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ABSTRACT
In the last two decades, new computational tools have been developed in order to aid space
missions to orbit around irregular small bodies. One of the techniques consists in rebuilding
their shape in tetrahedral polyhedron. This method is well suited to determine the shape
and estimate certain physical features of asteroids. However, a large computational effort is
necessary depending on the quantity of triangular faces chosen. Another method is based on a
representation of the central body in terms of mascons (discrete spherical masses). The main
advantage of the method is its simplicity which makes the calculation faster. Nevertheless, the
errors are non-negligible when the attraction expressions are calculated near the surface of
the body. In this work, we carry out a study to develop a new code that determines the centre
of mass of each tetrahedron of a shaped polyhedral source and evaluates the gravitational
potential function and its first- and second-order derivatives. We performed a series of tests
and compared the results with the classical polyhedron method. We found good agreement
between our determination of the attraction expressions close to the surface, and the same
determination by the classical polyhedron method. However, this agreement does not occur
inside the body. Our model appears to be more accurate in representing the potential very close
to the body’s surface when we divide the tetrahedron in three parts. Finally, we have found
that in terms of CPU time requirements, the execution of our code is much faster compared
with the polyhedron method.

Key words: gravitation – methods: numerical – celestial mechanics – minor planets, asteroids:
general.

1 IN T RO D U C T I O N

Since the 90’s decade, only four probes were launched having as
the main goal to study asteroids. In 1996, the American probe Near-
Shoemaker sent images of the asteroid 253 Mathilde and in 2002
it approached and landed on the asteroid 433 Eros. In 2005 the
Japanese Spacecraft Hayabusa reached the asteroid 25143 Itokawa,
and began a period of vicinity operation about the body. ESA’s
Rosetta spacecraft flew past 21 Lutetia, at a distance of 3162 km
on 2010 July 10. The Dawn spacecraft, launched by NASA, visited
one of the largest asteroids of the main belt, 4 Vesta in 2012 and is
currently visiting 1 Ceres. Future space missions as the Ossiris-rex
mission that will be launched in 2016 September in direction to the
asteroid (101955) Bennu will require new models and tools to pre-
dict and control the navigation and dynamical evolution of an orbiter
around a very irregular body in its complex gravity field. Several
methods have been employed to calculate the gravitational poten-
tial around these irregular shape bodies. The mascons approach,
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very simple from a conceptual point of view, has been devised in
order to calculate the gravitational attraction of bodies with a very
irregular shape. Here a body of given shape is approximated by a
set of point masses (mascons) placed in a suitable way in order to
reproduce the object mass distribution (Geissler et al. 1997). This
method is easier to develop but has several deficiencies due to the
fact that we replace the true body’s continuous mass distribution
with a field derived of spheres with a density approximately twice
the nominal density and with about 48 per cent of the body being
vacant. The Polyhedron method is another approach of precisely
representing the shape consisting of abundant planar faces meet-
ing along straight edges or at isolated point called vertices (Werner
1994). The polyhedral approach that describes the total volume of
a constant density polyhedron can evaluate with a certain precision
the gravitational field around a specific asteroid. The same approach
using the harmonic expansion with a constant density polyhedron
has as well been developed by Werner (1997). Werner & Scheeres
(1997), combining these methods, have shown that the errors are
larger when the attraction expressions are calculated by the mas-
cons near the surface of (4769) Castalia if compared them with
the spherical harmonics or the polyhedral approach. Rossi, Marzari
& Farinella (1999) have also tested a number of faces/mascons
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(i.e. 1521 faces and 5835 mascons) to describe an ellipsoid in the
orbit propagation tests. They found that the mascons code was some-
what faster but the polyhedral code, especially for orbits getting
close to the primary’s surface, had a better accuracy. Nevertheless,
singularities appear in the numerical evaluation of the polyhedral
model. Tsoulis & Petrović (2001) refined the approach by presenting
the derivation of certain singularity terms, which emerge at special
locations of the computation point with respect to the attracting
polyhedral source. However, it is necessary a large computational
effort depending on the quantity of triangular faces chosen. In this
paper, we carry out a new model of the representation of the mas-
cons, develop a new code that determines the centre of mass of each
tetrahedron of a shaped polyhedral source, and evaluate the gravita-
tional potential function and its first- and second-order derivatives.
We present the gravitational of an irregular body using two different
models of mass concentrations in Section 2. In Section 3, we detail
the numerical simulations and the sequence of the script. We also
perform a series of tests for the asteroids (216) Kleopatra, (433)
Eros, (4769) Castalia and (4179) Toutatis and the results of the
comparison with the classical polyhedron method are presented in
Section 4. Then, we discuss and conclude in Section 5.

