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Abstract
Chemical compounds are key to understand symbiotic interactions. In the leafcutter ant-microbe symbiosis a plethora of 
filamentous fungi continuously gain access the ant colonies through plant substrate collected by workers. Many filamentous 
fungi are considered transient in attine ant colonies, however, their real ecological role in this environment still remains 
unclear. A possible role of these microorganisms is the antagonism towards Leucoagaricus gongylophorus, the mutualistic 
fungus that serve as food for several leafcutter ant species. Here, we showed the antagonism of filamentous fungi isolated 
from different sources, and the negative impacts of their metabolites on the growth of the ant-fungal cultivar. Our results 
demonstrate that the chemical compounds produced by filamentous fungi can harm the mutualistic fungus of leafcutter ants.

Introduction

Symbiotic interactions are mediated by secondary metabo-
lites which indicate their harmonic or inharmonic interface 
[1–3]. These metabolites translate the chemical complexity 
of symbioses, and are key components to establish the rela-
tions between organisms and the environment. An example 
of a complex interaction is the mutualism maintained by 
fungus-growing ants (Hymenoptera: Attini: Attina, hereafter 
named “attine ants”) [4].

These insects cultivate a mutualistic fungus as food 
source for their colonies; in turn, the ants disperse, protect, 
and feed the fungal cultivar [5, 6]. Among the 40 described 
leafcutter ant species [7], Atta sexdens is generally consid-
ered an agricultural pest [8], due to the large amounts of 
fresh leaves and flowers they forage to nourish the mutual-
istic partner, Leucoagaricus gongylophorus (Basidiomycota: 
Agaricales: Agaricaceae). This fungus clusters in clade A in 

the phylogeny of the ant-fungal cultivars along with clade B 
fungi cultivated by other leafcutter ant species [9].

Several micro-organisms have been described as symbi-
onts on colonies of leafcutter ants. The mycotrophic fungus 
genus Escovopsis [10, 11] is thought to be a parasite that 
presents chemical recognition and mechanisms towards the 
fungal cultivar [12–15]. Antibiotic-producing actinobacteria 
provide chemical defenses against this parasite [16, 17]. In 
addition, black yeasts found on the ant cuticles are thought 
to be antagonist due to the inhibitory compounds against the 
helper actinobacteria [18, 19].

On the other hand, in this multipartite symbiosis there 
are other microorganisms whose functions are still not clear. 
This is the case of diverse filamentous fungi that gain access 
of the colonies through plant substrate [20]. Therefore, non-
symbiotic fungi can also be prevalent in fungus gardens [21], 
and become a threat to the system [22]. Ants developed a 
plethora of defensive behaviors and chemical traits over 
their evolution, to protect the mutualistic fungus, such as 
grooming and weeding of fungus gardens, metapleural and 
mandibular gland secretions [23–25], indicating the undesir-
able nature of these filamentous fungi. Due to this complex 
defensive system, these filamentous fungi are currently con-
sidered transient in such system [20, 26, 27].

Nevertheless, the real impact and modes of action of the 
invading filamentous fungi against the ant cultivar are still 
elusive. Considering fungus–fungus interactions, several 
studies showed growth inhibition of L. gongylophorus by 
filamentous fungi [14, 28–32]. Such interactions can be 
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understood as interference and/or exploitation competi-
tion [33]. Here, we determined the inharmonic nature of 
filamentous fungi towards L. gongylophorus and how their 
antagonism is mediated by soluble inhibitory metabolites.

Materials and Methods

Filamentous Fungi

A total of ten filamentous fungi (Table 1) were used to 
evaluate their antagonistic potential towards L. gongylo-
phorus. These fungi are maintained in the collection of the 
Laboratory of Fungal Ecology and Systematics (LESF) as 
conidia suspensions in glycerol 10% at -80 °C. All fungi 
were revived on potato dextrose agar medium (PDA, Acu-
media, pH 5.6 ± 0.2) and incubated at 25 °C, for 7 days in 
darkness. Because invading filamentous fungi have diverse 
sources we used isolates obtained from: (i) fungus gardens 
(Escovopsis sp., Escovopsioides nivea, Fusarium oxyspo-
rum, Syncephalastrum sp., and Trichoderma hamatum); (ii) 
soil (Trichoderma afroharzianum, and Trichoderma spirale); 
and (iii) as endophytes in leaves of Theobroma cacao (Clon-
ostachys sp., Fusarium equiseti, and Verticillium sp.). These 
fungi were previously reported from leaf-cutting ant gardens 
[21, 34, 35].

