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Abstract The eccentric Kozai–Lidov mechanism, based on the secular theory, has been
proposed as a mechanism that plays an important role in producing orbits that switch from
prograde to retrograde. In the present work we study the secular dynamics of a triple system
composed of a Sun-like central star and a Jupiter-like planet, which are under the gravitational
influence of another perturbing star (brown dwarf). The perturbation potential is developed in
closed form up to the fifth order in a small parameter (α = a1/a2), where a1 is the semimajor
axis of the extrasolar planet and a2 is the semimajor axis of the perturbing star. To eliminate
the short-period terms of the perturbation potential, the double-average method is applied. In
this work we do not eliminate the nodes, a standard method in the literature, before deriving
the equations of motion. The main goal is to study the effects of the higher-order terms of
the expansion of the perturbing force due to the third body in the orbital evolution of the
planet. In particular, we investigate the inclination and the shape (eccentricity) of these orbits.
We show the importance of the higher-order terms in changing the inversion times of the
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flip, i.e., the times where the inclination of the inner planet flips from prograde to retrograde
trajectories. We also show the dependence of the first flip with respect to the semimajor
axis and eccentricity of the orbit of the planet. The general conclusion is that the analytical
model increases its accuracy with the inclusion of higher-order terms.We also performed full
numerical integrations using the Bulirsch–Stoer method available in the Mercury package
for comparison with the analytical model. The results obtained with the equations developed
in this work are in accordance with direct numerical simulations.

Keywords Three-body problem · Orbital perturbation · Exoplanets · Flip of inclination ·
Lidov-Kozai mechanism

1 Introduction

So-called hot Jupiters are extrasolar planets with a mass similar to that of Jupiter and have
orbits that are very close to the central star. The sky-projected angle between the orbits of
several hot Jupiters and the spins of their host stars were measured, and the results indi-
cated that misalignment and even retrograde orbits are common (Triaud et al. 2010; Albrecht
et al. 2012). More than 20% of these planets are found in retrograde orbits with respect
to the spin’s angular momentum of the host star. The eccentric Kozai–Lidov mechanism
(Kozai 1962; Lidov 1962), based on secular theory, has been proposed as a mechanism
that plays an important role in producing such orbits (Naoz et al. 2011, 2012, 2013). In
the present work we study the secular dynamics of a triple system composed of a Sun-
like central star and a Jupiter-like planet, which are under the gravitational influence of
another perturbing star (brown dwarf). Naoz et al. (2011) presented a study in which they
take into account the octupole term in the perturbation potential. They show that the incli-
nation of the inner planet varies from prograde (i < 90◦) to retrograde (i > 90◦) for a
specific problem, where i is the mutual inclination between the two orbits. The authors show
that, considering only the quadrupole term in the potential, the inclination varies accord-
ing to the Kozai–Lidov mechanism (Kozai 1962; Lidov 1962) (Fig. 1 in Naoz et al. 2011),
i.e., the inclination oscillates with large amplitudes when the initial inclination has a value
larger than the critical inclination (39.23◦) and small amplitudes when the initial inclina-
tion has a value smaller than this critical inclination. However, the orbit always remains
prograde. When the researchers consider the octupole term in the potential, the inclina-
tion grows significantly and can flip from prograde to retrograde trajectories. Therefore,
the authors show that the octupole term should be considered in the perturbation potential.
This mechanism is defined by Lithwick and Naoz (2011) as an eccentric Kozai mechanism
(EKM). In Katz et al. (2011) this problem is calculated analytically for high inclinations.
The authors also show that the inclination increases strongly and can flip from prograde
to retrograde trajectories when the octupole term in the perturbation potential is taken into
account. In Naoz et al. (2013) the authors show that it is possible for the inclination to
increase strongly and to flip from prograde to retrograde trajectories when only the R2

(quadrupole) term is taken into account. But to obtain these results, the authors did not elim-
inate nodes (Jefferys and Moser 1966; Kozai 1962) directly in the Hamiltonian, which is
generally done in the literature. They eliminate the longitude of the ascending node after
deriving the equations of motion. For the third order, the authors mention that it is pos-
sible to do that even before deriving the equations of motion, namely, at the level of the
Hamiltonian. Then, for the R3 term, they eliminate the nodes using the standard method.
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Note that this problem (elimination of nodes) does not appear in the vectorial formalism
(e.g., Tremaine et al. 2009; Petrovich 2015a, b), only in the Hamiltonian formalism. Li et al.
(2014a) investigated the chaotic and quasiperiodic orbital evolution by studying the sur-
faces of sections and the Lyapunov exponents (in the test particle limit). The authors found
that the resonances introduced by the octupole level of approximation causes the orbits
to flip from prograde to retrograde and back and cause significant eccentricity excitations.
Chaotic behaviors occur when the mutual inclination between the inner and outer binaries is
high.

In this study, we present two developments: (1) the perturbation potential in closed form
up to the third order in a small parameter (α = a1/a2) when the perturbing star is put in
elliptical and inclined orbits; in this case, the inner and outer orbits are mutually perturbed;
(2) the perturbation potential in closed form expanded up to the fifth order in a small parameter
(α = a1/a2), in the case where the perturbing star orbit is elliptical, planar, and fixed in space.

In the nomenclature used, a1 is the semimajor axis of the planet and a2 is the semimajor
axis of the perturbing star. We then analyze the effects caused by the terms P2, P3, P4, and
P5 (Legendre polynomial) in the orbital elements of the planet. The equations of motion
are developed in closed forms to avoid expansions in power series of the eccentricity and
inclination. We compared the models mentioned here in different orders and we also com-
pared our results with the results obtained by Naoz et al. (2011, 2013). We performed several
simulations to analyze the motion of the planet perturbed by the star. The approach used for
the development of the equations is based on Brouwer (1959), Hori (1961), Prado (2003),
and Yokoyama et al. (2003, 2008). Note that, in the literature, several authors have consid-
ered the three-body problem to study the dynamics of hierarchical triple systems, such as
Krymolowski andMazeh (1999), Ford et al. (2000, 2004), Takeda et al. (2008), Correia et al.
(2011), Naoz et al. (2011), and Katz et al. (2011).

