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Abstract

In this work, we are interested in avoiding large variations in the mutual distances among multiple satellites and also in controlling
their geometric configuration around an Earth–Moon triangular point. Previous studies about triangular libration points have deter-
mined the existence of zero drift regions with respect to the nominal trajectory, in which the expansion or contraction of the formation
never take place. Our goal is to carry out two different control strategies for a formation near a given nominal trajectory around L4: a
bang-off-bang control and a minimum weighted total DV consumption. A linearization relative to the reference trajectory around the
triangular libration point is carried out, and different geometrical possibilities in the zero drift regions are studied. To investigate the
influence of the gravitational force of the Sun, the BiCircular Four Body Problem is considered here. According to the results obtained,
some meaningful insights to allow a proper design of the geometric configuration of the formation are drawn.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Satellite formation flying (SFF) means to have two or
more spacecraft in orbit such that their relative positions
remain constant or obeying a desired certain dynamical
configuration along the trajectory (Sholomitsky et al.,
1977; Battrick, 2000; Bristow et al., 2000; Burns et al.,
2000; Ticker and Azzolini, 2000; Fridlund and
Capaccioni, 2002). This concept requires the control over
the coordinated motion of a group of satellites, aiming to
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maintain a specific geometric space configuration among
the elements of the formation (Sabol et al., 2001). It allows
that a group of small satellites, arranged in a space forma-
tion flying, operate like a large ‘virtual satellite’. For partic-
ular applications, this formation will have many benefits
over the use of a large single satellite, including reduction
of launch, maintenance costs and an unprecedented high
resolution (Adams et al., 1996; Folta et al., 1996; Guinn
and Boain, 1996; How et al., 1998; Kapila et al., 2000).

Over the past decades, numerous formation flying mis-
sions have been conceived. In regard to the planetary orbit
scenario, an example of formation is the Landsat 7/Earth
Observing-1 pair, a mission designed to enable the develop-
ment of future Earth imaging observatories that will have a
significant increase in performance while reducing cost and
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mass (Flick, 2012). For outer space scenario, there exists
interest of major space agencies to position SFF in halo
orbits around Lagrangian points L1 and L2 (Farquhar,
1968; Gómez et al., 2001a; Howell and Marchand, 2005;
Marchand and Howell, 2005; Héritier and Howell, 2014)
or L4 and L5 (Simó et al., 1987). An interesting example
of this kind of formation flying mission is the New
Worlds Observer (NWO) (Cash et al., 2009). NWO con-
sists of a large telescope and an occulter spacecraft in tan-
dem at about 50,000 km apart. The two spacecraft would
be flying about the Earth–Sun L2 Lagrangian point or in
a drift-away solar orbit. Its purpose is to discover and ana-
lyze terrestrial extra-solar planets. The NWO planned
launch date is about 2018. In the case of Earth–Moon sys-
tem, L4 and L5 points could be excellent locations to place
space telescopes for astronomical observations or a space
station (Schutz, 1977). In addition, Defilippi (1977) made
a review of the ideas of American physicist O’Neill (1974)
about building space colonies at the L4 and L5 positions.
These space stations could be used as a way-point for trav-
eling to and from the region between Earth’s atmosphere
and the Moon (cis-lunar space). Despite this advantage,
today there are no missions orbiting L4 or L5 points for
any celestial pair of primaries.

One of the main problems of positioning satellites in for-
mation flying is the cost involved in maintaining the forma-
tion. This is so because keeping a formation from drifting
apart and achieving mission requirements is expected to
require significantly more fuel than station keeping a single
spacecraft. In the multi-body regime, numerous references
in the literature regarding optimal control techniques on
formation flight at collinear and triangular libration points
can be encountered. Many of these references assume that
the radius of the formation (largest separation between the
spacecrafts) is no greater than a few kilometers. Hence, the
linear approach about a nominal trajectory may give the
relevant information about the local dynamics, while clas-
sical control theory (e.g. Linear Quadratic Regulator con-
troller) can then be applied to the linearized system
(Farquhar, 1971; Hoffman, 1993; Folta et al., 2000;
Hamilton, 2001). Dynamical systems approaches are other
formation control studies that have been investigated. The
goal of these works was the determination of the natural
formation dynamics on the center manifold near the libra-
tion points (Barden and Howell, 1998a,b, 1999; Howell and
Barden, 1999, 2005). In the case of non-natural forma-
tions,1 Howell and Marchand (2005) used continuous
and discrete control strategies to maintain the formations
near the L1 and L2 libration points in the Sun–
Earth/Moon system. Similarly, Marchand and Howell
(2005) provided a decentralized control strategy based on
existing linear and nonlinear techniques.

Recently, a linear analysis carried out by Gómez et al.
(2006), derived via variational equations and using a
1 This type of motion does not exist naturally near libration points.
numerical approach, regions of zero relative radial acceler-
ation with respect to a halo orbit near the L2 Sun–Earth
libration point, that avoid large variations of the
mutual distances among the spacecraft. In addition,
vehicle-to-vehicle separation was considered small.
Analytically, these regions are represented by cone sur-
faces. The motion on the zero relative radial acceleration
cones ideally prevents expansions or contractions of the
formation. Gómez et al. (2006) employ discrete control
strategies to maintain the natural formation within the zero
drift regions. However, it could be that at specific locations
along a certain nominal trajectory, the relative acceleration
between the two spacecraft never precisely reaches zero. In
this sense, Héritier and Howell (2014) introduced the com-
putation of the low drift regions, which correspond to the
relative positions that maintain a desired maximum relative
acceleration.