The mutualistic fungus L. gongylophorus (FF2006) was 
isolated from a mature laboratory colony of A. sexdens. This 
fungus is kept by periodic transfers every 15–20 days on 
culture medium supplemented with oatmeal extract (g L−1: 

50 oat flakes, 5 NaCl, 10 glucose, 5 peptone, 10 malt extract, 
and 10 Agar) at 25 °C in darkness [43].

Dual Culture Bioassays

To evaluate the interaction between filamentous fungi and L. 
gongylophorus we carried out in vitro experiments. Fifteen 
days-old mycelium fragments of FF2006 (8 mm in diameter) 
were inoculated on PDA at a distance of 1.5 cm from the 
plate edge. Plates were incubated for 17 days at 25 °C in 
darkness. Then, mycelium fragments (8 mm in diameter) of 
each filamentous fungus previously grown on malt agar 2% 
(MA2%) were inoculated on the opposite side of the fungal 
cultivar at distance of 1.5 cm from the plate edge [31]. This 
setup was incubated for 14 days at 25 °C in darkness, and 
the colony diameter (in cm) of both fungi was measured. 
Each experimental combination and control groups were 
performed with six plates. Two control groups were set up: 
the first group consisted on PDA plates containing only the 
mutualistic fungus. To account for the natural growth vari-
ations of FF2006, five set of control plates were prepared. 
The second set of control plates were inoculated only with 
the filamentous fungi.

Filamentous fungi growth was compared daily with the 
respective control (fungi growing in the absence of FF2006) 
by a Mann–Whitney U test with an alpha threshold of 0.05. 
These comparisons were carried out separately for each day, 
not accounting the time (days) as a dependent variable. For 
the mutualistic fungus, we first used one-way analysis of 
variance to ensure absence of differences between all control 

Table 1   Filamentous fungi used in the bioassays

a Species complex: species groups that present similar morphologies but show differences in their phylogenies
b BA: Bahia; RS: Rio Grande do Sul; SP: São Paulo
c Ecological role was assigned according to the cited references
d General ecological role attributed to the genus Trichoderma. Although we assumed these ecological roles for both species, further studies are 
necessary to confirm these assumptions

Fungal ID Fungi Isolation source City/stateb Ecological rolec References

LESF 130 Syncephalastrum sp. Fungus garden of Atta sexdens Corumbataí/SP Pathogen of the ant cultivar [22]
LESF 178 Escovopsis sp. Fungus garden of Atta sexdens Corumbataí/SP Parasite of the ant cultivar [10]
LESF 288 Fusarium oxysporum species 

complexa
Fungus garden of Acromyrmex 

ambiguus
Nova Petrópolis/RS Plant pathogen [36]

LESF 330 Trichoderma hamatum Fungus garden of Acromyrmex 
sp.

Camacan/BA Mycoparasite [37]

LESF 412 Verticillium sp. Leaves from Theobroma cacao Ilhéus/BA Plant pathogen [38]
LESF 422 Clonostachys sp. Leaves from Theobroma cacao Ilhéus/BA Mycoparasite (some species) [39]
LESF 424 Fusarium equiseti species 

complex
Leaves from Theobroma cacao Ilhéus/BA Endophyte [40]

LESF 542 Trichoderma afroharzianum Soil Botucatu/SP Saprotroph/mycoparasited [41, 42]
LESF 549 Trichoderma spirale Soil Botucatu/SP Saprotroph/mycoparasited [41, 42]
LESF 592 Escovopsioides nivea Fungus garden of Acromyrmex 

sp.
Camacan/BA Antagonist of ant cultivar [32]
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groups (cultivar growing in the absence of filamentous 
fungi) with an alpha threshold of 0.05 (Figure S1). Then, we 
selected the distribution with the largest interquartile range. 
Using the selected control group, we compared it to the 
growth in the presence of filamentous fungi by a two sam-
ple t test (Welch’s t test) with an alpha threshold of 0.05, on 
the 10th day of incubation. To assess inhibition differences 
between filamentous fungi, we carried out one-way analysis 
of variance and Scott–Knott test with an alpha threshold of 
0.05 [44]. The analyses were performed in R v.3.3.3 [45].