As a new aspect, in the present paper, the development of the equations of motion are
explicitly presented up to the fifth order. We also show the importance of the R4 and R5 terms
in changing the inversion times of the flip, i.e., the time where the inclination of the inner
planet can flip from prograde to retrograde trajectories. We also show the dependence of the
first flip with respect to the semimajor axis and eccentricity. In general, larger values of e2
reduce the time required for the first inversion for low values of the semimajor axis of the
perturbing star. There is a limit below which the inversion occurs and above which there is
no more inversion (Fig. 6) for times up to 107 years. As an example, for a semimajor axis of
a perturbing star of 100AU, an inversion only occurs for eccentricities equal to 0.5 and 0.6.
Therefore, when considering distant stars, such as hierarchical triple systems, an inversion
only occurs for large values of the eccentricity of the orbit of the perturbing star. The results
show that the inclusion of the R4 term gives results that are worse than those given by the
R3 term, but the inclusion of the R5 term corrects and improves the results.

2 Equations of motion

The triple system under study is characterized by a planet m1 which is orbiting a central star
m0 in an elliptical inner orbit around the center of mass of the system m0−m1. The star m0

is also moving around the center of mass of the system m0–m1, and another perturbing star
(brown dwarf-m2) is moving in an outer elliptical orbit around the system’s center of mass,
but with a very distant trajectory that also has large eccentricity, as shown in Fig. 1. The
vector r1 represents the position of m1 with respect to m0, and the vector r2 is the position
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Fig. 1 Scheme of coordinate
system used to describe the triple
star system (figure not to scale)

of the body m2 with respect to the center of mass of the inner orbit. Φ is the angle between
r1 and r2.

The Hamiltonian of the triple system can be written as follows (Harrington 1969; Ford
et al. 2000, 2004; Takeda et al. 2008):

F = Gm0m1

2a1
+ G (m0 + m1)m2

2a2

+ G

a2

∞∑

j=2

α j M j

(
r1
a1

) j (a2
r2

) j+1

Pj (cosΦ) , (1)

where G is the gravitational constant, the Pj are the Legendre polynomials, and

Mj = m0m1m2
m j−1

0 − (−m1)
j−1

(m0 + m1) j
. (2)

To apply the secular approximation to real systems, several criteria need to be satisfied
(e.g., the period of the outer orbit needs to be smaller than the Kozai time scales). Note that
the system used in this paper can be modeled using average approximations, where we apply
Eq. (25) of Naoz et al. (2013) to justify the averaging process (see also Antonini et al. 2014;
Bode and Wegg 2013). In Naoz et al. (2013) the authors show that, considering only the
quadrupole term in the potential, the inclination of the inner planet can flip from prograde to
retrograde trajectories. The authors showed that several studies in the literature eliminated
nodes incorrectly. To verify this assertion, we developed a perturbation potential taking into
account the expression for cosΦ written in the form (Yokoyama et al. 2003).
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cos(Φ) = 1/4 (−1 + c2)(−1 + c1) cos( f1 + g1 − h1 − f2 − g2 + h2)

+ 1/4 (1 + c1)(1 + c2) cos( f1 + g1 + h1 − f2 − g2 − h2)

−1/4 (1 + c2)(−1 + c1) cos( f1 + g1 − h1 + f2 + g2 + h2)

−1/4 (−1 + c2)(1 + c1) cos( f1 + g1 + h1 + f2 + g2 − h2)

+1/2 s1 s2 (cos( f1 + g1 − f2 − g2) − cos( f1 + g1 + f2 + g2)) (3)

where we will use the shortcuts s1 = sin i1, c1 = cos i1, s2 = sin i2, and c2 = cos i2. Here
i j , g j , h j , and f j (for j = 1, 2) are the inclination, argument of the periastron, longitude of
the ascending node, and true anomaly of the inner and outer orbits, respectively.

The perturbation potential was developed in closed form up to the third order in a small
parameter (α = a1/a2), where the perturbing star is put in an elliptical inclined orbit. For
the model considered in this paper, it is necessary to calculate the terms R2 and R3 of the
perturbing function due to the P2 and P3 terms, respectively. We obtain

R2 = G

a2
α2M2

(
r1
a1

)2 (
a2
r2

)3

P2 (cosΦ), (4)

R3 = G

a2
α3M3

(
r1
a1

)3 (
a2
r2

)4

P3 (cosΦ). (5)

The perturbation potential given by Eq. (1) can be written as

F = R0 + R2 + R3, (6)

where

R0 = Gm0m1

2a1
+ G(m0 + m1)m2

2a2
. (7)

To eliminate the short-period terms of the potential given by Eq. (6), the double-average
method is applied with respect to the eccentric anomaly of the planet and of the true anomaly
of the perturbing star. This is done using known equations from Celestial Mechanics:

sin( f ) =
(√

1 − e2 sin(E)
)

/ (1 − e cos(E)) ; (8)

cos( f ) = (cos(E) − e)/(1 − e cos(E)), (9)

r/a = 1 − e cos(E), (10)

a/r = (1 + e cos( f ))/(1 − e2), (11)

dl = (1 − e cos(E))dE . (12)

We also used the area integral in the form (Brouwer 1959; Brouwer and Clemence 1961)

dl = 1√
1 − e2

r2

a2
d f (13)

Using the expressions given by Eqs. (1)–(5), and taking into account the known relation-
ships from the Celestial Mechanics mentioned previously, we integrate the equations with
respect to the true and eccentric anomalies to eliminate short-period terms. Thus, we obtain
the perturbation potential expanded up to the third order in a small parameter. The long-period
perturbation potential (R2) can be written as
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R2C = −45

2

β3L1
4

L2
6(1 − e22)3/2

× (1/6 e1
2(c2 − 1)(c2 + 1)(c1 + 1)2 cos(2 g1 − 2 h2 + 2 h1)

+ 1/6 e1
2(c2 − 1)(c2 + 1)(c1 − 1)2 cos(2 g1 + 2 h2 − 2 h1)

+ 2/3 c2 s1 s2 e1
2(c1 − 1) cos(2 g1 − h1 + h2)

+ 2/3 c2 s1 s2 e1
2(c1 + 1) cos(2 g1 + h1 − h2)

− 1/5 (c2 + 1)(c1 − 1)(c1 + 1)(c2 − 1)(2/3 + e1
2)

× cos(−2 h2 + 2 h1) − 4/5 c1 s2 s1 (2/3 + e1
2)c2

× cos(h1 − h2) + (−1/3 + c2
2)((c1

2 − 1)e1
2 cos(2 g1)

− 3/5 (c1
2 − 1/3)(2/3 + e1

2))), (14)

where

L1 = m0 m1
√
G (m0 + m1) a1
m0 + m1

, (15)

L2 = m2 (m0 + m1)
√
G (m0 + m1 + m2) a2

m0 + m1 + m2
, (16)

β3 = 1

16

G2 (m0 + m1)
7 m2

7

(m0 + m1 + m2)
3 m0

3m1
3
, (17)

β4 = 1

4

G2 (m0 + m1)
9 m2

9 (m0 − m1)

(m0 + m1 + m2)
4 m0

5m1
5

. (18)

Note that the potential (three degrees of freedom)dependson the longitudeof the ascending
node of the inner (h1) and the outer (h2) orbits, but the number of degrees of freedom can
be reduced after the equations of motion are derived (Naoz et al. 2013). Note also that the
argument of periastron of the outer orbit does not appear in the second order of the potential.
It is usually removed during the process of double averaging. Then we get de2/dt = 0.