Previous studies like those by Catlin and McLaughlin
(2007), Wong (2009) and Salazar et al. (2014) on SFF
about L4 in the Earth–Moon system have been carried
out. The motion of formation flying near triangular libra-
tion points was studied adopting the Circular Restricted
Three Body Problem (CRTBP) model. Catlin and
McLaughlin (2007) showed that formations are possible
at the triangular points for uncontrolled trajectories due
to the stability of stationary solutions. On the other hand,
Wong (2009) established that a system control is required
and he developed strategies for keeping a spacecraft forma-
tion system at L4. Salazar et al. (2014) determined analyti-
cally and numerically the zero drift regions with respect to
a family of periodic orbits about L4. Catlin and
McLaughlin (2007), Wong (2009) and Salazar et al.
(2014) showed that velocity change requirements
demanded by control methods would be very small in the
CRTBP scenario. Thus, these studies concluded that non-
linear aspects as well as perturbation forces (e.g. solar grav-
ity, solar radiation pressure) are necessary to provide a
more real-world accurate descriptions of formation dynam-
ics in flying around equilateral libration points in the
Earth–Moon system.

In order to cope with the Sun’s perturbation, the Sun–
Earth–Moon bicircular scenario is considered in this work.
This dynamical model is a simplified version of the
Restricted Four Body Problem, that captures in some sense
the basic dynamics of a real four body problem (Simó
et al., 1995). The equations of motion of the BiCircular
Four Body Problem (BCFBP) in the synodic system can
be written in an autonomous fashion; however, L4 and L5

are no longer equilibrium points, only retaining their geo-
metrical meaning. Using different approaches,
Kolenkiewicz and Carpenter (1967, 1968) and Gómez
et al. (2001b) obtained three periodic orbits in the synodical
coordinate frame, that have the same period as the Sun.
Two of them are linearly stable, lying far away from the tri-
angular libration points of the CRTBP, while the other one
is small and slightly unstable. On the other hand, Simó
et al. (1995) and Castellà and Jorba (2000) started on these
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three periodic orbits and obtained a Cantor family of
quasi-periodic solutions (2� D tori) for each periodic
orbit, which is continued in the vertical (z and _z) direction
up to a high distance. Similarly, for moderate vertical
amplitudes, the tori on these families have the same stabil-
ity as the three periodic orbits mentioned above. It is
important to mention that stable regions about triangular
points seem to persist in the real Earth–Moon system
(Jorba, 2000; Hou and Liu, 2010).

The goal of this work is to investigate the existence of
stable regions for small formation flight dynamics (maxi-
mum distance between the satellites no greater than a few
kilometers at most) near bounded solutions2 around the
equilateral equilibrium point L4 of the CRTBP adopting
the BCFBP scenario (the same results will hold for L5

due to the symmetries of this model). Compared to the
CRTBP, the gravitational perturbation from the Sun could
approximate better the dynamics near triangular libration
points. Furthermore, the method based on the linearization
of the relative equations of motion with respect to trajecto-
ries around L4 is employed. Finally, two discrete control
strategies are implemented to maintain a formation on
the zero radial acceleration cones: the bang-off-bang and
minimum weighted total DV consumption. For both strate-
gies several parametric studies are performed, considering
different geometrical possibilities, such as parallel and
non-parallel translations between the cone surfaces.

The remainder of this paper is organized as follows.
Section 2 describes the equations of motion of the BCFBP,
and stable quasi-periodic solutions about L4, along which
we will assume that the formation is moving. Section 3
defines the regions of zero relative radial acceleration com-
ponent with respect to a nominal trajectory. Sections 4
and 5 determine the surfaces of zero drift for the
quasi-periodic solution, and compute the cost of keeping
the geometrical configuration of the spacecraft placed on
those regions, using the two discrete control strategies men-
tioned above. At last, the conclusions are drawn in Section 6.

2. Stable quasi-periodic orbits around triangular libration

point in the BCFBP

2.1. The Equations of the BCFBP

Taking into account the Sun’s gravitational force in the
Earth–Moon system, the BCFBP is formulated under the
following assumptions: (i) the movements of the Sun,
Earth and Moon take place in the same plane; (ii) the
Earth and Moon move around their barycenter in a circu-
lar orbit; (iii) the Sun and Earth–Moon barycenter move
around their common center in circular orbits. This
dynamical model is a modified version of the Earth–
Moon CRTBP and catches the basic dynamics of the real
four-body problem.
2 A solution is called bounded if it is confined to a compact set.
Let l be the mass of the Moon, 1� l the mass of the
Earth and lS the mass of the Sun. Taking as unity the dis-
tance between the Earth and the Moon, let aS denote the
distance from the Earth–Moon barycenter to the Sun.
The equations of motion in the Earth–Moon synodic sys-
tem, centered at the Earth–Moon barycenter are given by
Gómez et al. (2001b)

€x� 2 _y ¼ Xx;

€y þ 2 _x ¼ Xy ;

€zþ _z ¼ Xz;

_hS ¼ xS; ð1Þ

where xS is the angular speed of the Sun in the synodical
system, hS is the phase angle of the Sun relative to the
Earth–Moon line, X is the perturbed pseudo potential
caused by the Sun, and the symbol Xi stands for the partial
derivatives @X=@i for i ¼ x; y; z.

X ¼ 1

2
x2 þ y2 þ z2
� �

þ 1� l
r1

þ l
r2

þ 1

2
l 1� lð Þ

þ lS
1

rS
� 1

a2
S

x cos hS � y sin hSð Þ
� �

; ð2Þ

with

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ lð Þ2 þ y2 þ z2

q
;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1þ lð Þ2 þ y2 þ z2

q
; ð3Þ

rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� aS cos hSð Þ2 þ y þ aS sin hSð Þ2 þ z2

q
:

The positions of the Earth, the Moon, and the Sun
in the synodical system are �l; 0; 0ð Þ; 1� l; 0; 0ð Þ;
aS cos hS ;�aS sin hS ; 0ð Þ, respectively. Additionally, even

though the system of differential equations (1) is autono-
mous, L4 and L5 are no longer equilibrium points, keeping
only a geometrical meaning.