2 G R AV I TAT I O NA L P OT E N T I A L W I T H T H E
A I D O F PO LY H E D R A L M O D E L

2.1 Modelling an irregular body with polyhedron

The first paper that addressed the potential of three-dimensional
bodies by the polyhedron method was developed by Werner (1994).
Through data collection by the radio telescope of Arecibo, Puerto
Rico, Ostro et al. (2000) have created polyhedron’s designs for
many asteroids considering a constant density (NASA Planetary
Data System, 2004). The polyhedron is partitioned into a collection
of simple tetrahedra. Each one, with one of the vertices at the origin
and the opposite face represented by a trinomial with predefined
orientation, is shown in Fig. 1. By analytical calculation, the volume
of the tetrahedron is given by the sixth part of the scalar triple
product of the vectors represented by three concurrent edges of this
solid,

V = 1

6
(u × v · w), (1)

Figure 1. Representation of a tetrahedron with vertex 0 at the origin and
the vectors u, v and w representing the three concurrent edges coming out
of this vertex. The vector r = rP − rCM represent the distance between the
centre of mass (CM) of the tetrahedron and the outer point P.

Figure 2. Polyhedron model 3D of asteroid (216) Kleopatra. The shape
was built with 4092 faces.

Figure 3. Mascon 1 model for a tetrahedron with the centroid in red (Ven-
ditti 2013).

where

u × v · w =
∣∣∣∣∣∣
X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

∣∣∣∣∣∣ . (2)

We choose the data set of EAR-A-5-DDR-RADARSHAPE-
MODELS-V2.0 from NASA Planetary Data System (2004) to build
the polyhedral model with 2048 vertices and 4092 faces of asteroid
(216) Kleopatra as illustrated in Fig. 2.

2.2 Two different models of mass concentrations using
tetrahedra

(i) Mascon 1
Each triangular face is connected to the centre of the asteroid to
form a tetrahedron. The centroid of each tetrahedron is determined,
and the mass is proportional to the volume (e.g. Fig. 3).

(ii) Mascon 3
Each triangular face is connected to the centre of the asteroid
to form a tetrahedron, which is divided into three parts in or-
der to obtain three layers of volumes within each tetrahedron.
The centroid of each figure is determined, and the mass is pro-
portional to the volume of each figure enhanced in blue (e.g.
Fig. 4).
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Figure 4. Mascon 3 model for the main tetrahedron divided into three parts
in blue, with the centroid in red (Venditti 2013).

Figure 5. Centroids of the polyhedral shape of (216) Kleopatra with the
Mascon 1 model.

Figure 6. Centroids of the three volumes of each tetrahedron of the poly-
hedral shape of (216) Kleopatra with the Mascon 3 model.

Two test models were fitted to the data using the faces and the
vertices of asteroid (216) Kleopatra and are shown in Figs 5 and
6. The points in the figures refer to the position according to the
centroids of each model.

Figure 7. Gravitational potential of asteroid (216) Kleopatra computed by
the methods: Mascon 1 (top), Mascon 3 (middle) and Tsoulis (bottom). The
colour code gives the intensity of the potential in km2 s−2.