In Naoz et al. (2013) the authors show that, in the full three-body problem, it is incorrect
to eliminate the nodes for the triple system. According to the authors, the h1 − h2 = π term
(often used in the literature) cannot be replaced at the Hamiltonian level. It is possible to
use it only after deriving the equations of motion. In this way, they show that the mutual
inclination can flip from prograde to retrograde trajectories when only the quadrupole term
is taken into account.

The potential due to the R3 term depends on the g1, g2, h1, and h2 terms (four degrees of
freedom). The R3 term was developed using Eq. (19), and cos(Φ) was replaced by Eq. (3):

R3 = 2β4 L1
6a24r13

L2
8r24a13

(5 cos3(Φ) − 3 cos(Φ)). (19)

The perturbation potential due to the R3 term is too long to show in the present paper, so
we eliminate nodes before deriving the equations of motion so as to write a more compact
equation. Note, however, that to perform the simulation, the equation h1 − h2 = π was
only used after the equations of motion were derived, as mentioned earlier. The perturbation
potential due to the R3 term is given by
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R3C = −675

128

e2L1
6e1β4

(−e22 + 1
)5/2

L2
8

×
(

−7

9
e1

2 (−c1c2 + s1s2 + 1) (−c1c2 + s1s2 − 1)2 cos (3g1 − g2)

+ (−c1c2 + s1s2 − 1)
(
4/3 + e1

2) (
c1

2c2
2 + (−2/3 − 2s1s2) c2c1 + s1

2s2
2

−1/15 + 2/3s1s2) cos (g1 − g2) − (−c1c2 + s1s2 + 1)

(
−7

9
e1

2 (−c1c2

+ s1s2 + 1) (−c1c2 + s1s2 − 1) cos (3g1 + g2) + (
c1

2c2
2 + (−2s1s2

+ 2/3) c2c1 + s1
2s2

2 − 1/15 − 2/3s1s2
) (
4/3 + e1

2) cos (g1 + g2)
))

. (20)

Our perturbation potential is written in the form

R = R2C + R3C . (21)

Now using the cosΦ term given by Kozai (1962), we get

cosΦ = cos( f1 + g1) cos( f2 + g2) + c sin( f1 + g1) sin( f2 + g2), (22)

where we will use the shortcut c = cos i . Here i is the mutual inclination of the inner orbit
with respect to the outer orbit.

The long-period perturbation potential (R2K –quadrupole–Kozai) can be written as

R2K = −β3L4
1

L6
2

(
1 − e22

)3/2 × (
15 e1

2 cos (2 g1) cos
2 (i1)

−15 e1
2 cos (2 g1) − 6 cos2 (i1) − 9 cos2 (i1) e

2
1 + 2 + 3e21

)
. (23)

The potential depends on the argument of periastron of the inner orbit (one degree of freedom).
In Beaugé et al. (2012) is presented an approach to analyze the dynamical evolution

of multiplanet systems due to their mutual gravitational interaction. The authors use the
Hamiltonian system (quadrupole and octupole) that was derived from Laskar and Boué
(2010). They analyze possible modes of motion for hierarchical (Valtonen and Karttunen
2006; Lee and Peale 2003), secular, or resonant configurations. The authors also present a
review of the main techniques employed for the detection and orbital characterization of
multiple-planet systems. To analyze the problem of three bodies (massive), in Correia et al.
(2012) is considered the tidal effect due to the nonspherical shape of the planet (J2), coupled
with the gravitational force due to the perturbing star.

Therefore, the long-period perturbation potential is written as

〈F〉 = R0 + R2C + R3C . (24)

2.1 Analyzing the R2 and R3 terms: perturbing star in elliptical and inclined orbit

In this section we consider that the orbits of the planet and the perturbing star are mutually
perturbed, so we have a system of nonlinear differential equations to integrate with eight
equations of motion following application of the double-average method. In this case, the
perturbation potential is considered up to the third order because the two orbits are mutually
perturbed and the equations are very large, generating complex expansions if made up to
the fifth order, with a large number of terms. In the next section the perturbing star will be
considered fixed and planar, thereby reducing the previous number of differential equations
by half, so in this case, the perturbation potential is presented up to the fifth order.
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Fig. 2 i1 versus t . Temporal
evolution of inclination of planet.
Initial conditions: a1 = 6 AU,
a2 = 100 AU, e1 = 0.001,
e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦,
g1 = 45◦, g2 = 0◦

Here we replaced Eq. (24) in the Lagrange planetary equations (Kovalevsky 1967) and
numerically integrated the set of nonlinear differential equations using the software Maple
to analyze the orbital behavior of the planet for some particular cases.

A difference of the potential presented here with respect to the potential presented byNaoz
et al. (2013) is that, for the R2 and R3 terms, we use Eq. (3) and elimination of the nodes was
done following the derivation of the equations of motion, according to Naoz et al. (2013). In
Naoz et al. (2013) the authors develop the R2N term (quadrupole) using a different approach
compared to that presented by Kozai (1962), where the relation h1 − h2 = π was only
used after deriving the equations of motion. This relation comes from the conservation of
angular momentum. Another detail is that, in Naoz et al. (2013), the authors use the classical
angle given by Kozai (Eq. 22) to develop the R3N term (octupole). Here, the R3C term was
developed in the same way as was done for the term R2C , where we use Eq. (3), i.e., we
do not eliminate the nodes before deriving the equations of motion for all orbital elements.
Another difference is that, in the next section, we develop the perturbation potential up to the
fifth order.