2.2. Solutions around triangular libration point in the

BCFBP

In the Sun–Earth–Moon BiCircular Four Body
Problem, we take the mass parameter

l ¼ 1:215058560962404� 10�2, the mass of the Sun
lS ¼ 328; 900:55, the distance between the Sun and the
Earth–Moon barycenter aS ¼ 388:8111430233514 adim,
and the angular speed of the Sun xS ¼
0:92519598551828964. These values are consistent with
the ones used by Gómez et al. (2001b), that applied a con-
tinuation method to pass from the Earth–Moon CRTBP to
the Sun–Earth–Moon BCFBP and found three periodic
orbits with initial phase angle hS ¼ 0, i.e., the initial angle
between the Sun–Earth and Earth–Moon lines is equal to
zero, and whose periods are equal to the period of revolu-
tion of the Sun in the Earth–Moon synodical system: 6.791
units of dimensionless time (about 29 days). Those orbits,
denoted by PO1, PO2, and PO3, are shown in Fig. 1 in
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the Earth–Moon rotating frame centered in the Earth–
Moon barycenter. The system of differential equations (1)
were integrated numerically considering the initial states
given by Gómez et al. (2001b) and using the Bulirsch–
Stoer algorithm (Stoer and Bulirsch, 1980; Press et al.,
1992), programmed in the C language, choosing a dimen-

sionless step size h ¼ 1:0� 10�3 and setting a local trunca-

tion error of 1:0� 10�9.
The periodic orbits PO2 and PO3 are stable solutions

about L4, i.e., the norm of the eigenvalues of the mon-
odromy matrix associated with the two trajectories are less
than one. Those orbits are very large, about 0:6 adim
(230,000 km) along the x-axis and 0:4 adim (153,000 km)
along the y-axis. Orbit PO1 is an unstable periodic solution
about L4. This orbit remains within 0:02 adim (7,600 km) of
the libration point. Hence, it ‘replaces’ the triangular point.

The effects of the initial configuration of the Sun–Earth–
Moon were studied by Tapley and Lewallen (1964) and
Wolaver (1965), and more recently, by Munoz (2008).
The problem is to determine the initial phase angle hS ,
i.e., the initial position of the Sun, that minimizes the max-
imum displacement from L4. Wolaver (1965), using the
approximation of the BCFBP and linearizing the equations
of motion in the vicinity of L4, obtained three initial posi-
tions of the Sun that showed a maximum displacement of
5,349 km from L4 for 400 days. However, this solution does
not persist in a more realistic ephemeris-based model. On
the other hand, Tapley and Lewallen (1964), including also
the inclination of the Sun’s orbit in the Sun–Earth–Moon
system, found that the motion of the spacecraft initially
at L4 is very dependent on the initial position of the Sun
and that the amplitude of motion about L4 and L5 is greater
than what was predicted by the linearized equations.
Similarly, Munoz (2008) obtained an initial value of hS in
the Sun–Earth–Moon BCFBP, so that, a spacecraft ini-
tially at rest at L4 remained within 30,000 km of L4 for a
propagation time of 7,000 days. However, the resulting tra-
jectory was extremely sensitive to the initial value of hS .
Fig. 1. Stable and unstable periodic orbits about L4 in the Sun–Earth–Moon
revolution of the Sun in the Earth–Moon synodical system.
Therefore, using more realistic model of the Sun–Earth–
Moon system, Munoz (2008) studied the motion of a
spacecraft near the triangular libration points in the
Earth–Moon system using the SPICE ephemerides, and
found in the year 2007, 12 and 13 epochs in the L4

and L5 cases, respectively, such that the spacecraft would
remain in a close vicinity about triangular points for at
least 3,000 days. But in this model again, the resultant
motion was sensitive to the initial configuration.

One of the goals of this investigation is to find
well-behaved bounded solutions about L4 to place a forma-
tion when solar gravitational force and vertical (z; _z) direc-
tion are considered, i.e., non-planar formations are carried
out. From the results in Jorba and Villanueva (1997a,b), it
is concluded that for each of the three periodic orbits
shown in Fig. 1, there exists a Cantor family of
two-dimensional tori that extend those vertical oscillations.
In addition, for moderate vertical amplitudes, tori in theses
families, that are close to the basic periodic orbits, have the
same stability as these periodic orbits. Hence, most of the
tori on the vertical families corresponding to the periodic
orbits PO2 and PO3 are elliptic. Numerical experiments
show that there exist stable regions around these vertical
families, which correspond to non-escape trajectories from
a neighborhood of one of those tori (Jorba, 2000).