2.3 Gravitational potential calculations

From Fig. 1, we can calculate the gravitational potential suffered by
the external point P in relation to the tetrahedron

UT = μ

r
, (3)
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Figure 8. Intensity of the gravitational potential gradient computed using the model Mascon 1 close to asteroids (216) Kleopatra, (4769) Castalia, (433) Eros
and (4179) Toutatis from the top to the bottom respectively. The colour code gives the intensity of the gravitational force in km s−2.

where r = (ξ 2 + η2 + ζ 2)1/2 is the distance between the centre of
mass of the tetrahedron and the external point P with ξ = xP − xCM,
η = yP − yCM and so forth. Here, μ = GMT is the gravitational pa-
rameter of the tetrahedron with G = 6.672 59 × 10−20 km3 kg−1 s−2.
Thus, the potential, the first- and the second-order derivatives of the
shaped polyhedral source are given by

U =
n∑

i=1

μi

ri

(4)

Ur =
n∑

i=1

∂U

∂ri

=
n∑

i=1

−μi

r2
i

. (5)

From equation (5), in terms of the coordinates ξ , η and ζ , we have

Uξ =
n∑

i=1

∂U

∂ξi

=
n∑

i=1

(
∂U

∂ri

) (
∂ri

∂ξi

)
=

n∑
i=1

−μiξi

r3
i

(6)

Uη =
n∑

i=1

∂U

∂ηi

=
n∑

i=1

−μiηi

r3
i

(7)

Uζ =
n∑

i=1

∂U

∂ζi

=
n∑

i=1

−μiζi

r3
i

. (8)

It follows from the equations (6), (7) and (8) that

Uξξ =
n∑

i=1

∂2 U

∂ξ 2
i

=
n∑

i=1

(
∂

∂ξi

) (
∂U

∂ξi

)
=

n∑
i=1

3μiξ
2
i

r5
i

(9)

Uηη =
n∑

i=1

∂2 U

∂η2
i

=
n∑

i=1

(
∂

∂ηi

) (
∂U

∂ηi

)
=

n∑
i=1

3μiη
2
i

r5
i

(10)

Uζζ =
n∑

i=1

∂2 U

∂ζ 2
i

=
n∑

i=1

(
∂

∂ζi

) (
∂U

∂ζi

)
=

n∑
i=1

3μiζ
2
i

r5
i

. (11)

The sum represent the total quantity of tetrahedra used to build the
shape where n is the number of faces and i the index of each face
with their respective parameters.

3 N U M E R I C A L S I M U L AT I O N S

The main goal of this work is to develop a new code in FORTRAN

to model the external gravitational field of a small celestial body.
As discussed above, our model consists in applying the Mascon
gravity framework using a shaped polyhedral source, instead of
replacing the body by a topologically different one composed of
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Figure 9. Intensity of the gravitational potential gradient computed using the model Mascon 3 close to the same asteroids shown in Fig. 8.

spherical spheres. In this way, we develop a new approach to evalu-
ate the exterior gravitational potential and acceleration components
of a homogeneous polyhedron with constant density. To build the
polyhedral model of each studied asteroid in this paper, we use the
surface observed by the Near Earth Asteroid Rendezvous mission
(NEAR1) in the case of (433) Eros with 10 152 faces, or Small
Body Radar Shape Models2 in the case of (216) Kleopatra with
4092 faces, (4769) Castalia with 4092 faces and (4179) Toutatis
with 39 996 faces. Our approach starts by applying the algorithm
of Mirtich (1996) to calculate the polyhedral mass properties for
each asteroid, considering a uniform bulk density of 4.27 g cm−3

for Kleopatra (Carry 2012), 2.65 g cm−3 for Eros (Chanut, Winter
& Tshuchida 2014), 2.1 g cm−3 for Castalia (Scheeres et al. 1996)
and 2.5 g cm−3 for Toutatis (Scheeres et al. 1998). We also calculate
the barycentre and the momentum of inertia of the principal axes
of each asteroid. A particular sequence of rotations is required to
align the principal axes of inertia with the axes of coordinates. We
use initially the algorithm of Tsoulis (2012) to calculate the gravita-
tional field around the asteroids cited above. Done that, we find the
coordinates of the barycentre of each volume with the possibility
to divide each tetrahedron in three parts to obtain three layers of
volume. Furthermore, using equations (4)–(11), we calculate the
gravitational potential and its first and second derivatives referring