To investigate the effects of the R2 and R3 terms, we use the following initial conditions.
The star hasmass 1M⊙, the planet hasmass 1MJ , and the outer brown dwarf hasmass 40MJ ,
whereM⊙ is the mass of the Sun and 1MJ the mass of Jupiter. The inner orbit has a1 = 6AU
and e1 = 0.001, and the initial value for the relative inclination is i = 65◦. These initial
conditions were obtained from Naoz et al. (2011). Figure 2 shows a comparison between the
perturbation potential models. Taking into account only the R2 term, the red curve represents
the potential when the nodes are eliminated in the Hamiltonian (Kozai 1962, R2K ). The black
curve shows the results when the nodes have not been eliminated before derivation of the
equations of motion (R2C ). For this dynamical system, the inclination inversion phenomenon
does not occur considering only the R2C term. Note that, taking into account the potential
given by Eq. (23), the inclination remains in a prograde orbit with constant amplitude (Fig. 2,
red line) and, when considering the potential given by Eq. (14), the inclination also remains
in a prograde orbit with the same constant amplitude, but the period of oscillation is different.
Therefore, this shift in the period of oscillation is the practical result of the elimination of
the nodes (Fig. 2, black line). Now, when the R3C term is taken into account, the flip occurs
between prograde and retrograde orbits (Fig. 2, blue line). When the R3C term is taken into
account, the argument of the periastron (g2) of the perturbing star appears in the equations
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Fig. 3 i2 versus t . Temporal
evolution of inclination of
perturbing star. Initial conditions:
a1 = 6 AU, a2 = 100 AU,
e1 = 0.001, e2 = 0.6,
i1 = 64.7◦, i2 = 0.3◦,
g1 = 45◦, g2 = 0◦

of motion, which contributes to the inversion time. In the second-order potential, this (g2)
term does not appear in the equations of motion.

Figure 3 shows the inclination of the perturbing star with respect to the time. Note that
the variation in the inclination is very small, i.e., the planet practically does not perturb the
star. In the next section we show an approach where the perturbing star will be considered
in the reference plane of the central star and in a fixed orbit in space. We will also develop
the perturbation potential up to the fifth order in a small parameter (α = a1/a2).

We plot a diagram g1 versus e1 in Figs. 4 and 5. Note that in Figs. 4 and 5, the orbits librate
around the equilibrium point for g1 = 90◦ or g1 = 270◦. Figure 4 shows the dynamics of
orbits when only the R2C term of the perturbation potential is taken into account and Fig. 5
considers the R2C + R3C terms. Figure 4 shows orbits outlined by lines, whereas Fig. 5
shows orbits outlined by regions. This happens owing to the inclination, which flip between
prograde and retrograde orbits.

Figure 6 shows the time required for the first inversion of the orbit on the vertical axis
against the semimajor axis of the perturbing star on the horizontal axis. Figure 6 considers
the longitude of the ascending node of the perturbing star to be 180◦ and uses different values
for e2 and a2. Some conclusions can be obtained from this figure. Regarding the difference in
the dynamical models used, it is evident that, in general, larger values of e2 reduce the time
required for the first inversion for low values of the semimajor axis of the perturbing star.

In Fig. 6, eccentricities of 0.1–0.6 for the perturbing star are considered. For e2 = 0.1 and
e2 = 0.2 there was no inversion for the integration time used. For eccentricities above 0.2,
the occurrence of this phenomenon within a time span of 3.5 × 107 years depends on the
semimajor axis of the perturbing star. There is a limit value below which the inversion occurs
and above which no more inversions occur. When the eccentricity equals 0.3, this limit is
around 60AU, when it equals 0.4, the limit is near 90AU, and if the eccentricity equals 0.5,
the limit is near 120AU. Above this value an inversion always occurs in the range considered
for the semimajor axis of the perturbing star (150AU). Figure 6 shows the exact locations
of those inversions. Now considering values for a2 up to 150AU, only an eccentricity of
0.6 allows the phenomenon to occur, as seen in Fig. 6. This semimajor axis also has an
expected strong effect on the inversion phenomenon since the closer the perturbing star is
to the perturbed planet, the larger are the effects. This can be seen in Fig. 6 by looking at
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82 J. P. S. Carvalho et al.

Fig. 4 e1 versus g1. Time
evolution for 3.5 × 107 years for
eccentricity e1 and argument of
periastron g1. Initial conditions:
a1 = 6 AU, a2 = 100 AU,
e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦,
g2 = 0◦. Perturbation potential
R2C

Fig. 5 e1 versus g1. Time
evolution for 3.5 × 107 years for
eccentricity e1 and argument of
periastron g1. Initial conditions:
a1 = 6 AU, a2 = 100 AU,
e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦,
g2 = 0◦. Perturbation potential
R2C + R3C

the results for these values of the eccentricity. It is clear that the time for the first inversion
increases with the semimajor axis. It is also evident that, in general, the value of the minimum
eccentricity required for the phenomenon to occur decreases with increases in the semimajor
axis. It is also clear that when the perturbing body is located in a position far from the planet
(around 100AU), inversion of the inclination only occurs for highly eccentric orbits of the
perturbing star, for the time considered here for the simulations. Another fact that can be
seen from Fig. 6 is that the time required for the first flip decreases with the eccentricity for
a given value of the semimajor axis. The vertical lines in Fig. 6 make this clear.
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Fig. 6 Time of first flip of
inclination versus a2. Initial
conditions: a1 = 6 AU,
e1 = 0.001, i1 = 64.7◦,
i2 = 0.3◦, g1 = 45◦, g2 = 0◦

3 Analyzing the R2, R3, R4, and R5 terms: perturbing star in planar orbit

Now, let us consider the orbit of a perturbing body as planar and fixed in space. In Carvalho
et al. (2013) the perturbation potential was developed up to the fourth order, but using Eq.
(22) and the relation given by Lithwick and Naoz (2011) (g2 = π − h1). In other words, in
addition to eliminating the nodes before deriving the equations of motion, as in the Kozai
classical equation, the relation g2 = π − h1 was also used to show the h1 term explicitly in
the equations of motion. Here, as was already shown, we use Eq. (3), given by Yokoyama
et al. (2003), instead of Eq. (22), to avoid removing the nodes before deriving the equations of
motion. However, in this section, the orbit of the perturbing star is planar and fixed in space.
Then the orbital elements of the perturbing star are i2 = 0, g2 = 0, and h2 = 0. Replacing
these values in Eq. (3), we obtain the following equation:

cos(Φ) = 1

2
(1 + cos(i1)) cos( f1 + g1 + h1 − f2)

+ 1

2
(1 − cos(i1)) cos( f1 + g1 − h1 + f2). (25)

Those equations are written in an inertial reference system that has the equator of the main
body in the x–y plane.