In order to check the behavior of a formation in a
bounded solution near triangular libration points in the
restricted Sun–Earth–Moon scenario, Fig. 2 shows two
quasi-periodic orbits (let us call QP2 and QP3) that fill den-
sely one of the two dimensional tori on the families corre-
sponding to the periodic orbits PO2 and PO3. The first plot
in each row shows the x; yð Þ projection, the second one con-
tains the x; zð Þ projection and the third one is the z; _zð Þ pro-
jection. The initial conditions of QP2 and QP3 are the same
of the periodic solutions PO2 and PO3 with z0 ¼ 0 and
_z0 ¼ 0:05. Due to the stability of these two trajectories
about L4, they will be chosen and analyzed as nominal tra-
jectories for small formation flying. Numerical simulations
BCFBP with initial phase angle hS ¼ 0 and period equal to the period of



Fig. 2. Stable quasi-periodic orbits QP2 and QP3 that fill the 2� D tori corresponding to the periodic orbits PO2 and PO3, respectively, with initial phase
angle hS ¼ 0, and vertical direction z0 ¼ 0 and _z0 ¼ 0:05. First plot: x; yð Þ projection; second plot x; zð Þ projection; third plot z; _zð Þ projection. Integration
time: 5 years.
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have shown that a relevant part of the stable regions of the
BCFBP persists for a very realistic model of the solar sys-
tem, at least for 10 years and 1000 years in the case of the
vertical families corresponding to PO2 and PO3, respec-
tively (Jorba, 2000). Note that a stability time of 10 years
could be enough for astronautical applications and there
would be no need for any kind of control to keep a space
mission near periodic orbit PO2. Furthermore, by real sys-
tem we refer to the well-known Jet Propulsion Laboratory
(JPL) ephemeris, file DE406, which specifies the past and
future positions of the Sun, Moon, and nine planets in
three-dimensional space. These data contain coefficients
for Chebyshev polynomials (Press et al., 1992) that specify
position (coordinates) and, by numerical differentiation,
velocity components for each planet, including the Sun,
Earth and Moon.

3. Natural regions suitable for small formation

For the purpose of this research, the satellite located at
the center of the relative frame, will be called ‘chief’ satellite
while the satellite operating in the vicinity of the chief will
be called ‘deputy’ (see Fig. 3(a)). In order to avoid expan-
sion or contraction with respect to the chief satellite, the
existence of regions with zero relative velocity and zero rel-
ative radial acceleration (ZRRA) may be exploited (Gómez
et al., 2001b; Perea et al., 2009). Assuming that the radius
of the formation geometry structure (largest separation
between spacecraft) is small, no greater than a few kilome-
ters at most, then a linear approach gives all the relevant
information about the local dynamics of the problem.

Let

X ¼ x; y; z; _x; _y; _zð ÞT ð4Þ
be the vector that describes the position and velocity of the
deputy satellite in the rotating frame, where superscript
“T ” means transpose. Given a reference solution X h

around L4, i.e, the trajectory that is assumed to be followed
by the chief satellite, then the linear variational equations
of motion about the reference solution in matrix form is
given by

d _X tð Þ ¼ A tð ÞdX tð Þ; ð5Þ

where dX tð Þ ¼ X tð Þ � X h tð Þ represents the deviation of the
deputy satellite with respect to the chief’s path. The coordi-
nates of dX tð Þ are defined in a coordinate system x̂; ŷ; ẑð Þ
parallel to the rotating coordinate system x; y; z and cen-
tered at X h tð Þ as shown in Fig. 3. The matrix A tð Þ is
time-varying of the form

A tð Þ ¼
03�3 I3�3

F J

� �
; ð6Þ

where the matrices F and J are defined as

F ¼
Xxx Xxy Xxz

Xyx Xyy Xyz

Xzx Xzy Xzz

0
B@

1
CA; J ¼

0 2 0

�2 0 0

0 0 0

0
B@

1
CA: ð7Þ

The symbol Xij stands for the partial derivatives

@2X=@i@j for i; j ¼ x; y; z, and these partials are evaluated
along the reference trajectory.

4. Zero relative radial accelerations cones

Writing the variations of the deputy satellite as

dX ¼ dr; d_rð ÞT , where dr ¼ dx; dy; dzð ÞT , the linear system
(5) becomes



Fig. 3. (b) Illustration of a satellite formation flying about L4 and its reference coordinate frame. (b) Sphere centered at the location of the chief satellite in
the configuration space, such that, the velocity of all the points on the sphere are assumed to be equal to zero, and the locations of the deputy vehicle on the
sphere are parametrized using spherical coordinates denoted by the angles w and /.
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d_r

d€r

� �
¼

03�3 I3�3

F J

� �
dr

d_r

� �
: ð8Þ

Since the distance between the deputy and chief satellites
is small, we could assume that the relative velocity d_r is
equal to zero. From Eq. (8), the relative acceleration is then

d€r ¼ F dr: ð9Þ

Therefore, the locations with Zero relative radial accelera-
tion component satisfy the equation

drT F dr ¼ 0: ð10Þ

Since the right hand side of Eq. (10) is equal to zero, then
the ZRRA regions are represented by quadratics, that in
general are elliptic cones. However, Salazar et al. (2015)
showed that, for solutions far enough from Earth–Moon
L4 point, there exist certain locations in the selected path,
where the ZRRA cones become intersecting planes. This
fact produces a variation in the orientation of the cones
surfaces along the reference trajectory as is shown below.

Regions with ZRRA component can also be computed
numerically. Given a certain reference solution, consider
a point along the trajectory that represents the state of
the chief spacecraft. Now, centered at the location of the
chief satellite, define a sphere of radius equal to 2 km in
the configuration space, such that, the velocity of all the
points on the sphere are assumed to be equal to zero (zero
relative velocity condition). Using polar coordinates, the
locations of the deputy vehicle on the sphere can be para-
metrized by the angles w and / as illustrated in Fig. 3(b).
The relative acceleration d€r w;/ð Þ, that corresponds to each
of the states of the sphere, can be evaluated using the right
hand side of Eq. (1), whose dot product with dr w;/ð Þ will
give the desired radial component.