Assays Using Metabolic Compounds

To evaluate the inhibition of L. gongylophorus by metabolic 
compounds, culture filtrates were obtained from all filamen-
tous fungi used in the dual culture bioassays. Each fungus 
was cultured on MA2% for 7 days at 25 °C in darkness. After 
incubation, conidia suspensions were prepared and stand-
ardized in a Neubauer chamber to 106 conidia mL−1. The 
suspensions were inoculated into Erlenmeyer flasks contain-
ing 90 mL of malt extract broth 2%. Flasks were incubated 
at 25 °C for 8 days at 120 rpm. Because the majority of the 
filamentous fungi used in the assays are fast-growing, they 
sustained considerable biomass in these conditions.

After incubation, the culture medium was filtered (What-
man filter paper, grade 1) and centrifuged at 23.478×g for 
15  min. The supernatant was recovered and filtered in 
0.45 µm membrane. Aliquots of 5 mL of filtrate were added 
in 5 mL of culture medium [43] (double strengthen) supple-
mented with oatmeal extract. This medium was used for the 
experiments based on the growth stability of the mutualistic 
fungus [43, 46]. Plates were inoculated at the center with a 
mycelium fragment (8 mm in diameter) of the mutualistic 
fungus. Six plates were performed for each filtrate, and their 
control was performed with 5 mL of liquid malt 2% instead 
of the filtrate. Differences between the final growth diameter 
of the mutualistic fungus in the presence of each filtrate and 
the control after 14 days were assessed using two sample t 
test (Welch’s t test) with an alpha threshold of 0.05 in R [45].

Results

Absence of Cultivar Defenses Against Filamentous 
Fungi

In dual cultures, 9 out of 10 isolates inhibited the mutualistic 
fungus at least 1.1 times higher than the control (two sam-
ple t test, P < 0.01 for all combinations; Fig. 1, Table S1). 
After 10 days of incubation, only Clonostachys sp. did not 
inhibit the growth of the mutualistic fungus (two sample 
t test, P = 0.745). We observed differences in inhibition 
of the fungal cultivar by the different filamentous fungi 

(one-way analysis of variance, P < 0.01). Trichoderma 
afroharzianum presented the highest inhibition, while the 
lowest was observed for Verticillium sp. (Fig. 1). No associa-
tion between isolation source and antagonism pattern was 
observed (Fig. 1). Moreover, T. hamatum, F. equiseti, and 
Trichoderma spirale, did not differ in their inhibitory activ-
ity with Escovopsis sp., the well-known mycotrophic fungus 
associated attine ant colonies.

Select Strains had Maximal Mycelial Growth 
in the Presence of the Ant Cultivar

Two filamentous fungi showed a maximized growth in the 
presence of mutualistic fungus (Table 2). Escovopsis sp. and 
T. hamatum exhibited mycelium growth 1.1 times higher in 
the 2nd and 3rd days in the presence of FF2006 compared 
to the respective controls (Mann–Whitney test, P = 0.003 
for both fungi, Fig. 2). On the other hand, Escovopsioides 
nivea was the only fungus that showed the lowest growth in 
dual culture assays in the 2nd and 3rd days (Mann–Whitney 
test, P = 0.005 and 0.019, respectively), corresponding in 
a reduction of colony mycelium 2.1 and 1.4 times, respec-
tively. After the 7th day of culture, no statistical differences 
were observed for all filamentous fungi compared to their 
respective controls (Fig. 2).

