 2
and 3 with the same control parameter shown in Table 1. We can see in Fig. 2 that smallest
values to α imply slower convergence to the equilibrium point. On the other hand, in Fig. 3
note that smallest values to α imply a faster convergence to the equilibrium solution.

5.1.2 Test 2

To compare the effects of the efficiency parameters of the fractional Hepatitis model with
drug therapy (21), we performed the numerical simulation considering different values for η

and ε during the simulation. In this simulation, for t ≤ 45, we have R0 > 1 and drug therapy
with a small efficiency in the treatment against the hepatitis B (η = ε = 0.01), For t > 45
days, the efficiency in the treatment is considered higher (η = ε = 0.9). Figure 4 presents
the numerical solution obtained.

We can note that before the day 45, R0 > 1 makes the solution to converge to endemic
point P1, according to Eq. (23). When a drug therapy intervention was simulated, i.e., η =
ε = 0.9, the R0 becomes less than 1 and the solution converges to free equilibrium point. The
convergence to the endemic equilibrium point, when R0 > 1, and to free equilibrium point is
predicted by Theorems 4.17 and 4.18, respectively. This behavior was expected because the
starting drug is introduced, it is expected that the number of infected cells, I (t), and virus,
V (t), decreases along the time t . Moreover, the target cells, T (t), tend to increase during the
time t . When α < 1 the numerical solution of fractional-order hepatitis model with the drug
therapy has similar behavior that is presented in Fig. 4.

The numerical methods of Euler and fourth-order Runge–Kutta (R–K) were also imple-
mented and a variety of numerical simulations was performed to compare with the fractional
numerical scheme results obtained here in the absence of an exact solution and data. In all
these simulations, the classical behavior of the solutions was observed. It means that when
fractional-order α tends to 1, the fractional numerical solution curves tend to the integer
numerical solution (Euler and R–K). Considering this, one of important contributions of this
paper, where the focus is to describe a new model based on fractional derivative, is that the
fractional model can be an alternative, showing accuracy and improvements in the results
and having the potential to be used in computational dynamics problems, in particular, in the
investigation of hepatitis B disease.
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Fig. 2 Numerical solutions of fractional-order hepatitis model without the drug therapy with α =
0.2, 0.4, 0.6, 0.8, 0.9, 1.0 and integer solution (SI). a T , b I and c V along the time t (days), R0 < 1
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Fig. 3 Numerical solutions of fractional-order hepatitis model without the drug therapy with α =
0.2, 0.4, 0.6, 0.8, 0.9, 1.0, R0 > 1
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Fig. 4 Numerical solutions of fractional-order hepatitis model with the drug therapy. Comparison of the
efficiency in different time intervals for t : η = ε = 0.01 (small) and R0 > 1, for t ≤ 45 days; η = ε = 0.9
(high), for t > 45 days. T = 200 days; α = 1

6 Conclusions

The fractional modeling has been widely used to generalize and make more precise the usual
modeling. The most common reason found for this type of generalization is that “when
modeling a particular phenomenon is common to make some simplifications, usually those
simplifications, if considered in the model, lead to a decrease in the rate of variation of the
phenomenon. Thus, instead of considering several factors in the equation, their influence in
the order of the derivative can be embedded” (Kuroda et al. 2017).

This article presents two examples of fractional modeling for the hepatitis B and using
several theoretical results the stability is analyzed according to the value of R0. Besides that,
numerical solutions were obtained for different values of the order of the derivative and those
numerical results confirmed the analytic prediction.

Finally, the natural continuations of this work can be done introducing different derivative
orders to each dependent variable of the systems.
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