In this way, since the analytical expression for the
ZRRA derived by Eq. (10) represents a quadratic surface,
Eq. (10) can be transformed into its canonical form using a
change of coordinates. Because of matrix F is symmetric,

i.e., F ¼ F T , it can be diagonalized:

F ¼ PKP T ; ð11Þ

where P is the orthogonal matrix and K is the real diagonal
matrix, and are of the form

P ¼ V 1V 2V 3ð Þ; K ¼
k1 0 0

0 k2 0

0 0 k3

0
B@

1
CA: ð12Þ

The real values k1; k2, and k3 represent the eigenvalues of F.
The column vectors V 1; V 2, and V 3 denote the eigenvectors
of F and form an orthonormal basis that identifies the prin-
cipal directions of the quadratic surface.

Now, defining the vector d�r ¼ �x; �y;�zð ÞT , such that,

d�r ¼ P T dr, then Eq. (10) can be rewritten in the following
form

k1�x2 þ k2�y2 þ k3�z2 ¼ 0: ð13Þ

Eq. (13) represents a second order surface, whose orienta-
tion also represents the principal directions corresponding
to the cones and, therefore, depends on the sign of the
eigenvalues k1; k2, and k3 (Hilbert and Cohn-Vossen,
1999). To investigate the effect of the reference path on
the quadratic surfaces, Fig. 4 shows the dynamical evolu-
tion of the eigenvalues of F along the quasi-periodic solu-
tions QP2 a� cð Þ and QP3 d � fð Þ, during one period of
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revolution of the Sun (about 29 days). As can be seen in
Fig. 4, eigenvalues k1 and k3 are always negative and pos-
itive, respectively. However, there are two locations where
k2 approaches zero. Hence, at these positions the cones
become intersecting planes and, at once, a change in the
orientation of the cones occurs, as illustrated in Fig. 5.
This dynamical evolution is repeated along the
quasi-periodic solutions QP2 and QP3.

To help in the interpretation of the orientation of the
quadratic surfaces, Fig. 6 shows the x; yð Þ projection in
the rotating frame of the three principal directions

V 1; V 2; V 3f g along the two reference solutions during
29 days. Notice that a close proximity of the Earth leads
to a higher level of sensitivity and, eventually, to a change
in the orientation of the zero natural drift regions. In partic-
ular, the two locations at time t ¼ 10 days and t ¼ 25 days
in Fig. 6(a) and (b), respectively, with k2 < 0, represent
the closest distance with the Earth. Over the time interval
that surrounds those times in Fig. 4, that is the time corre-
sponding to the close proximity of the Earth, the magnitude
(absolute value) of the three eigenvalues of F gets larger.
This fact implies that, when the chief spacecraft is passing
close to the Earth, the relative velocity and relative acceler-
ation between the spacecraft are higher and, therefore, the
cost to maintain the deputy vehicle within the Zero relative
radial acceleration cones is higher as shown in the next
Fig. 4. Eigenvalues of F along the quasi-periodic solutions QP2 a� cð Þ and Q
section. Finally, the two locations at time t ¼ 24 days and
t ¼ 10 days in Fig. 6(a) and (b), respectively, with k2 > 0,
represent the farthest distance to the Earth.

To illustrate how the relative radial acceleration varies
with respect to the relative directions on a sphere, the rela-
tive acceleration between the chief and deputy is computed
numerically at previous locations (t ¼ 4 days, 10 days,
16 days, 24 days) along the reference trajectory QP2. The
sphere of points corresponds to a radius of 2 km, and the
test points are parametrized by the two angles, an
in-plane angle w measured from the x̂-axis and an
out-of-plane angle b, as illustrated in Fig. 3(b). Due to
the linear approach, the velocity of all the points on the
sphere is assumed to be equal to the velocity of the selected
location on the reference trajectory. The surface of relative
radial acceleration at time t ¼ 4 days (a), 10 days (b),
16 days (c) and 24 days (d) along the reference trajectory
QP2 is presented in Fig. 7. These surfaces posses two min-
ima located at about w ¼ 150� and / ¼ 0�, and two max-
ima located at about w ¼ 60� and / ¼ 0�. The contour
lines on the surfaces reflect the value of the relative
radial acceleration at the specific locations on the sphere.
The dash-dotted green contour lines near the two minima,
correspond to the zero drift regions along the cones
surfaces found analytically using the linear approach.
Similarly, the magnitude of the maximum radial
P3 d � fð Þ, during one period of revolution of the Sun (about 29 days).



Fig. 5. Illustration of the change in the cones’ orientation when k2 ¼ 0.

Fig. 6. Principal directions V 1; V 2; V 3f g along the two reference solutions QP2 að Þ and QP3 bð Þ during 29 days.
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acceleration is larger at t ¼ 10 days, and lower at
t ¼ 24 days, corresponding to the closest and farthest
distance to the Earth, respectively.

Note that the relative position vectors with w ¼ 60� and
/ ¼ 0�, and w ¼ 150� and / ¼ 0� point in the same direc-
tion as the lines that connect the libration point L4 with
the Earth and the Moon, respectively. These two vectors
are orthogonal. Therefore, as shown in Figs. 6 and 7, not
only the close proximity of the Earth produces a higher
drift, but also the relative position vector of the deputy
satellite with respect to the chief spacecraft points in the
same direction that the vector that connects L4 with the
Earth’s center. To compare the natural drift between the
two spacecraft along the reference trajectory QP2, a deputy
vehicle is placed on the sphere centered at the chief satellite
with radius of 2 km, and the previous locations (t ¼ 4 days,
10 days, 16 days, 24 days) represent the initial position of
the chief satellite. Subsequently, a set of points on the
sphere is obtained, and the deputy vehicle is initially placed
on the surface of the sphere. The initial velocity of the
spacecraft is assumed to be the same. Then, both paths
are integrated and the natural drift is computed after
5 days. The surface of natural drift as a function of the
two initial angles w and / appears in Fig. 8. Similarly,
the surfaces of natural drift posses two maxima and two
minima that correspond to the same locations as the max-
ima and minima for the relative radial acceleration illus-
trated in Fig. 7. The magnitude of the maximum natural
drift is also larger at t ¼ 10 days (about 8 km), and lower
at t ¼ 24 days (about 3 km). Therefore, the amount of nat-
ural drift depends on the initial position selected for the
chief satellite, and it is higher when the chief satellite is
passing close to the Earth. However, Fig. 8 shows that it
is possible to reduce the variation of the mutual distance
if the deputy vehicle is placed on the zero radial accelera-
tion cones, which in principle, will keep fixed the mutual
distance within the formation. Additionally, a linear
behavior between the natural drift and the initial radius
of the formation was found, i.e., if the initial radius is
doubled, then the natural drift after 5 days is also multi-
plied by 2. The cost to maintain a formation within the
zero drift surfaces is considered in the next section.