For the model considered in this paper, it is necessary to calculate the terms R2 to R5 of the
perturbing function because of the P2 to P5 terms, respectively. The results are as follows:

R2 = G

a2
α2M2

(
r1
a1

)2 (
a2
r2

)3

P2 (cosΦ) , (26)

R3 = G

a2
α3M3

(
r1
a1

)3 (
a2
r2

)4

P3 (cosΦ) , (27)

R4 = G

a2
α4M4

(
r1
a1

)4 (
a2
r2

)5

P4 (cosΦ) , (28)

R5 = G

a2
α5M5

(
r1
a1

)5 (
a2
r2

)6

P5 (cosΦ) . (29)
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The perturbation potential given by Eq. (1) can be written as

F = R0 +
5∑

j=2

R jC , (30)

where

R0 = Gm0m1

2a1
+ G(m0 + m1)m2

2a2
. (31)

To eliminate the short-period terms of the potential given by Eq. (30), the double-average
method is applied with respect to the eccentric anomaly of the planet and of the true anomaly
of the perturbing star. Using the same approach as was used in the previous section but now
assuming that the orbit of the perturbing star is planar and fixed in space, the equations of
motion are now developed. Thus, we obtain the perturbation potential expanded up to the
fifth order in a small parameter. The long-period perturbation potential can be written as

R2C = 15β3L1
4 (e1

2(s21 ) cos(2 g1)

+ 3/5 (e1
2 + 2/3)(c21 − 1/3))(1 − e2

2)−3/2L2
−6, (32)

R3C = −675

128
L1

6e2 β4 e1

(
7

9
e1

2(c1 + 1)(c1 − 1)2

× cos(−h1 + 3 g1) − (c1
2 + 2/3 c1 − 1/15)(c1 − 1)

×(e1
2 + 4/3) cos(g1 − h1) + (c1 + 1)

×
((

−7

9
e1

2c1
2 + 7

9
e1

2
)
cos(h1 + 3 g1)

+(c1
2 − 2/3 c1 − 1/15) cos(g1 + h1)

×(e1
2 + 4/3)

))
(−e2

2 + 1)−5/2L2
−8, (33)

R4C = 19845

1024
β5 L1

8

× (
4/9 (e1

2 + 2)(c1
2 + c1 + 1/7)e2

2(c1 − 1)2e1
2

× cos(2 g1 − 2 h1) + 4/9 (e1
2 + 2)(c1 + 1)2e2

2

×(c1
2 − c1 + 1/7)e1

2 cos(2 g1 + 2 h1)

−1/3 e1
4e2

2(c1 + 1)(c1 − 1)3 cos(4 g1 − 2 h1)

−1/3 e1
4e2

2(c1 − 1)(c1 + 1)3 cos(4 g1 + 2 h1)

−4/3 (e1
2 + 2)(c1 + 1)(c1

2 − 1/7)(e2
2 + 2/3)

×(c1 − 1)e1
2 cos(2 g1) − 10

21
(c1 + 1)e2

2

×
(
e1

4 + 8/3 e1
2 + 8

15

)
(c1

2 − 1/7)(c1 − 1) cos(2 h1)

+(e2
2 + 2/3)

(
e1

4(c1 − 1)2(c1 + 1)2 cos(4 g1)

+ 5/7

(
e1

4 + 8/3 e1
2 + 8

15

) (
c1

4 − 6/7 c1
2 + 3

35

)))

×(−e2
2 + 1)−7/2L2

−10, (34)
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R5C = 165375

4096
β6L1

10

× e1

(
− 9

10
(c1 − 1)2e1

2(e1
2 + 8/3)(c1 + 1)(e2

2 + 4/3)

× (c1
2 + 2/5c1 − 1/15) cos(−h1 + 3g1) + 3

20
(c1 − 1)3

(
c1 + 13

15

)
e1

2

× (e1
2 + 8/3)(c1 + 1/3)e2

2 cos(3g1 − 3h1) − 3

20
(c1 − 1/3)e1

2

× (e1
2 + 8/3)(c1 + 1)3e2

2
(
c1 − 13

15

)
cos(3g1 + 3h1) + 33

50
(c1 − 1)3e1

4

× (c1 + 1)2(e2
2 + 4/3) cos(5g1 − h1) − 11

100
e1

4e2
2(c1 + 1)

× (c1 − 1)4 cos(5g1 − 3h1) + 11

100
e1

4e2
2(c1 − 1)(c1 + 1)4 cos(5g1 + 3h1)

+ (c1 − 1)

(
c1

4 + 4/5c1
3 − 2/5c1

2 − 4

15
c1 + 1

105

)
(e2

2 + 4/3)

× (e1
4 + 4e1

2 + 8/5) cos(g1 − h1) −
(

− 9

10
(c1 − 1)e1

2(e1
2 + 8/3)

× (c1 + 1)(c1
2 − 2/5c1 − 1/15)(e2

2 + 4/3) cos(h1 + 3g1)

+ 1/6(c1 − 1)2e2
2(e1

4 + 4e1
2 + 8/5)(c1

2 + 2/5c1 − 1/15) cos(g1 − 3h1)

−1/6(c1 − 1)(c1 + 1)(c1
2 − 2/5c1 − 1/15)e2

2(e1
4 + 4e1

2 + 8/5)

× cos(g1 + 3h1) +
(
33

50
e1

4(c1 − 1)2(c1 + 1)2 cos(5g1 + h1)

+ cos(g1 + h1)

(
c1

4 − 4/5c1
3 − 2/5c1

2 + 4

15
c1 + 1

105

)
(e1

4 + 4e1
2 + 8/5)

)

×(e2
2 + 4/3)

)
(c1 + 1)

)
e2

)

× (−e2
2 + 1)−9/2L2

−12, (35)

where we use the shortcut s1 = sin i1, c1 = cos i1, and where

β5 = 1

8

G2 (m0 + m1)
10 m2

11
(
m0

3 + m1
3
)

(m0 + m1 + m2)
5 m0

7m1
7

, (36)

β6 = 1

8

G2 (m0 + m1)
12 m2

13
(
m0

4 − m1
4
)

(m0 + m1 + m2)
6 m0

9m1
9

. (37)

Therefore, the long-period perturbation potential is written as

〈F〉 =
5∑

j=2

R jC . (38)

It is possible replaced Eq. (38) in the Lagrange planetary equations (Kovalevsky 1967) to
analyze the evolution of the orbital elements of the planet, in particular the inclination and
eccentricity. The evolution of those elements can be obtained from numerical simulations,
which are performed using the Maple software.