Fig. 1   Mutualistic fungi in dual culture assays. Leucoagaricus gongy-
lophorus growth on PDA after 10 days in the presence of filamentous 
fungi and in their absence (control). Means (± SD) of the L. gongylo-
phorus colony diameter (in cm) are indicate on the top of boxplots. 
Figures followed by different letters indicate significant differences 
(Scott–Knott at 5%)
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Antagonism Mediated by Soluble Compounds

The metabolites of eight out of ten filamentous fungi inhib-
ited the growth of L. gongylophorus (Fig. 3a). After 14 days 
of experiment, only the culture filtrates of Escovopsis sp. 
and F. equiseti did not inhibit the growth of FF2006 (two 
sample t test, P = 0.171 and 0.288, respectively; Table S1). 
We observed changes in colony morphology of FF2006 
when filtrates of E. nivea, Syncephalastrum sp., and T. spi-
rale were present (Fig. 3b). A darkening of the center of the 
colony was observed probably due to the production of solu-
ble metabolites. Curiously, similar morphological changes 
were detected in the dual culture assays using these fungi. 
No changes in L. gongylophorus colonies were observed 
when cultured in the presence of Clonostachys sp. filtrate 
(Fig. 3b).

Discussion

Metabolites are crucial for maintaining symbiotic interac-
tions between social insects and microorganisms [12, 16, 
47]. Interactions between attine ants and defensive micro-
bial symbionts [16, 47] guarantee the stability of ant colo-
nies against antagonists. Here, we showed the growth of 
the mutualistic fungus L. gongylophorus is inhibited in the 
presence of different filamentous fungi and their soluble 
metabolites. Because the genetic structure of L. gongylopho-
rus suffered a long and irreversible process of domestication, 
this fungus is dependent upon the ants for protection [6, 48], 

particularly from harmful filamentous fungi that may threat 
the colonies when the worker force is depleted [21].

As expected, Escovopsis sp. had higher growth in 
presence of L. gongylophorus, since it has already been 

Table 2   Growth of filamentous fungi in the presence  (dual culture) 
and absence (control) of the ant mutualistic fungus, Leucoagaricus 
gongylophorus 

Figures indicate average diameter (in cm) and standard deviations of 
six plates. Means in bold indicate significant differences between fila-
mentous fungi and their respective control in pairwise comparisons 
by Mann–Whitney test at 5%. No differences were observed on the 
7th day

Fungal ID 2 Days 3 Days

Dual culture Control Dual culture Control

LESF130 6.22 ± 0.72 5.97 ± 0.30 6.97 ± 0.08 7.00 ± 0.00
LESF178 7.00 ± 0.00 3.78 ± 0.61 7.00 ± 0.00 5.15 ± 0.76
LESF288 2.67 ± 0.33 2.55 ± 0.19 3.95 ± 0.28 3.63 ± 0.36
LESF330 7.00 ± 0.00 5.67 ± 0.46 7.00 ± 0.00 6.43 ± 0.40
LESF412 1.67 ± 0.21 1.63 ± 0.19 2.45 ± 0.32 2.67 ± 0.27
LESF422 1.77 ± 0.20 1.65 ± 0.19 2.47 ± 0.29 2.40 ± 0.33
LESF424 2.38 ± 0.38 2.28 ± 0.26 3.38 ± 0.39 3.47 ± 0.30
LESF542 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00
LESF549 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00
LESF592 1.92 ± 0.45 3.98 ± 0.71 3.83 ± 0.68 5.23 ± 0.72

Fig. 2   Growth of Escovopsis sp., Trichoderma hamatum, and Escov-
opsioides nivea. Values indicate Leucoagaricus gongylophorus col-
ony diameter (in cm) considering six plates. Black squares indicate 
the growth of filamentous fungi in dual culture with L. gongylopho-
rus, and gray diamonds their respective control group in pure culture
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described as capable of host chemical recognition (chem-
otaxis) [13], and mechanisms of parasitism [14, 15]. T. 
hamatum, also showed maximized growth in the presence 
of the ant cultivar. This may be possibly related to the use 
of metabolites derived from FF2006 as nutrient source in 
culture, since high exploitation competition is a common 
trait of Trichoderma, known as an environment opportunistic 
fungus [41]. On the other hand, E. nivea showed delayed 
growth in the presence of L. gongylophorus, this result sup-
ports its less aggressive pattern observed previously [32], 
as well as the minor resistance of the mutualistic fungus to 
some filamentous fungi, even in absence of tending ants.