Fig. 7. Surface of the relative radial acceleration between the spacecraft at time t ¼ 4 days (a), 10 days (b), 16 days (c), 24 days (c), along the reference
trajectory QP2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 8. Surface of natural drift after 5 days for a 2-km formation at initial positions t ¼ 4 days (a), 10 days (b), 16 days (c), 24 days (d) along the two
reference solutions QP2.
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5. Controlling motions within the ZRRA cones

In this last section, we will show some results related to
the control of a formation moving on the zero radial accel-
eration cones. Two different control strategies have been
employed: a bang-off-bang control and a minimum
weighted total DV consumption.

For a given formation size and a given time of integra-
tion, the relative position of the deputy vehicle on a gener-
atrix of a cone associated with the reference trajectory is
defined by the angle h, as illustrated in Fig. 9(a). This figure
shows a generatrix that moves around the principal
direction V 1. However, because there exists a change in
the orientation of the cones when the eigenvalue k2

approaches zero (see Fig. 5), then the quadratic surface
defined by Eq. (13) is not satisfied in the real domain for
every angle h. Hence, the endpoints of the intervals for h,
such that Eq. (13) is satisfied, can be approximated by
the inclination of the intersecting planes when k2 t�ð Þ ¼ 0.

In this case, the slope is equal to �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 t�ð Þ=k3 t�ð Þ

p
. Thus,

it was found that Eq. (13) is satisfied along the reference
trajectories QP2 and QP3 for 25� < h < 155� and
205� < h < 335�. These intervals are located in the region
colored in pink in Fig. 9(b).



Fig. 9. (a) Generatrix of a cone defined by the angle h and associated with the reference trajectory. (b) Intervals for angle h (pink region) such that the
quadratic surface defined by Eq. (13) is satisfied. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this paper.)
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For both control strategies several parametric studies
have been done, considering different geometrical possibil-
ities, such as parallel and non-parallel translations between
ZRRA cones. In the parallel translations, the initial and
final generatrices h are equal, and in the non-parallel ones,
they are different.
5.1. The bang-off-bang control

Due to the symmetry of the cones, only one generatrix is
taken on each cone, assuming a formation of two satellites:
the deputy vehicle is situated at the end of the cone’s gen-
eratrix associated with the reference orbit, while the chief
spacecraft, situated at the cone’s vertex, moves along the
reference solution without any control acting on it. As
the chief satellite moves along the orbit after some Dt,
the deputy vehicle is forced to be always on a generatrix
of a ZRRA cone, keeping their mutual distance. This situ-
ation is illustrated in Fig. 10 for four deputy vehicles placed
initially on different generatrices of the cones. The chief
satellite is placed in different initial locations, and two
impulse maneuvers are applied in each deputy vehicle
Fig. 10. A formation of four deputy vehicles moving along the reference solutio
some Dt, the deputy vehicles are forced to be always on a generatrix of a ZRR
during the time displacement, in such a way that, the space-
craft are placed finally on the corresponding ZRRA cone in
the same amount of time. Note that, even if the initial con-
figuration is within the zero drift regions, drift between the
two spacecraft still occurs, thus the relative position vector
of the deputy vehicle is not, in general, on any generatrix of
any ZRRA cone.

Let us denote by dX 0; dX f the initial and final states
(position and velocity), respectively, of the deputy vehicle
after some Dt. If DV 0;DV 1 represent the two impulse
maneuvers to be applied at t ¼ t0 and t ¼ aDt; 0 < a 6 1,
respectively, and U t; t0ð Þ the state-transition matrix of the
linear system (5), then the equations that must be solved
for the computation of the impulse translation maneuvers
are

U Dt;aDtð Þ U aDt; t0ð Þ dX 0þ
0

DV 0

� �� �
þ

0

DV 1

� �� �
¼ dX f :

ð14Þ

If we fix the parameter a, the linear system (14) will have
six equations and six unknowns: the components of the two
impulses. Thus, the total cost of the translation maneuvers
n QP2. The chief satellite is placed in different initial locations, and after a
A cone, keeping their mutual distance.
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will be DV 0k k þ DV 1k k. Although the cost depends on the
parameter a fixed, no significant variation of this magni-
tude with a was found. The results presented in this section
were obtained with a ¼ 1. Fig. 11 shows the total cost
(cm/s) for the deputy vehicle, of parallel translation maneu-
vers, i.e., h t0ð Þ ¼ h Dtð Þ ¼ 120�, for Dt ¼ 1:5; 3, and
4.5 days, when the vertex of the departure cone moves
along the bounded solutions QP2 and QP3, and the dis-
tance between the spacecraft placed initially and finally
on the ZRRA cones is equal to 2 km. The horizontal axis
on Fig. 11 represents the locations of the initial position
of the chief satellite. The point 0 denotes the initial condi-
tions of solutions QP2 and QP3, and the point 1 the posi-
tion after one period of revolution of the Sun (about
29 days). Note that, as was stated in the previous section
and shown in Figs. 7 and 8, the maximum total cost corre-
sponds to the closer point to the Earth (see Fig. 6), for any
value of Dt. Additionally, the cost of the transfer behaves
almost linearly with the time displacement Dt.