123



86 J. P. S. Carvalho et al.

Fig. 7 Temporal evolution of
inclination. Here “(pe)” means
that the inner and outer orbits are
mutually perturbed, and “(fix)”
means that the orbit of the
perturbing star is fixed in space.
Initial conditions: a1 = 6 AU,
e1 = 0.01, a2 = 100 AU,
e2 = 0.6, i1 = 65◦, g1 = 0◦. The
star has mass 1M⊙ , the planet
has mass 1MJ , and the outer
brown dwarf has mass 40MJ

Fig. 8 Temporal evolution of
inclination. Here “(pe)” means
that the inner and outer orbits are
perturbed mutually, and “(fix)”
means that the orbit of the
perturbing star is fixed in space.
Initial conditions: a1 = 6AU,
e1 = 0.01, a2 = 100AU,
e2 = 0.6, i1 = 65◦ and g1 = 0◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ

The perturbation potential given by Eq. (38) is now replaced in the Lagrange planetary
equations and numerically integrated. Figures 7, 8, and 9 show the effects of the perturbation
potential on the planet’s orbit for different orders of the perturbation potential. We also per-
formed full numerical integrations using the Bulirsch–Stoer method available in theMercury
package (Chambers 1999). The red curve (Figs. 7, 8, and 9) was generated from the direct
numerical integration of the three-body problem. The blue curve represents the dynamics of
the planet when the inner and outer orbits are mutually perturbed [Eq. 24, R2C + R3C (pe)].
Note that when themutual perturbation of the two orbits is taken into account, even observing
that the perturbing star is much less perturbed than the planet’s orbit (Fig. 3), the result is
in agreement with the numerical simulation. But when only the perturbation of the inner
orbit is considered and the R2C + R3C (fix) terms in the perturbation potential are taken into
account, i.e., the orbit of the perturbing star is considered fixed and planar, the planet incli-
nation behavior differs, in terms of the variation of the inversion time, from the numerical
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Fig. 9 Temporal evolution of
inclination. Here “(pe)” means
that the inner and outer orbits are
perturbed mutually, and “(fix)”
means that the orbit of the
perturbing star is fixed in space.
Initial conditions: a1 = 6AU,
e1 = 0.01, a2 = 100AU,
e2 = 0.6, i1 = 65◦, g1 = 0◦. The
star has mass 1M⊙ , the planet
has mass 1MJ , and the outer
brown dwarf has mass 40MJ

result after the third inversion. From that moment the results are completely different from
the numerical simulation. Now, when considering up to the fourth order of the perturbation
potential [

∑4
j=2 R jC (fix)], the inclination behavior differs, also in terms of the variation

of the inversion time, from the numerical results as early as the second inversion. When
considering up to the fourth order of the perturbation potential, the inclination characteristic
of the planet diverges from the numerical results, namely, the term R4C (fix) contributes to
an increase in the inversion time of the inclination and thus the orbit remains for a longer
time on a prograde or retrograde trajectory. The results, considering the perturbation poten-
tial expanded up to the fifth order [

∑5
j=2 R jC (fix)], show that they are in agreement with

the numerical simulations and in agreement with the case when the octupole term is taken
account, where the two orbits are mutually perturbed and inclined. When the perturbation
potential up to the fifth order is taken into account, the planet’s inclination behavior shows
a slight difference from the result of direct simulations. These differences start to appear
in the third inversion, but this difference is very small compared to those presented by the
perturbation potential developed up to the third or fourth order. Thus, one realizes that the
term R5C (fix) contributes to the results of the equations developed here and it can reproduce
more faithfully the results obtained by the direct numerical integration of the three-body
problem. In this way, Fig. 7 shows the results under the assumption that the star remains in
a fixed orbit.

We note that the octupole term is strongly dominant in the inversion inclination phenom-
enon, in particular in the period where the inclination migrates from prograde to retrograde
orbits. If the system analyzed considers that the two orbits aremutually perturbed, the dynam-
ics iswell represented considering up to the third order of the perturbation potential. However,
when the external orbit is planar and fixed, it is necessary to expand the potential up to the
fifth order, as shown in Figs. 7, 8, and 9, where the lower-order terms do not represent the
dynamical behavior compared to the direct numerical integration of the three-body problem.
Note also that the terms of odd order of the expansion in Legendre polynomials are strongly
dominant with respect to the terms of even order. Figure 10 shows the behavior of the planet’s
orbit for different initial inclinations. In all cases analyzed on which the inclination inversion
phenomenon occurs, what changes is only the time that each orbit requires to migrate from
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Fig. 10 Temporal evolution of
inclination. Initial conditions:
a1 = 6AU, a2 = 100AU,
e1 = 0.01, e2 = 0.6, g1 = 0,
h1 = 180◦. The star has mass
1M⊙ , the planet has mass 1MJ ,
and the outer brown dwarf has
mass 40MJ

Fig. 11 Temporal evolution of
eccentricity (1 − e1)× t. Direct
numerical integration of problem
of three bodies. Initial conditions:
a1 = 6AU, a2 = 100AU,
e1 = 0.01, e2 = 0.6, i1 = 65◦,
g1 = 0, h1 = 180◦. The star has
mass 1M⊙ , the planet has mass
1MJ , and the outer brown dwarf
has mass 40MJ

prograde to retrograde. Note that, as expected, the higher the inclination, the shorter the time
required for the flip. Although expected, Fig. 10 quantifies these results, showing exactly the
time required for the flip for each initial inclination. Figure 11 and the red curves shown in
Figs. 7, 8, and 9 were generated from the direct numerical integration of the three-body prob-
lem. Figure 11 shows that the eccentricity can reach very high values and their inclination
can become higher than 90◦, when terms of higher orders are included in the perturbation
potential, as shown in Figs. 7, 8, and 9.

Figures 12, 13, and 14 show the characteristic of a highly eccentric orbit (e1 = 0.9)
and low inclination (i1 = 5◦). The initial conditions were obtained from Li et al. (2014a).
Note that considering a planet with highly eccentric orbit and low inclination, the dynamical
behavior of the inclination is totally different compared to the previously analyzed cases.Here,
after the flip, the inclination oscillates for a while around 180◦. The red line was generated
from the direct numerical integration of the three-body problem. Note that the test particle
exhibits an almost 180◦ flip in a coplanar configuration. Note that, in this case, considering
the perturbation potential expanded up to the fourth order, the inclination behavior does
not diverge from the numerical result, as in the case presented in Fig. 8. The curve that is
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Fig. 12 Temporal evolution of
inclination. Initial conditions:
a1 = 1AU, a2 = 50AU,
e1 = 0.9, e2 = 0.7, i1 = 5◦,
g1 = 0, h1 = 180◦. The star has
mass 1M⊙, the planet has mass

10−3M⊙, and the outer brown
dwarf has mass 0.02M⊙

Fig. 13 Temporal evolution of
inclination. Initial conditions:
a1 = 1AU, a2 = 50AU,
e1 = 0.9, e2 = 0.7, i1 = 5◦,
g1 = 0, h1 = 180◦. The star has
mass 1M⊙, the planet has mass

10−3M⊙, and the outer brown
dwarf has mass 0.02M⊙

closer to the one that represents the direct numerical integration is the one that takes into
account the potential expanded up to the fourth order (Fig. 13). Note that the potential that
has expanded up to the fifth order approaches the numerical result. The second best model
is the one that considers the potential that has expanded up to the third order (Figs. 12 and
14). Another difference shown in the dynamics is that, looking at Figs. 7, 8, and 9, we see
that the inclination migrates smoothly from prograde to retrograde orbits, while in the cases
of Figs. 12, 13, and 14 this transition is not smooth but changes abruptly in the inclination.