1 http://sbn.psi.edu/pds/resource/nearmod.html
2 http://sbn.psi.edu/pds/resource/rshape.html

to the two models presented in Section 2. This calculation is done
at each point of a grid uniformly spaced in the equatorial plane with
a width twice the length of the asteroid subdivided in 500 shares.
Thus each grid consists of about 106 points. Finally, we use the
GNUPLOT software to generate all figures.

4 R E S U LT S O F T H E C O M PA R I S O N T E S T S

This section presents the comparative results of our set of asteroids
between our models (Mascon 1 and 3) with the classical polyhedron
model method (Tsoulis & Petrović 2001).

We apply our model to compute the potential and gravitational
force of asteroids Kleopatra, Castalia, Eros and Toutatis at arbi-
trary points placed in the equatorial plane of each asteroid. The
gravitational potential of Kleopatra is displayed in Fig. 7 while the
intensity of the gravitational potential gradient close to each aster-
oid, also called gravitational force, is shown, respectively, in Figs
8, 9 and 10. It is important to notice that the all gravitational fields
founded follow very well the shape of the concerning asteroids with
the algorithm modelled by Tsoulis (2012) as shown in the bottom
of Fig. 7 and in Fig. 10.

In a general way, we find that the difference in the potential
and its gradient occurs between the three models in the interior
and close to the surface of the body with some divergences. The
difference in the intensity of the gravitational force is higher at the
edges where the distance with the body’s centre of mass is greater.
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Figure 10. Intensity of the gravitational potential gradient computed using the classical polyhedron method of Tsoulis close to the same asteroids shown in
Fig. 8.

This is particularly notable for very irregular and highly elongated
bodies like Kleopatra as shows the Fig. 8. In the case of Castalia, the
difference is more evenly distributed close to the surface. However,
this uniformity vanishes in the case of asteroids Eros and Toutatis,
respectively, displayed in the bottom panels of the figures cited
above. Another point is that Fig. 8 represents the Mascon 1 model
and Fig. 9 the Mascon 3 model for each asteroid. If we compare the
two models with results of the Tsoulis approach method, we note
that the difference close to the surface is higher with the Mascon 1
model while the difference inside the body seems to be lesser with
the Mascon 3 model. In that way, it is interesting and challenging
to compare our numerical results qualitatively with the traditional
ones calculated by Tsoulis. In Fig. 11, we present, respectively, the
relative errors between the potential estimated by the Mascon 1
model or Mascon 3, and the same potential estimated by Tsoulis
for the four asteroids. For each studied body, the corresponding
figures show good agreement between the estimations of the two
Mascon models. However, this agreement does not occur inside the
body particularly with the Mascon 1 model which confirms what
we saw in Figs 8 and 9. We verify also that our model appears to be
more accurate in representing the potential very close to the body’s
surface when we divide the tetrahedron in three parts (Mascon 3
model). On the other hand, if we compare the two graphics of the
top of the Fig. 11, we also show that the error is lower for less
irregular bodies. With a higher number of faces, as in the case of

the bottom of the figure, the model appear to be somewhat more
accurate.

Finally, In Table 1 we present the CPU time needed on computers
Pentium 3.10 GHz and Pentium 2.27 GHz. It is worth mentioning
that our code considerably reduce the computation processing time
with respect to the polyhedron classical method, even if we divide
the tetrahedron in three parts (three layers of volume). We also
note that the CPU processing time depends on the number of faces
but is not exactly proportional. Further the CPU processing time is
from 20 up to 50 per cent larger between Mascon 3 and Mascon
1 models, while the Tsoulis method is 30 times slower than the
Mascon 1 model with a computer Pentium 3.10 GHz. Using a
slower computer this difference is even higher and reaches 40 times
the processing speed between the Tsoulis method and the Mascon
1 model.