Trichoderma species have been reported as potential 
biological control agents against leafcutter ants, due to its 
antagonism towards the mutualistic fungal partner [28, 30]. 
In addition, Trichoderma is a well-known biological control 
agent of several plant pathogens [49, 50]. Here, T. afroharzi-
anum showed the best inhibition results, and the T. hamatum 
and T. spirale have the same inhibition potential than Escov-
opsis sp., the well-known antagonist of this system. Future 
studies will demonstrate the usefulness of these strains as 
biological control agents.

Many endophytic fungi are also considered transients 
in attine ant colonies. It is known these endophytes cause 

an increase of time workers spend to process the foraged 
plant material [51]. Furthermore, some of these fungi can-
not overcome the barriers of the mutualistic fungus [52, 53]. 
Recently, some of them have been described as bodyguards 
for their plant hosts, resulting in more rejection of plant 
material by the ants [52, 54]. Here, among the endophytes, 
only Clonostachys sp. did not present antagonistic activity 
against the ant-fungal cultivar. In contrast, F. equiseti also 
showed similar inhibition than Escovopsis sp. in dual culture 
assays. These results indicate that the plant material may 
carry some undesirable fungi for the ant colony, and in the 
absence of protection by the ants, such fungi may be a threat 
to the mutualistic fungus [53].

The metabolites produced by the different filamentous 
fungi used in the experiments impaired the L. gongylophorus 
development. However, this was not the case of Escovopsis 
in the present study. Although it exhibited inhibition in the 
dual culture assays (Fig. 1), no inhibition by metabolites 
was observed. A similar result was verified for F. equiseti 
(Fig. 1). Some studies demonstrated the production of com-
pounds by Escovopsis [12, 32]. Thus, the lack of inhibi-
tory activity observed in the present study may be related 
to absence of inhibitory compounds under the growth con-
ditions we used, or by diverse mode of action associated 

Fig. 3   Harmful nature of soluble metabolites on Leucoagaricus 
gongylophorus growth. a Values indicate the mean colony diameter 
(in cm) of six replicates after 14  days of experiment. Mean values 
(± S.D) followed by * indicate differences with control group (two 
sample t test at 5%). b Morphological aspect of L. gongylophorus 

colonies when grown in the presence of culture filtrates of different 
filamentous fungi. An atypical darkness as observed for cultures fil-
trates of Syncephalastrum sp.  (LESF130), Trichoderma afroharzi-
anum (LESF542), and Escovopsioides nivea (LESF592)
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with competition for nutrients and space, in the dual culture 
assays.

Regardless of isolation source, all Trichoderma spe-
cies produced inhibitory soluble metabolites in vitro. This 
reflects the expansion of genes related to important enzymes 
for mycoparasitism and saprotrophic lifestyle [42]. Also, 
the endophytic fungi Verticillium sp. and Clonostachys sp. 
showed inhibition of L. gongylophorus by soluble metabo-
lites, such production indicates that even fungi outside a 
co-evolutionary scenario exhibit some sort of antagonism, 
especially in the absence of ant workers [21].

Simple sugars are present in the fungus gardens due to 
the degradation of plant material by L. gongylophorus [55], 
promoting a substrate with readily available nutrients. Thus, 
nutrient uptake and interference competition for available 
resources by saprotrophic and mycoparasitic fungi may be 
important in community establishment in the fungus garden. 
Production of metabolites can have an important role on col-
ony disruption [12, 56], as indicated by production of active 
shearinines and emodin by Escovopsis sp. against its fungal 
host, the ants and their bacterial symbionts (actinobacteria). 
The search for bioactive metabolites it is also important to 
map out biocontrol strategies against crop pests.

Filamentous fungi from different sources and diverse eco-
logical roles have potential as antagonists of the ant-fungal 
mutualism when defensive barriers are overcome [21]. 
Here, we showed that inhibitory metabolic compounds and/
or nutritional competition promoted by diverse filamentous 
fungi harm the ant-fungal cultivar.
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