Comparing Figs. 12, 13, and 14 with Fig. 2, from Li et al. (2014b) we observe that there
is a difference between the models. In our case a prograde orbit migrates to retrograde in a
time frame of around 5 × 106 years, while in Fig. 2, from Li et al. (2014b), the migration
occurs in a time frame of around 10 × 106 years.
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Fig. 14 Temporal evolution of
inclination. Initial conditions:
a1 = 1AU, a2 = 50AU,
e1 = 0.9, e2 = 0.7, i1 = 5◦,
g1 = 0, h1 = 180◦. The star has
mass 1M⊙, the planet has mass

10−3M⊙, and the outer brown
dwarf has mass 0.02M⊙

In Li et al. (2014b), the authors show an analytic equation for the flip criterion for the
coplanar case (i.e., values of i1 near zero). Here we use Eq. (14), as shown in Li et al. (2014b),
to verify the initial conditions used in Figs. 12, 13, and 14. Performing the calculations, we
find that the set of initial conditions satisfies the flip criterion defined by Eq. (14). Using the
same initial conditions, but changing the value of the eccentricity of the planet, we found
that Eq. (14) remains satisfied for e1 ≥ 0.46. Now, considering the initial conditions used in
other figures in the paper, with i1 � 0, Eq. (14) from Li et al. (2014b) cannot be used since
it was defined for the coplanar case.

Figure 15 shows the inversion times for different values of the semimajor axis of the planet
and of the perturbing star. The semimajor axis of the planet is considered as ranging from 1 to
10AU, and the semimajor axis of the star ranges from 60 to 150AU. Note that the inversion
only occurs for the integration time used (3.5× 107 years) from a1 = 3AU. For a1 = 3AU,
the inversion occurs only for the following values of a2: 60, 70, and 80 AU. For values of a1
from 6 AU the inversion occurs for all values of a2 considered. Note that when the perturbing
star is near the planet, the inversion occurs very fast, when compared with situations where
the perturbing star is located in a position farther from the planet. This is expected because
the disturbance decreases with the inverse square of the distance. The diagram shown in
Fig. 15 gives the times for the first inversion considering in the perturbation potential the∑4

j=2 R jC terms. Comparing Fig. 15 with Fig. 16, we observe that, in general, the inversion
time is reduced when a potential that has expanded up to the fifth order is taken into account.

To verify the differences between tinv considering the perturbation potential with and
without the R4C and R5C terms, we performed numerical integrations for several ranges of
e1 and e2. Figure 17 presents the flip times obtained for the case with a perturbation potential
given by R2C + R3C . As expected, tinv decreases with increases in the eccentricities (e1 and
e2). Note that (Fig. 17) for high values of the perturbing star eccentricity (e2 = 0.5, 0.6,
and 0.7) there is always inversion in the inclination and the flip occurs in shorter times. The
distance and eccentricity of the perturbing star strongly influence the time of inversion of the
planet’s inclination.

Themodulus of the difference between the flip times considering the perturbation potential
R2C + R3C + R4C and the perturbation potential R2C + R3C is shown in Fig. 18. This
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Fig. 15 tinv × a2. Initial
conditions: e1 = 0.01, e2 = 0.6,
i1 = 65◦, g1 = 0, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ . Potential expanded up to

fourth order
(∑4

j=2 R jC

)

Fig. 16 tinv × a2. Initial
conditions: e1 = 0.01, e2 = 0.6,
i1 = 65◦, g1 = 0, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ . Potential expanded up to

the fifth order
(∑5

j=2 R jC

)

Fig. 17 e2 × e1 × tinv.
Perturbation potential
R2C + R3C . Initial conditions:
a1 = 6AU, a2 = 100AU,
i1 = 65◦, g1 = 0◦, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ ; colors: time in multiples
of 107 years; gray indicates that
no flip occurred during
integration

figure shows the effect of the R4 term. The modulus of the difference between the flip times
considering the perturbation potential R2C + R3C + R4C + R5 and the potential R2C + R3C is
shown in Fig. 19. This figure shows the effect of the R4+R5 terms. Comparing Figs. 18 and 19
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Fig. 18 e2 × e1 × tinv.
Difference between inversion
times using R2C + R3C + R4C
and using only R2C + R3C .
Initial conditions: a1 = 6AU,
a2 = 100AU, i1 = 65◦,
g1 = 0◦, h1 = 180◦. The star has
mass 1M⊙, the planet has mass
1MJ , and the outer brown dwarf
has mass 40MJ ; colors: time in
multiples of 107 years; gray
indicates that no flip occurred
during integration
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Fig. 19 e2 × e1 × tinv.
Difference between inversion
times using R2C + R3C +
R4C + R5C and using only
R2C + R3C . Initial conditions:
a1 = 6AU, a2 = 100AU,
i1 = 65◦, g1 = 0◦, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ ; colors: time in multiples
of 107 years; gray indicates that
no flip occurred during
integration  0  0.05  0.1  0.15  0.2  0.25
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we note that, in general, when the potential up to the fifth order is taken into account, the
inclination takes a significantly different time to invert. This is especially true for large values
of the eccentricity of the outer orbit (e2 = 0.5, 0.6, 0.7). It is also clear that, with respect
to the existence of the flip, there are no differences in including R4C or R5C compared to
the model that has only R3C . The points in the e1–e2 map where there are inversions are
the same. The results with the presence of both terms R4C and R5C show a reduction in the
inversion times compared to the case where only R4C is considered. Note the presence of a
larger black region in Fig. 18 compared to Fig. 19. In general, the maximum difference in the
inversion times is approximately 0.3×107 years, which represents approximately 3% of the
total integration time. Those analyses are made with respect to the time of the first inversion
only, not taking into account oscillations of the inclination.