Now, we are interested in exploring the cost of parallel
translations as a function of the generatrix along the depar-
ture cone. Thus, fixing the vertex of departure at the loca-
tions that are identified in the closest distance to the Earth
of the bounded solutions QP2 and QP3 (see Fig. 6), Fig. 12
shows that, for any value of Dt, the maximum cost is
obtained when the departure generatrix h t0ð Þ is equal to
90� and 270�. On the other hand, the results given in
Fig. 12 suggest that the best configurations for the forma-
tion occurs for the extremes of the intervals for h (see
Fig. 9(b)). These four departure generatrices, as well as
those of maximum cost, will be used in the next section.

For the second exploration, we have also studied the
non-parallel translation maneuvers, i.e., the initial and final
configurations of the formation are on different generatri-
ces of the ZRRA cone, i.e., h t0ð Þ– h Dtð Þ. In the first case,
the departure generatrix is fixed with h t0ð Þ ¼ 25�, and the
Fig. 11. Total cost (cm/s) of parallel translation maneuvers with h t0ð Þ ¼ 120�

along the bounded solutions QP2 (a) and QP3 (b), and the distance between
arrival one is varied within the intervals for h, at a distance
Dt from the first. The results corresponding to these trans-
fer maneuvers appear in Fig. 13. When the initial configu-
ration is almost parallel to the final one (h t0ð Þ � h Dtð Þ) the
cost of the transfer is minimum, independently of the
value of Dt or the position of the initial configuration along
the quasi-periodic solutions, as shown in Fig. 13(b).
Additionally, the cost increases as Dt decreases. However,
this situation reverses for angles close to 25�.

Finally, in the second case, the transfers from an arbi-
trary departure generatrix to an arbitrary arrival generatrix
of two ZRRA cones are studied. Fig. 14 shows the corre-
sponding total transfer cost (cm/s) for these kind of maneu-
vers. From this figure, we can see that the cost surfaces
reach their minima on the in-plane diagonal. Therefore,
the transfer costs are minimum when both the initial and
final generatrix are almost parallel.
5.2. The minimum DV control strategy

Similarly, given an initial state dX 0 at t ¼ t0, the goal of
this control procedure is to reach a final state dX f at t ¼ tN

(N P 2), applying a sequence of correction maneuvers
DV 0;DV 1; . . . ;DV N�1 at certain epochs t0; t1; . . . ; tN�1, and
executed at uniformly distributed instants, i.e, tiþ1 � ti ¼
constant. Therefore, assuming that the maneuvers are per-
formed without errors, they should satisfy the following
linear constraint:

U tN ; tN�1ð Þ � � �U t1; t0ð Þ dX 0þ
0

DV 0

� �� �
þ���þ

0

DV N�1

� �� �
¼ dX f :

ð15Þ

Since there are infinitely many different values of
DV 0;DV 1; . . . ;DV N�1 that satisfy the linear system (15),
we select those that minimize the cost function
for Dt ¼ 1:5; 3, and 4:5 days, when the vertex of the departure cone moves
the spacecraft on the initial and final ZRRA cones is of 2 km.



Fig. 12. Total transfer cost (cm/s) of parallel translation maneuvers for Dt ¼ 1:5; 3, and 4:5 days, fixing the vertex of departure at the locations that are
identified in the closest distance to the Earth of the bounded solutions QP2 (a) and QP3 (b) (see Fig. 6).

Fig. 13. Total transfer cost (cm/s) of non-parallel translation maneuvers for Dt ¼ 1:5; 3, and 4:5 days, fixing the departure generatrix with h t0ð Þ ¼ 25� in
the bounded solutions QP2 (a), (b) and QP3 (c), (d).
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XN�1

i¼0

qi DV ik k2
; ð16Þ

where q0; q1; . . . ; qN�1 are weights which must be fixed in

advance. In this work, we have used qi ¼ 2�i, so the magni-
tude of the first impulsive maneuvers remain small and,
therefore, the last impulsive maneuvers will practically posi-
tion the deputy vehicle on the ZRRA cone at t ¼ tN . Because
the cost function (16) is quadratic and the constrain (15) is
linear, the minimum weight total DV consumption problem
can be solved easily by using Lagrange multipliers.

Since parallel translation maneuvers are cheaper than
non-parallel, as was shown previously, we only consider
parallel translations in this section. We have analyzed the
total magnitude of the controls applied, which is the sum
of the magnitudes of all the control maneuvers, as a func-
tion of the generatrix along the departure cone, the time
interval tN required by the spacecraft recover the



Fig. 14. Total transfer cost (cm/s) of non-parallel translation maneuvers for Dt ¼ 1:5; 3, and 4:5 days, between arbitrary departure and arrival generatrices
of two fixed cones in the bounded solutions QP2 (left column) and QP3 (right column).
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formation, and the number N of correction maneuvers.
Thus, Figs. 15 and 16 present the magnitude of the correc-
tion maneuvers as a function of time for different sets of
values of the time interval tN and the number of maneuvers
N P 2, when the chief satellite moves along the reference
solutions QP2 and QP3, respectively. For each simulation,
the distance between the spacecraft placed initially and
finally on the ZRRA cones is 2 km, and the angle of the
generatrix h tNð Þ ¼ 25�.