5 C O N C L U S I O N S

The main goal of this work was to develop a new FORTRAN code to
model the external gravitational field of a small celestial body.
Our model consists in applying the Mascon gravity framework
using a shaped polyhedral source, instead of replacing the body
by a topologically different one composed of spherical spheres.
In this way, we have developed a new approach to evaluate the

MNRAS 450, 3742–3749 (2015)
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Figure 11. Relative error of the gravitational potential of the polyhedral model U(r) in the latitude λ ∈ (0◦, 360◦) with the model Mascon 1 (black asterisks) or
the model Mascon 3 (red asterisks) for the asteroids (216) Kleopatra, (4769) Castalia, (433) Eros and (4179) Toutatis from the top to the bottom, respectively.

exterior gravitational potential and acceleration components of a
homogeneous polyhedron with constant density. To build the poly-
hedral model of each studied asteroid in this paper, we used the
surface observed by the NEAR mission in the case of (433) Eros,
or Small Body Radar Shape Models in the case of (216) Kleopatra,
(4769) Castalia and (4179) Toutatis. We have performed a series
of tests for the asteroids Kleopatra, Castalia, Eros and Toutatis
and compared the effectiveness and accuracy of our code with the
classical polyhedron method of Tsoulis (2012). This calculation
was done at each point of a grid uniformly spaced in the equatorial
plane with a width twice the length of the asteroid subdivided in 500
shares.

We found very good agreement between our determination
of the attraction expressions close to the surface, and the same
determination by the classical polyhedron method. In a general
way, we found that the major difference in the potential and its
gradient occurs between the three models in the interior of the body
and at the edges, where the distance with the body’s centre of mass
is greater. This is particularly notable for very irregular and highly
elongated bodies like Kleopatra. The potential estimated close to
surface by our model is more accurate than the results presented

by Werner & Scheeres (1997) even if we compare them with the
same potential estimated by the Tsoulis method. Furthermore, the
potential calculated very close to the body’s surface when we divide
the tetrahedron in three parts significantly increases the accuracy.
With a higher number of faces, as in the case of the bottom panel of
the Fig. 11, the difference does not seem very significant. Finally,
we have found that in terms of CPU time requirements our code
considerably reduce the computation time with respect to the poly-
hedron classical method, even if we divide the tetrahedron in three
parts.

We can conclude that this new approach of the Mascons solve
two of the three deficiencies found by Werner & Scheeres (1997).
Indeed very close to the surface the convergence is closer to the true
gravity field for a given shape. This approach provides gravitational
accuracy consistent with the accuracy of the shape determination.
However, on the surface of the studied objects, it is advantageous to
divide the body in three volume layers or more, while at a distance
of 2.5 times the mean radius, the Mascon 1 model seems to be more
appropriate. In a further work, we will test the new approach in
integrations of the motion of a probe close to the target body of a
future space mission.

Table 1. CPU time needed on a Pentium 3.10 GHz and 2.27 GHz computers.

Asteroid (216) kleopatra (433) Eros (4769) Castalia (4179) Toutatis
CPU speed 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz

Mascon 1 9 m 14 s 11 m 45 s 17 m 02 s 21 m 17 s 9 m 16 s 11 m 32 s 69 m 26 s 113 m 12 s
Mascon 3 11 m 37 s 19 m 48 s 25 m 55 s 36 m 28 s 11 m 39 s 19 m 46 s 105 m 07 s 194 m 58 s
Tsoulis 190 m 50 s 458 m 55 s 469 m 30 s 801 m 4 s 191 m 30 s 460 m 36 s 2338 m 12 s 4630 m 12 s
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