Figure 20 shows a direct comparison of the model expanded up to R3, while Fig. 21
shows the same results for an expansion up to R4 and Fig. 22 for an expansion up to R5.
The differences are again on the order of 3% in the inversion times in all cases, and no
differences regarding the existence or nonexistence of inversions are observed. It is observed
that the inclusion of the R4 term reduces the difference between analytical and numerical
methods for larger values of the eccentricity e2. Note the presence of larger black regions
for e2 ≥ 0.5. In the opposite sense, the results from the analytical model worsens the quality
with the inclusion of the term R4 for lower values of e2. Note the presence of larger regions
of yellow in Fig. 21 compared to Fig. 20.

Extending the comparison to Fig. 22, the same observation is made for larger values of e2.
The inclusion of the term R5 causes an increase in the black regions compared with Figs. 20
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Fig. 20 e2 × e1 × tinv.
Difference between direct
numerical integration and
perturbation potential expanded
to third order. Initial conditions:
a1 = 6AU, a2 = 100AU,
i1 = 65◦, g1 = 0◦, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ ; colors: time in multiples
of 107 years; gray indicates that
no flip occurred during
integration  0  0.05  0.1  0.15  0.2  0.25
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Fig. 21 e2 × e1 × tinv.
Difference between direct
numerical integration and
perturbation potential expanded
to fourth order. Initial conditions:
a1 = 6AU, a2 = 100AU,
i1 = 65◦, g1 = 0◦, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ ; colors: time in multiples
of 107 years; gray indicates that
no flip occurred during
integration
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Fig. 22 e2 × e1 × tinv.
Difference between direct
numerical integration and
perturbation potential expanded
to fifth order. Initial conditions:
a1 = 6AU, a2 = 100AU,
i1 = 65◦, g1 = 0◦, h1 = 180◦.
The star has mass 1M⊙, the
planet has mass 1MJ , and the
outer brown dwarf has mass
40MJ ; colors: time in multiples
of 107 years; gray indicates that
no flip occurred during
integration  0  0.05  0.1  0.15  0.2  0.25
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and 21. This means that for large values of e2, the quality of the analytical model increases
with the order of the expansion, as expected. For lower values of e2 the results are about
the same as those given by the expansion up to the fourth order. The effects of e1 are much
smaller because its range is much narrower than that of e2.

Thus, the general conclusion is that the analytical model increases its accuracy with the
inclusion of higher-order terms, from the point of view of the times for the first flips, at
least for values of e2 ≥ 0.5. Those cases have larger perturbations and so require longer
expansions.
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4 Conclusions

We investigated the secular dynamics of a planet that moves around a central star perturbed
by a brown dwarf. We developed the perturbation potential in closed forms up to the third
order in a small parameter when the perturbing star is in an elliptical and inclined orbit and
up to the fifth order in a small parameter when the outer orbit is elliptical, planar, and fixed in
space. We analyzed the effects of the potential in different orders. The dynamics is strongly
modified compared with the Kozai–Lidov classic problem, where only up to the second
order is considered in the expansion of the potential. We compared the secular evolution of
systemswith andwithout the third-, fourth-, andfifth-order termsof the perturbation potential.
Here the

∑5
j=2 R jC terms of the perturbation potential are developed without eliminating the

nodes before deriving the equations of motion.We also performed full numerical integrations
using the Bulirsch–Stoer method available in the Mercury package for comparison with the
analytical model. The findings of this paper are as follows:

1. The perturbation potential is developed in closed form up to the third order in a small
parameter when the perturbing star is in an elliptical and inclined orbit. In this case, the inner
and outer orbits are mutually perturbed. Here, the elimination of nodes was not carried out
before the derivation of the equations of motion, as is commonly done in the literature, in
cases where the Hamiltonian formalism is used. Thus, the perturbation potential presented in
this research contains terms that would be discarded if the nodes were eliminated at the level
of the Hamiltonian. When the inner and outer orbits are mutually perturbed, even observing
that the perturbing star is much less perturbed than the planet’s orbit, the result is in agreement
with the direct numerical integration of the problem of three bodies.

We show the dependence of the first flip on the semimajor axis and eccentricity. In general,
larger values of e2 reduce the time required for the first inversion for low values of the
semimajor axis of the perturbing star. There is a limit below which the inversion occurs and
above which inversions no longer occur (Fig. 6) for times up to 107 years. As an example,
for a semimajor axis of 100AU, inversion occurs only for eccentricities equal to 0.5 and
0.6 or larger. Therefore, when considering distant stars, such as a hierarchical triple system,
inversion occurs only for large values of eccentricity of the perturbing star’s orbit. We also
show that the time for the first inversion increases when the semimajor axis increases. The
occurrence of this phenomenon depends on the semimajor axis and eccentricities of the
perturbing star. This semimajor axis also has a strong effect on the phenomenon of inversion
since the closer the perturbed planet is to the perturbing star, the larger the effect is. We show
orbits that librate around the equilibrium point for g1 = 90◦ or g1 = 270◦. The orbits are
described by regions rather than lines, as is common in the literature. This happens because
the inclination flips between prograde and retrograde orbits.

2. We developed the perturbation potential in closed form up to the fifth order in a small
parameter when the perturbing star orbit is elliptical, planar, and fixed in space. When the
equations of motion are developed explicitly up to the fifth order, we show the importance
of the R4 and R5 terms in changing the inversion times of the flip, i.e., the time where the
inclination of the inner planet can flip from prograde to retrograde trajectories.

When considering that only the internal orbit is perturbed and the perturbation potential
expands up to the third order, the planet inclination changes the inversion time compared
to the numerical results, after the third inversion. When considering up to the fourth order,
the inclination behavior differs from the numerical result as early as the second inversion.
Now, assuming that the potential expands up to the fifth order, the analytical model is in
agreement with the results of the numerical simulations and agrees with the case when one
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considers in the disturbing potential up to the third-order, for the casewhere the two orbits are
mutually perturbed and inclined. When considering the perturbation potential up to the fifth
order, the planet inclination behavior differs slightly from the results of the direct numerical
integrations starting at the third inversion, but this difference is very small compared to those
that occur with the perturbation potential developed up to the third or fourth order. Thus,
one realizes that the term R5C contributes to the results, and the equations developed here
can reproduce more faithfully the results found in the direct numerical integration of the
three-body problem. The results show that the inclusion of the R4 term gives results that are
worse than those where the expansion is stopped in the R3 term, but the inclusion of the R5
term corrects and improves the results. Note also that the odd terms of the expansion in the
Legendre polynomial are strongly dominant with respect to the terms of even order.
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