The results presented in Figs. 15 and 16 show that the
magnitude of the first maneuvers remain small due to the
weights chosen in this study. On the other hand, the mag-
nitude of the control maneuvers reaches a maximum value
in the locations where the formation is closer to the Earth
(see Figs. 6 and 11). Now, notice that keeping fixed the
time interval tN , the magnitude of each DV i maneuver

decays approximately as 2� N�2ð Þ=2 with regards to the num-
ber of maneuvers N P 2. On the other hand, there exists a
small reduction in the magnitude of the control maneuvers
when the time interval increases if the number of maneu-
vers remains fixed.

Furthermore, Fig. 17 presents the total transfer cost
during 1 year for different sets of values of the angle of
the generatrix h tNð Þ, the time interval tN and the number
of maneuvers N P 2. The results obtained for a radius of
2 km, found two local minima of the total cost when the
angle h tNð Þ in the ZRRA cone is close to 90� and 270�.
Note that, with regards to the bang-off-bang control, these
angles correspond to the points where the total cost
reached a maximum value (see Fig. 12). In addition, vary-
ing the time interval and the number of the control maneu-
vers, and keeping fixed the departure generatrix, the best
results are obtained when tN ¼ 4 h and N ¼ 3. Finally, it
was found that if the distance between the spacecraft
placed on the ZRRA cone is doubled, the total transfer
cost DV is also multiplied by 2.



Fig. 15. Magnitude of the correction maneuvers for different sets of values of the time interval tN and the number of maneuvers N P 2, when
the chief satellite moves along the reference solution QP2. The distance between the spacecraft placed initially and finally on the ZRRA cones is 2 km,
and the angle of the generatrix is equal to 25�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this paper.)

Fig. 16. Magnitude of the correction maneuvers for different sets of values of the time interval tN and the number of maneuvers N P 2, when the
chief satellite moves along the reference solution QP3. The distance between the spacecraft placed initially and finally on the ZRRA cones is 2 km, and
the angle of the generatrix is equal to 25�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this paper.)
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Fig. 17. Total transfer cost during 1 year for different sets of values of the angle of the generatrix h tNð Þ, the time interval tN and the number of maneuvers
N P 2, when the chief satellite moves along the reference solution QP2 (a) and QP3 (b). The distance between the spacecraft placed initially and finally on
the ZRRA cones is 2 km.
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6. Conclusions

In this paper we have determined quadratic surfaces
with zero relative radial acceleration component for the
deputy vehicle in a two spacecraft formation, associated
to two stable quasi-periodic trajectories suitable for forma-
tion flight about L4 in the Sun–Earth–Moon BCFBP.
Assuming a radius of a few kilometers for the geometry
of the formation, the variational equation with respect to
the reference trajectory allows the derivation of quadratic
surfaces for the zero drift regions along each reference tra-
jectory. Although the linear approach determines elliptic
cones along the reference paths, at certain locations the
cones become intersecting planes and their orientation
changes.

The natural motion of the deputy spacecraft, positioned
at the most favorable location with respect to the chief
spacecraft, avoids large variations of the mutual distances
between the deputy and chief spacecraft. This study shows
that the distance of the formation with respect to the Earth
affects the natural drift of the formation. In fact, the mag-
nitude of the natural drift reaches a maximum when the
formation passes close to the Earth. This affects the cost
to maintain the formation on the ZRRA cones.
Additionally, to avoid geometric configurations that do
not satisfy the quadratic equation of the zero drift surfaces
along the reference solutions, produced by the bifurcation
between the elliptic cones and the intersecting planes, the
generatrix in the cones is parametrized by an angle h, such
that, the endpoints of the intervals for h that satisfy the
quadratic equation, can be approximated by the inclination
of the intersecting planes when the bifurcation happens.
Furthermore, two control strategies were implemented
to maintain the formation on the ZRRA cones considering
a radius of the formation of 2 km. The first one, the
bang-off-bang control applies two control impulse maneu-
vers to place the deputy vehicle on the same initial or dif-
ferent generatrix after some interval of time. The total
transfer cost of the bang-off-bang control is higher when
the departure vertex is placed at the closest distance with
the Earth. The best results are obtained for parallel trans-
lations, i.e. departure and arrival generatrices h are equal,
and when the formation is set at the endpoints of the inter-
vals for h.

The second strategy carried out, applies a sequence of
correction maneuvers at certain epochs, executed uni-
formly during a time interval required by the spacecraft
to recover the formation. A set of weights is fixed, in such
a way that, the weighted total DV consumption is mini-
mized and the magnitude of the first maneuvers remains
small. Similarly, the magnitude of the control maneuvers
is higher when the formation is passing close to the
Earth. Additionally, the magnitude of each maneuver

decays approximately as 2� N�2ð Þ=2 with regard to the num-
ber of maneuvers N 6 2. The best results are obtained
when the formation is set at the locations where the previ-
ous control strategy reaches a maximum.

Now, although the BCFBP scenarios significantly affect
the dynamics about L4 point, the formation keeping DV
requirements in this work are extremely small, on the order
of 10� 24 m/s during 1 year (using the second strategy).
Therefore, for small satellites with a mass of few kilograms,
such small velocity changes are achievable using electric
propulsion systems.
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In conclusion, this research provided a more accurate
description of the relative motion about Earth–Moon tri-
angular libration points because solar gravitational effects
were modeled and added to the system. The two
quasi-periodic solutions used in this work have shown to
be appropriate for setting a formation about L4.
However, since BCFBP models catch the basic dynamics
of formation flight about equilateral libration points in
the Earth–Moon system, this analysis can be extended to
more complex descriptions of relative motion at L4 point,
e.g., ephemeris-based model. New reference orbits may be
included in different environments, in such a way that a
more real description of the most suitable directions for
formation at triangular libration points could be obtained
for potential applications.
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